Analyse des désintégrations $B^{\pm} \rightarrow K^{\pm}\pi^{0}$ et $B^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ avec le détecteur BaBar et contraintes des modes $B \rightarrow KK, K\pi, \pi\pi$ sur la matrice CKM

Julie Malclès – LPNHE Lundi 10 avril 2006 **–** CPPM

• Introduction: enjeux, matrice CKM et triangle d'unitarité

• Analyse: mesure de rapports d'embranchement et des asymétries de CP des modes $B^{\pm} \rightarrow K^{\pm}\pi^{0}$ et $B^{\pm} \rightarrow \pi^{\pm}\pi^{0}$

• Interprétations phénoménologiques: analyses d'isospin $\pi\pi$ et K π et analyse SU(3) des modes B, B_s \rightarrow KK,K π , $\pi\pi$

Introduction

- La violation de CP: motivation et bref historique
- La matrice CKM et le triangle d'unitarité
- Etat actuel des connaissances

Motivations

- C'est une condition nécessaire pour expliquer l'asymétrie matière/anti-matière de l'univers (article fondateur d'Andreï Sakharov en 1967). Sakharov, JETP Lett. 5, 24 (1967).
- Tests précis du Modèle Standard dans un des domaines les moins bien connus
- Des incohérences dans sa représentation standard pourraient montrer l'existence de nouvelle physique de manière indirecte.

Bref historique

- Découverte dans le système des kaons en 1964
- De plus grands effets de violation de CP attendus dans le système des B ⇒ expériences dédiées: BaBar, Belle puis LHCb
- 2001: première mise en évidence de la violation de CP dans le système des B
- 2004: première observation de violation de CP directe par la mesure de l'asymétrie de charge

$$A_{CP} = \frac{N(\overline{B}{}^{0} \rightarrow \mathbf{K}{}^{-}\pi^{+}) - N(B^{0} \rightarrow \mathbf{K}{}^{+}\pi^{-})}{N(\overline{B}{}^{0} \rightarrow \mathbf{K}{}^{-}\pi^{+}) + N(B^{0} \rightarrow \mathbf{K}{}^{+}\pi^{-})} = -0.133 \pm 0.030 \pm 0.009$$

Christenson-Cronin-Fitch-Turlay Phys. Rev. Lett. **13**, 138-140 (1964).

La matrice CKM

Secteur des quarks: états propres de masses ≠ états propres de jauge

La Matrice CKM:

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix}_{J} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}_{M}$$

Mélange décrit par une matrice 3 × 3 dépendant de 3 paramètres réels et d'une phase

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Violation de CP dans le Modèle Standard possible seulement si V_{CKM} est complexe, c'est à dire si $\eta \neq 0$

On cherche à déterminer ρ et η

Le triangle d'unitarité

Unitarité de V_{CKM} : $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Violation de CP dans le Modèle Standard possible seulement si l'aire du triangle d'unitarité ≠ 0

Buts de BaBar :

• Quantifier la violation de CP dans le Modèle Standard par des mesures de précision des angles et des cotés du triangle d'unitarité

• Tester le Modèle Standard, en effectuant des mesures redondantes pour surcontraindre le triangle d'unitarité, les mesures pouvant être sensibles aux nouvelles particules par leurs contributions virtuelles à certains processus.

Contraintes actuelles et enjeux

Dispositif expérimental

• Le collisionneur PEP-II

• Le détecteur BaBar

Le collisionneur PEP-II

Le détecteur BaBar

Analyse des modes $B^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ et $B^{\pm} \rightarrow K^{\pm} \pi^{0}$

- Description générale, méthode
- Variables discriminantes
- Ajustement de maximum de vraisemblance
- Résultats et validations
- Estimation des erreurs systématiques

Analyse de B[±] $\rightarrow \pi^{\pm}\pi^{0}$, K[±] π^{0} : description générale

- Données:
 - 205 fb⁻¹ collectés à l'énergie $E_{CM} = m(\Upsilon(4s)) = 10.58 \text{ GeV}$
 - $e^+e^- \rightarrow \Upsilon(4s) \rightarrow B / \overline{B}$: 227 millions de paires de B
- Caractéristiques:
 - Très faibles rapports d'embranchement (<10⁻⁵)
 - Bruit de fond continuum important: $e^+e^- \rightarrow q \bar{q}$ avec q = u, d, s, c
 - Présence de bruits de fond B: $B \rightarrow \rho \pi$, $B \rightarrow \rho K$, $B \rightarrow K^* \pi$, où $\rho \rightarrow \pi \pi$ et $K^* \rightarrow K \pi$ avec un pion de basse impulsion non reconstruit
- Méthode:
- π^0 reconstruits avec deux photons dans le calorimètre
- π^+ et K⁺: trajectoires dans la chambre à dérive + angle Cherenkov
- Ajustement de maximum de vraisemblance simultané pour les deux modes, avec des variables discriminantes:
 - variables cinématiques
 - variables de forme pour séparer les événements B du continuum
 - l'angle Cherenkov pour séparer les pions des kaons
- Publication: analyse faite en aveugle avec des outils communs à l'analyse $B^0 \rightarrow \pi^0 \pi^0$.

Analyse de B[±] $\rightarrow \pi^{\pm}\pi^{0}$, K[±] π^{0} : variables cinématiques (I)

Analyse de B[±] $\rightarrow \pi^{\pm}\pi^{0}$, K[±] π^{0} : variables cinématiques (II)

Analyse de B[±] $\rightarrow \pi^{\pm}\pi^{0}$, K[±] π^{0} : variables de forme

Analyse de B[±] $\rightarrow \pi^{\pm}\pi^{0}$, K[±] π^{0} :

Sélection et calcul des efficacités

Туре	Finalité	Type de coupures
π^{\pm}, K^{\pm}	Qualité de détection	$N_{\gamma}^{\text{DIRC}}, N_{\text{coups}}^{\text{DCH}}, p_T, \theta_C, \text{etc}$
π^0	Réduction des combinaisons	$\cos(\theta_{\gamma}^*), \theta_{\gamma}^*$ angle entre $\vec{p}(\gamma)_{\pi^0}$
	fortuites de 2γ	et $\vec{p}(\pi^0)_{ m lab}, m_{\pi^0}, E_{\gamma}$
$B_{\rm rec}^{\pm}$	Réduction du bruit de fond B,	variable $\Delta E, m_{ES}$
	et des combinaisons fortuites $h^{\pm}\gamma\gamma$	
	Réduction du continuum	variables de forme du reste
		de l'événement $\cos(\theta_S),$

Calcul des efficacités de sélection pour le signal:

- Sur la simulation Monte-Carlo
- Pour chaque coupure, vérification de la validité du calcul sur des échantillons de contrôle ⇒ syst.

Mode	$\pi\pi^0$	$K\pi^0$
Efficacités finales ε	0.2871 ± 0.0026	0.2502 ± 0.0007

Dans l'échantillon final 43125 évts, on s'attend à:

- ~ 1000 évts de signal dont 99% bien reconstruits
- ~ 20 évts de bruit de fond B (ϵ ~ 0.1 à 0.3%)
- tout le reste étant du continuum

Analyse de $B^{\pm} \rightarrow \pi^{\pm} \pi^{0}$, $K^{\pm} \pi^{0}$: ajustement de vraisemblance maximale

- Variables: m_{ES} , ΔE , Fisher, θ_{C}
- But: déterminer les nombres d'événements et asymétries de CP du signal
- Fonction de vraisemblance étendue:

• Fonction de vraisemblance maximisée par rapport à tous les paramètres libres dans l'ajustement, en particulier les nombres d'événements N_e et les asymétries \mathcal{A}_e pour le signal

Analyse de B[±] $\rightarrow \pi^{\pm}\pi^{0}$, K[±] π^{0} : modèle

• Fonctions de densité de probabilité (PDF) 1D:

Simulation Monte-Carlo Données $m_{ES} < 5.24$ et/ou $\Delta E > 0.15$ Données D^{*+} $(D^{*+} \rightarrow D^0 \pi^+$, avec $D^0 \rightarrow K^- \pi^+$)

	Signal	Bdf B	Continuum	
ΔE	Gaussienne + loi de puissance (fonction 'Crystal Ball')	queue d'une gaussienne	polynôme d'ordre 2	
$m_{ m ES}$	Crystal Ball	Crystal Ball	fonction seuil ad hoc	
${\mathcal F}$	Gaussienne asymétrique Double gau			
$ heta_C$	2 doubles gaussiennes pour $P_{\pi/K}^{\theta_C} = \frac{\theta_C^{exp} - \theta_C^{att}}{\sigma_{\theta_C^{exp}}}$			

- 18 paramètres libres:
- 4 nombres d'événements de signal et de continuum
- 4 asymétries de charge correspondantes
- moyennes des PDF de signal de m_{ES} et ΔE
- tous les paramètres des pdf de continuum

- Paramètres fixes:
- 4 nombres d'événements de bdf B déterminés avec les moyennes mondiales des BR et les efficacités MC
- tous les autres paramètres des pdf de signal et de bdf B

	$ ho^{\pm}\pi^{0}$	$ ho^{\pm}\pi^{\mp}$	$K^{*0}\pi^0$	K^{*+} π^0	$ ho^{\pm}K^{\mp}$
$BR \times 10^6$	12.0 ± 1.9	24.0 ± 2.5	< 3.5	4.0 ± 1.4	9.0 ± 1.6
N évts	8.4 ± 1.3	13.6 ± 1.4	< 1.1	1.3 ± 0.4	2.8 ± 0.5

Analyse de $B^{\pm} \rightarrow \pi^{\pm} \pi^{0}$, $K^{\pm} \pi^{0}$: PDF variables cinématiques

18

Analyse de B[±] $\rightarrow \pi^{\pm}\pi^{0}$, K[±] π^{0} : **PDF Fisher et** θ_{c}

Analyse de B[±] $\rightarrow \pi^{\pm}\pi^{0}$, K[±] π^{0} :

validation de l'algorithme d'ajustement

- Test de l'algorithme avec des simulations rapides (Toys)
- Génération de 1000 expériences équivalentes avec les événements attendus

• Génération des variables pour chaque événement de manière aléatoire suivant les PDF de l'ajustement

- Répétition de l'ajustement sur ces 1000 lots
- Etude des distributions des paramètres libres:

$$y_{\text{pull}} = \frac{y_{\text{fit}} - y_{\text{gen}}}{\sigma(y_{\text{fit}})}$$

(gaussiennes, centrées à 0 et de largeur 1) 20

Analyse de B[±] $\rightarrow \pi^{\pm}\pi^{0}$, K[±] π^{0} : sPlots

Pour visualiser les distributions de signal à partir des données, 2 méthodes:

- 1. Coupure sur 3 variables de l'ajustement pour dessiner la 4ième
- augmente le rapport signal/bruit
- méthode non optimale car on n'utilise pas tous les événements
- 2. Définir un poids statistique pour chaque événement et pour chaque espèce

à partir des PDFs de 3 variables de l'ajustement pour dessiner la 4ième

Poids statistiques = définis avec la matrice de covariance V pour une vraisemblance avec la PDF 3D.

$$\mathbb{P}_k(y_i) = \frac{1}{N_k} \frac{\sum_{j=1}^{N_{es}} V_{kj} \mathcal{P}_j(y_i)}{\sum_{e=1}^{N_{es}} N_e \mathcal{P}_e(y_i)}$$

Somme sur les 43125 événements des poids statistiques de type signal = Nombre d'événements de signal

Distribution pondérée des 43125 événements = Vraie distribution du signal

Analyse de $B^{\pm} \rightarrow \pi^{\pm} \pi^{0}$, $K^{\pm} \pi^{0}$:

Estimation des erreurs systématiques

• Contributions dominantes pour les rapports d'embranchement:

Source	$\sigma(\mathcal{B}_{\pi^{\pm}\pi^{0}})$	$\sigma(\mathcal{B}_{K^{\pm}\pi^{0}})$	estimation
PDF \mathcal{F} , ΔE , m_{ES}	$\pm 4.3\%$	$\pm 3.2\%$	Répétition de l'ajustement avec PDF
			d'après données/MC $B o D^{(*)} \pi$
$arepsilon(\pi^0)$	$\pm 3\%$	$\pm 3\%$	Données/MC $e^-e^- \rightarrow \tau^+\tau^-$
			et $ au^- o ho^- u_ au$ ou $ au^- o \pi^- u_ au$
$ cos(heta_{ m SPH}) < 0.8$	$\pm 2.4\%$	$\pm 2.4\%$	Données/MC $B \rightarrow D^{(*)}\pi$
syst. tot.	$\pm 6\%$	$\pm 5\%$	\Rightarrow Erreurs systématiques
stat. tot.	$\pm 11\%$	$\pm 6\%$	et statistiques du même ordre

• Contributions dominantes pour les asymétries de CP:

Source	$\sigma(\mathcal{A}_{\pi^{\pm}\pi^{0}})$	$\sigma(\mathcal{A}_{K^{\pm}\pi^{0}})$	estimation
Biais détecteur	± 0.010	± 0.010	Erreur sur l'asymétrie mesurée
			pour le continuum
Bruit de fond B	± 0.020	± 0.000	Variation de 50% des
			asymétries CP du bdf B
tot. syst.	± 0.023	± 0.010	\Rightarrow Asymétries encore
tot. stat.	± 0.10	± 0.06	largement dominées par la stat.

Analyse de B[±] $\rightarrow \pi^{\pm}\pi^{0}$, K[±] π^{0} : résultats

Mode	N	N_S	ε (%)	Asymétrie
$B^{\pm} o \pi^{\pm} \pi^0$	29949	362 ± 39	28.7	$-0.01 \pm 0.10 \pm 0.02$
$B^{\pm} \to K^{\pm} \pi^0$	13155	652 ± 37	25.0	$0.06 \pm 0.06 \pm 0.01$

$$\begin{split} \mathcal{B} &= \frac{N_S}{N_{B\bar{B}} \times \epsilon} \\ \varepsilon \text{ tirées du MC, } \sigma(\varepsilon) \in \text{syst} \\ N_{B\bar{B}} &= (226.6 \pm 2.5) \times 10^6 \end{split}$$

$$\mathcal{B}_{\pi\pi^{0}} = (5.6 \pm 0.6 \pm 0.4) \times 10^{-6} \mathcal{B}_{K\pi^{0}} = (11.5 \pm 0.7 \pm 0.6) \times 10^{-6}$$

Erreurs systématiques et statistiques du même ordre ⇒ Enjeu: réduire les erreurs systématiques pour le futur

Etude d'un échantillon de contrôle $B^0 \rightarrow D^{*-}\pi^+$: Motivations, données, méthode

But: déterminer plus précisément les erreurs systématiques dues à la connaissance des variables de forme en comparant données et MC sur un échantillon de contrôle

- Deux sources de systématiques importantes: ~ 2 à 3%
 - Incertitude sur la PDF de Fisher
 - Incertitude sur l'efficacité de la coupure sur $|\cos(\theta_s)|$
- En 2004, systématiques estimées par comparaison données/MC de B totalement reconstruits:
 - substraction du bruit de fond non optimale, avec un ajustement en 1D (m_{ES})
 - reconstruction inclusive n'utilisant pas toute la statistique disponible
- Ici, échantillon $\mathbb{B}^0 \to \mathbb{D}^{*-} \pi^+$ avec $\mathbb{D}^{*+} \to \mathbb{D}^0 \pi^+$ et $\mathbb{D}^0 \to \mathbb{K}^- \pi^+$
 - extraction du signal optimisée, avec un ajustement en 2D (m_{ES} et ΔE)
 - mode exclusif avec la même luminosité intégrée que pour l'analyse
- Modes $B^0 \rightarrow D^{*-} \pi^+$:
 - mode très pur avec des BR ~ 10 fois ceux de h[±] π^0
 - a priori, le reste de l'événement est le même que pour h[±] π^0

Etude d'un échantillon de contrôle $B^0 \rightarrow D^{*-}\pi^+$: Sélection

- Coupure sur θ_c à 3σ pour éliminer D*K
- $|\Delta E| < 0.1$ GeV et 5.27< m_{ES}<5.29 GeV
- Pas de coupures sur les variables de forme
- Sélection sur les masses du D* et du D⁰:

$$c' = \frac{\sqrt{2}}{2} (M(D^*)^{\text{rec}} - M(D^*)^{\text{PDG}}) + \frac{\sqrt{2}}{2} (M(D^0)^{\text{rec}} - M(D^0)^{\text{PDG}}),$$

$$c' = -\frac{\sqrt{2}}{2} (M(D^*)^{\text{rec}} - M(D^*)^{\text{PDG}}) + \frac{\sqrt{2}}{2} (M(D^0)^{\text{rec}} - M(D^0)^{\text{PDG}})$$

Diminution de tous les bruits de fond et de la multiplicité du signal (~ 1% de signal mal reconstruit, chiffre comparable à celui de l'analyse $K^{\pm}\pi^{0}/\pi^{\pm}\pi^{0}$)

Etude d'un échantillon de contrôle $B^0 \rightarrow D^{*-}\pi^+$: Modèle et méthode

- Trois espèces: le signal, le bruit de fond B et le continuum
- Ajustement de maximum de vraisemblance en deux dimensions: ΔE et m_{ES}
- La PDF bruit de fond B:
 - bi-dimensionnelle pour prendre en compte les corrélations
 - une seule PDF estimée avec du MC generique B⁺ et B⁰
- La PDF continuum est fixée sur du off peak
- La PDF signal est déterminée sur du Monte Carlo puis ses paramètres sont ajustés sur les données
- Dans l'ajustement final, les nombres d'événements des trois espèces sont libres

Les _spoids signal sont calculés à partir de cette

vraisemblance pour obtenir les distributions signal

des variables de formes à partir des données (sPlots)

Etude d'un échantillon de contrôle $B^0 \rightarrow D^{*-}\pi^+$: Bruit de fond B attendu

Après calcul des efficacités avec les échantillons de Monte-Carlo B générique, on s'attend à:

- (165 \pm 70) événements de bruit de fond B⁰
- \bullet (420 \pm 85) événements de bruit de fond B^+
- Bruits de fond B dominants: $B^+
 ightarrow ar{D}^{*0} \pi^+$,

$$B^0 \rightarrow D^{*-} e^+ \nu_e$$
 et $B^0 \rightarrow D^{*-} \mu^+ \nu_\mu$

Etude d'un échantillon de contrôle $B^0 \rightarrow D^{*-}\pi^{+:}$ projections de l'ajustement

Etude d'un échantillon de contrôle $B^0 \rightarrow D^{*-}\pi^+$: Comparaison données/Monte-Carlo pour *Fisher*

- Bon accord entre données et Monte Carlo
- Pente compatible avec 0 et compatible avec celle estimée en 2004
- La systématique due au Fisher peut être réduite de 20%
- Systématique d'origine statistique qui devrait baisser avec la statistique

Etude d'un échantillon de contrôle $B^0 \rightarrow D^{*-}\pi^+$: Comparaison données/Monte-Carlo pour cos(θ_s)

- Efficacités en accord contrairement à l'analyse précédente.
- Différence < 1% à prendre en systématique (2.4% pris en 2004).

Interprétations phénoménologiques

- Analyse d'isospin des modes $B\to\pi\pi$
- Analyse d'isospin des modes $B \to K \pi$
- Commentaire sur la mesure de $A_{CP}(K^{\pm}\pi^{0})$
- Analyse SU(3) des modes $B,B_s \rightarrow KK/K\pi/\pi\pi$

http://ckmfitter.in2p3.fr/

Höcker *et al.*, EPJ C21, 225 (2001) Charles *et al.*, Eur. Phys. J C41, 1-131 (2005).

Mesurer α avec les modes $B \rightarrow \pi\pi$: analyse d'isospin (I)

Asymétrie dépendante du temps:

 Δt : temps mesuré dans BaBar Δm_d : fréquence d'oscillation des B

Observables S et C définies par:

$$a_{CP}(\Delta t) \equiv \frac{\Gamma(B^{\circ}(t) \to \pi^{+}\pi^{-}) - \Gamma(B^{\circ}(t) \to \pi^{+}\pi^{-})}{\Gamma(\overline{B}^{0}(t) \to \pi^{+}\pi^{-}) + \Gamma(B^{0}(t) \to \pi^{+}\pi^{-})}$$
$$= S^{+-}\sin(\Delta m_{d}\Delta t) - C^{+-}\cos(\Delta m_{d}\Delta t) ,$$

 $\pm -$

 $\mathbf{D}(\mathbf{D}(\mathbf{u}))$

$$S^{+-} = \frac{2\mathrm{Im}\left(e^{-2i\beta}\frac{A^{+-}}{A^{+-}}\right)}{1+|\frac{\overline{A^{+-}}}{A^{+-}}|^2} \quad \text{et} \quad C^{+-} = \frac{|A^{+-}|^2 - |\overline{A^{+-}}|^2}{|A^{+-}|^2 + |\overline{A^{+-}}|^2}$$

 $\mathbf{D}(\mathbf{\overline{D}}^0(\mathbf{r}))$

 $A^{+-}/\sqrt{2} = Te^{i\gamma} + Pe^{-i\beta}$

Si on néglige P, S mesure α :

En realité S mesure $\alpha_{\text{eff}} \Rightarrow$ on a besoin de plus d'info. pour α

$$C = 0$$
 $S = \sin(2\alpha)$

$$C \neq 0$$
 $S = \sqrt{1 - C^2} \sin(2\alpha_{\text{eff}}) \neq \sin(2\alpha)$

Mesurer α avec les modes $B \rightarrow \pi\pi$: analyse d'isospin (II)

Symétrie SU(2): on peut relier les amplitudes des modes $B^0 \rightarrow \pi^+ \pi^-$, $B^0 \rightarrow \pi^0 \pi^0$, $B^+ \rightarrow \pi^+ \pi^0$:

$$A^{+0} = \frac{1}{\sqrt{2}}A^{+-} + A^{00}$$
$$\overline{A}^{+0} = \frac{1}{\sqrt{2}}\overline{A}^{+-} + \overline{A}^{00}$$

• La mesure de S⁺⁻ donne α_{eff} avec 8 ambiguités dans l'intervalle [0, π] • $| \alpha - \alpha_{eff} |$ peut être extrait des autres modes $\pi^+\pi^0$, $\pi^0\pi^0$ avec 4 ambiguités

Dans la pratique:

- Les BR et les asymétries dépendant de ces amplitudes A⁺⁻, A⁰⁰ et A⁺⁰: modelisés par des PDF: 7 mesures
- Paramètres hadroniques: totalement libres
- Pour chaque valeur de α , on calcule un χ^2 et on en déduit un CL

Amplitudes sous SU(2) : 5 inconnues hadroniques et α = 6 inconnues

$$A^{+-}/\sqrt{2} = Te^{i\gamma} + Pe^{-i\beta}$$
$$A^{00} = T_C e^{i\gamma} - Pe^{-i\beta}$$
$$A^{+0} = (T_C + T)e^{i\gamma}$$

Mesurer α avec les modes $B \rightarrow \pi\pi$: analyse d'isospin (III)

- En principe: détermination de l'angle α
- En pratique: reste peu contraignant car BR(π⁰π⁰) grand (contribution importante des amplitudes pingouins)

Même jeu qu'avec $\pi\pi$ mais:

• Plus sensible à la NP: contributions des diagrammes en boucle plus importante

 $A^{\pi^{+}\pi^{-}} = V_{ud}V_{ub}^{*}T^{\pi\pi} + V_{td}V_{tb}^{*}P^{\pi\pi}$ $A^{K^{+}\pi^{-}} = V_{us}V_{ub}^{*}T^{K\pi} + V_{ts}V_{tb}^{*}P^{K\pi}$

 $|V_{ts}V_{tb}^*/(V_{us}V_{ub}^*)| \sim 50$

• Requiert des hypothèses supplémentaires nombre d'inconnues >nombre de mesures

• Si on néglige les diagrammes d'échange et d'annihilation: Imbeault-Page-London-Lemerle,

PRL 92, 081801 (2004).

$$A^{+-} = Te^{i\gamma} + P$$

$$\sqrt{2}A^{+0} = (T_C + T)e^{i\gamma} + (P + P^{EW} + P^{EW}_C)$$

$$\sqrt{2}A^{00} = T_C e^{i\gamma} + (P^{EW} - P)$$

$$A^{0+} = -P + P^{EW}_C$$

Les modes $B \rightarrow K\pi$:

commentaire sur la mesure de $A_{CP}(K^{\pm}\pi^{0})$

	BABAR	BELLE
$\mathcal{A}_{CP}(K^+\pi^-)$	$-0.133 \pm 0.030 \pm 0.009$	$-0.113 \pm 0.022 \pm 0.008$
$\mathcal{A}_{CP}(K^+\pi^0)$	$+0.06\pm 0.06\pm 0.01$	$+0.04 \pm 0.04 \pm 0.02$

Symétrie SU(2) sans hypothèses:

$$A^{+-} = V_{us}V_{ub}^* T^{+-} + V_{ts}V_{tb}^* P^{+-}$$

$$\sqrt{2}A^{+0} = V_{us}V_{ub}^* (T^{+-} + T_{C}^{00} - N^{0+}) + V_{ts}V_{tb}^* (P^{+-} + P_{C}^{EW} - P_{C}^{EW})$$
Hypothèse païve: les arbres supprimés de couleur
$$\mathcal{A}_{CP}(K^+\pi^-)$$

Iles diagrammes d'échange et d'annihilation et les PEW sont négligeables par rapport aux diagrammes arbre "dominant" et pingouin

$$\mathcal{A}_{CP}(K^+\pi^-) = \mathcal{A}_{CP}(K^+\pi^0)$$

Les données semblent montrer que ces quantités ne sont pas négligeables

K π / KK / $\pi\pi$ sous SU(3): introduction

- 1. Analyse d'isospin des modes $B \rightarrow \pi\pi$:
- Détermination de l'angle α
- Peu contraignant car BR($\pi^0\pi^0$) grand
- 2. Analyse d'isospin des modes $B \rightarrow K\pi$:
- Requiert des hypothèses supplémentaires car le nombre d'inconnues est supérieur au nombre de mesures
- Peu contraignant même avec des hypothèses additionnelles
- 3. Comment obtenir des contraintes plus intéressantes?
- Prédictions de QCD-FA et SCET: malgré les progrès récents, il est peu sûr d'employer ces calculs pour obtenir des contraintes sur le TU.
- Pourquoi pas SU(3) en prenant en compte les effets de brisure de SU(3) factorisables dominants en compte?

Beneke-Buchalla-Neubert-Sachrajda, Nucl.Phys. **B606**, 245-321 (2001).

Bauer-Pirjol-Rothstein-Stewart, PRD **70**, 054015 (2004).

K π / KK / $\pi\pi$ sous SU(3): introduction

Contexte théorique:

- B, $B_s \rightarrow K\pi / KK / \pi\pi$ dans la limite SU(3) exacte: pas d'hypothèses supplémentaires (PEW, annihilation pris en compte)
- Brisure de SU(3) factorisable dominante prise en compte de manière conservatrice (erreurs théo).
- Contraintes fortes attendues:
 - Avec les mesures actuelles:
 - **21** observables pour **13** paramètres hadroniques + **2** ckm (ρ , η)
 - Dans le futur:

39

Jusqu'à 38 observables mesurables indépendantes

Etude de différents sous-systèmes de mesures:

- Sous-système " α ": B_d $\rightarrow \pi^+\pi^-$, K⁺ π^- , K⁺K⁻
- Sous-système " β ": $B_d \rightarrow \pi^0 \pi^0$, $K_S \pi^0$, K^+K^-
- Sous-système " $\alpha\beta$ ": $B_d \rightarrow h^+h^{-}$, $B \rightarrow h^0h^{0}$
- Système complet: $B_{d,s} \rightarrow \pi\pi$, $K\pi$, KK
- Ces sous-systèmes dominent les contraintes dans le plan (ρ , η)
- Il existe des solutions analytiques pour les sous-système " α " and " β "

Silva-Wolfenstein, 1993 Gronau *et al.* 1994-1995 Buras *et al.* (BFRS), EPJ C32, 45 (2003) Chiang *et al*, PRD D70, 034020 (2004) Wu-Zhou, hep-ph/0503077 Charles *et al.*, Eur. Phys. J C41, 1-131 (2005). Charles-Malclès-Ocariz-Hoecker, en préparation.

K π / KK / $\pi\pi$ sous SU(3): amplitudes

$$\begin{array}{rcl} & & A(K^{+}\pi^{-}) & = & V_{us}V_{ub}^{*}T^{+-} + V_{ts}V_{tb}^{*}P \\ & & A(K^{0}\pi^{+}) & = & V_{us}V_{ub}^{*}N^{0+} + V_{ts}V_{tb}^{*}(-P + P_{C}^{EW}) \\ & & \sqrt{2}A(K^{+}\pi^{0}) & = & V_{us}V_{ub}^{*}(T^{+-} + T^{00} - N^{0+}) + V_{ts}V_{tb}^{*}(P + P^{EW} - P_{C}^{EW}) \\ & & \sqrt{2}A(K^{0}\pi^{0}) & = & V_{us}V_{ub}^{*}T^{00} + V_{ts}V_{tb}^{*}(-P + P^{EW}) \\ & & A(\pi^{+}\pi^{-}) & = & V_{ud}V_{ub}^{*}(T^{+-} + \Delta T) + V_{td}V_{tb}^{*}(P + PA) \\ & & \sqrt{2}A(\pi^{0}\pi^{0}) & = & V_{ud}V_{ub}^{*}(T^{00} - \Delta T) + V_{td}V_{tb}^{*}(-P - PA + P^{EW}) \\ & & \sqrt{2}A(\pi^{+}\pi^{0}) & = & V_{ud}V_{ub}^{*}(T^{+-} + T^{00}) + V_{td}V_{tb}^{*}P^{EW} \\ & & A(K^{+}K^{-}) & = & V_{ud}V_{ub}^{*}\Delta T + V_{td}V_{tb}^{*}PA \\ & & A(K^{0}\overline{K}^{0}) & = & V_{ud}V_{ub}^{*}\Delta P + V_{td}V_{tb}^{*}(-P - PA + P_{C}^{EW} - \frac{1}{3}P_{K\overline{K}}^{EW}) \\ & & A(K^{+}\overline{K}^{0}) & = & V_{ud}V_{ub}^{*}\Delta P + V_{td}V_{tb}^{*}(-P + P_{C}^{EW}) . \\ & A(K^{+}\overline{K}^{0}) & = & V_{ud}V_{ub}^{*}\Lambda^{0+} + V_{td}V_{tb}^{*}(-P + P_{C}^{EW}) . \\ & A(B_{s} \rightarrow K^{+}\pi^{-}) & = & V_{ud}V_{ub}^{*}T^{+-} + V_{td}V_{tb}^{*}PA . \\ & A(B_{s} \rightarrow \pi^{+}\pi^{-}) & = & V_{us}V_{ub}^{*}\Delta T + V_{ts}V_{tb}^{*}PA . \end{array}$$

Kπ / KK / $\pi\pi$ sous SU(3): PEW et brisure de SU(3)

Khodjamirian et al., Phys. Rev. D68, • Brisure de SU(3) dans la normalisation des BRs: 114007 (2003). amplitudes $B \rightarrow K\pi$, $B_s \rightarrow KK$ and $B_s \rightarrow K\pi$ normalisées: $N_{K\pi} \sim \frac{f_K}{f_-}$ **Erreur conservatrice:** • le reste de la partie $\left(1-\frac{f_{\pi}}{f_{\nu}}\right)/\left(\frac{f_{K}}{f_{\pi}}\right)$ factorisable de la brisure de SU(3) $(f_{\pi} F^{B \rightarrow K})/(f_{K} F^{B \rightarrow \pi})$ $N_{K\overline{K}} \sim \left(\frac{f_K}{f_{\pi}}\right)^2 \frac{f_{B_s}}{f_{B_s}}$ $N_{K\pi} = 1.22 \pm 0.22$ (qqs %) est négligé les effets non factorisables supprimés en Λ/m_b sont $N_{K\overline{K}} = 1.81 \pm 0.34$ $N_{K\pi}^{s} = 1.48 \pm 0.28$ $N_{K\pi}^{s} \sim \frac{f_{K}}{f_{\pi}} \frac{f_{B_{s}}}{f_{P}}$ négligés Neubert and Rosner, Phys. Lett. B441,403 (1998); Phys. Lett. 81, 5076 (1998). PEWs à la Neubert-Rosner-Buras-Fleischer: Buras and Fleischer, Eur. Phys. J. C11, 93 (1999). Gronau, Pirjol and Yan, Phys. Rev. D 60, 034021 \mathbf{P}^{EW} $= R^{+}(T^{+-} + T^{00})$ (1999). $P_{C}^{EW} = \frac{R^{+}}{2}(T^{+-} + T^{00} + N^{0+} - \Delta T - \Delta P)$ $R^{\pm} = -\frac{3}{2} \frac{c_9 \pm c_{10}}{c_1 \pm c_2}$ $- \frac{R^{-}}{2}(T^{+-} - T^{00} + N^{0+} + \Delta T + \Delta P)$ $R^+ = (1.35 \pm 0.12) \ 10^{-2}$ $= R^+(N^{0+} - \Delta T - \Delta P)$ P^{EW} R⁻ = (1.35 ± 0.13) 10⁻²

K π / KK / $\pi\pi$ sous SU(3): mesures EPS 2005

Parameter	BABAR	Belle	CLEO	CDF	Average
$S_{\pi\pi}^{+-}$	$-0.30 \pm 0.17 \pm 0.03$ [1]	$-0.67 \pm 0.16 \pm 0.06$ [2]		-	-0.50 ± 0.12
$C_{\pi\pi}^{+-}$	$-0.09 \pm 0.15 \pm 0.04$ [1]	$-0.56 \pm 0.12 \pm 0.06$ [2]	-	-	-0.37 ± 0.10
$C^{00}_{\pi\pi}$	$-0.12\pm0.56\pm0.06~[3]$	$-0.44^{+0.52}_{-0.53} \pm 0.17$ [4]	-	-	-0.28 ± 0.39
$S^{00}_{K_S \pi}$	$+0.35^{+0.30}_{-0.33} \pm 0.04$ [5]	$+0.22 \pm 0.47 \pm 0.08$ [6]	-	_	$+0.31^{+0.26}_{-0.28}$
$C_{K_{S}\pi}^{00}$	$+0.06 \pm 0.18 \pm 0.03$ [5]	$-0.11\pm0.18\pm0.08~[6]$	-	-	-0.02 ± 0.13
$A_{CP}(\pi^+\pi^0)$	$-0.01\pm0.10\pm0.02~[3]$	$+0.02\pm 0.08\pm 0.01~[17]$	-	-	0.01 ± 0.06
$A_{CP}(K^+\pi^-)$	$-0.133 \pm 0.030 \pm 0.009$ [8]	$-0.113 \pm 0.022 \pm 0.008$ [17]	$-0.04 \pm 0.16 \pm 0.02$ [9]	$-0.013 \pm 0.078 \pm 0.012$ [10]	-0.114 ± 0.018
$A_{CP}(K^+\pi^0)$	$+0.06 \pm 0.06 \pm 0.01$ [3]	$+0.04 \pm 0.04 \pm 0.02$ [7]	$-0.29 \pm 0.23 \pm 0.02$ [9]	-	0.04 ± 0.04
$A_{CP}(K^0\pi^+)$	$-0.09 \pm 0.05 \pm 0.01$ [11]	$+0.05 \pm 0.05 \pm 0.01$ [17]	$+0.18 \pm 0.24 \pm 0.02$ [9]	-	-0.02 ± 0.04
$A_{CP}(\overline{K}^0K^+)$	$+0.15 \pm 0.33 \pm 0.01$ [11]		-	-	$+0.15\pm0.33$
$\mathcal{B}(B^0 \to \pi^+\pi^-)$	$5.5 \pm 0.4 \pm 0.3$ [15]	$4.4 \pm 0.6 \pm 0.3$ [16]	$4.5^{+1.4}_{-1.2}^{+0.5}_{-0.4}$ [14]	(see ratios below)	5.1 ± 0.4
$\mathcal{B}(B^+ \to \pi^+ \pi^0)$	$5.8 \pm 0.6 \pm 0.4$ [3]	$5.0 \pm 1.2 \pm 0.5$ [16]	$4.6^{+1.8}_{-1.6}^{+0.6}_{-0.7}$ [14]	_	5.5 ± 0.6
$\mathcal{B}(B^0 o \pi^0 \pi^0)$	$1.17 \pm 0.32 \pm 0.10$ [3]	$2.3^{+0.4}_{-0.5}{}^{+0.2}_{-0.3}$ [4]	< 4.4 (not used) [14]	-	1.45 ± 0.29
$\mathcal{B}(B^0 \to K^+ \pi^-)$	$19.2 \pm 0.6 \pm 0.6$ [15]	$18.5 \pm 1.0 \pm 0.7$ [16]	$18.0^{+2.3}_{-2.1}^{+1.2}_{-0.9}$ [14]	(see ratios below)	18.9 ± 0.7
$\mathcal{B}(B^+ \to K^+ \pi^0)$	$12.0 \pm 0.7 \pm 0.6$ [3]	$12.0 \pm 1.3 \substack{+1.3 \\ -0.9} \ [16]$	$12.9^{+2.4}_{-2.2}{}^{+1.2}_{-1.1}$ [14]	-	12.1 ± 0.8
$\mathcal{B}(B^+ \to K^0 \pi^+)$	$26.0 \pm 1.3 \pm 1.0$ [11]	$22.0 \pm 1.9 \pm 1.1$ [16]	$18.8^{+3.7}_{-3.3}^{+2.1}_{-1.8}$ [14]	-	24.1 ± 1.3
$\mathcal{B}(B^0 \to K^0 \pi^0)$	$11.4 \pm 0.9 \pm 0.6$ [5]	$11.7 \pm 2.3 {+1.2 \atop -1.3} [16]$	$12.8^{+4.0}_{-3.3}^{+1.7}_{-1.4}$ [14]	-	11.5 ± 1.0
$\mathcal{B}(B^0 \to K^+ K^-)$	$0.04 \pm 0.15 \pm 0.08 [15]$	$0.06^{+0.12}_{-0.10}{}^{+0.03}_{-0.02}$ [13]	<0.8 (not used) [14]	(see ratios below)	$0.05^{+0.10}_{-0.09}$
$\mathcal{B}(B^+ \to K^+ \overline{K}{}^0)$	$1.5 \pm 0.5 \pm 0.1$ [11]	$1.0 \pm 0.4 \pm 0.1$ [13]	< 3.3 (not used) [14]	_	1.2 ± 0.3
$\mathcal{B}(B^0 \to K^0 \overline{K}{}^0)$	$1.19^{+0.40}_{-0.35} \pm 0.13$ [11]	$0.8 \pm 0.3 \pm 0.1$ [13]	< 3.3 (not used) [14]	-	0.96 ± 0.24
$\frac{\mathcal{B}(B^0 \to \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K^+ \pi^-)}$	-	-	-	$0.21\pm 0.05\pm 0.03~[10]$	0.21 ± 0.06
$\frac{f_s}{f_d} \cdot \frac{\mathcal{B}(B_s^0 \to K^+ K^-)}{\mathcal{B}(B^0 \to K^+ \pi^-)}$	-	-	-	$0.46 \pm 0.08 \pm 0.07 \ [10]$	0.46 ± 0.11
$\frac{f_d}{f_s} \cdot \frac{\mathcal{B}(B^0 \to \pi^+ \pi^-)}{\mathcal{B}(B^0_s \to K^+ K^-)} =$	-	-	-	$0.45\pm 0.13\pm 0.06~[10]$	0.45 ± 0.14
$\frac{\mathcal{B}(B_s^0 \to \pi^+\pi^-)}{\mathcal{B}(B_s^0 \to K^+K^-)}$	-	-	-	< 0.05 [10]	< 0.05
$\frac{f_s}{f_d} \cdot \frac{\mathcal{B}(B_s^0 \to K^- \pi^+)}{\mathcal{B}(B^0 \to K^+ \pi^-)}$	-	-	-	< 0.08 [10]	< 0.08
$\frac{\mathcal{B}(B^0 \to K^+ K^-)}{\mathcal{B}(B^0 \to K^+ \pi^-)}$	-	-	-	< 0.10 [10]	< 0.10

Sous-système " α ": B $\rightarrow \pi^+\pi^-$, K⁺ π^- , K⁺K⁻

Dans le cas d'école où on néglige l'annihilation, la solution prend la forme:

$$\sqrt{1-\mathrm{C}_{\pi\pi}^2}|\mathcal{D}|\cos(2\alpha-2\alpha_{\mathrm{eff}}-\varepsilon) = (1+\lambda^2)^2 - 2\lambda^2\sin^2\gamma\left[1+\frac{\mathrm{BR}(\mathrm{K}^+\pi^-)}{\mathrm{BR}(\pi^-\pi^+)}\right]$$

1 – CL

1.5

2

0.5

ρ

1

0

-0.5

1.5 Et: $BR(K^{+}\pi^{-})C(K^{+}\pi^{-}) + BR(\pi^{+}\pi^{-})C(\pi^{+}\pi^{-}) = 0$ 0.8 CKM Fit 0.5 Avec: $D=|D| e^{i\varepsilon} = (1+\lambda^2)(1+\lambda^2 e^{i\gamma})$ 0.6 3 0 Ceci mesure principalement α , 0.4 avec une dépendance -0.5 supprimée par λ^2 en γ 0.2 -1 α from h⁺h⁻ (h= π , K) in SU(3) -1.5 0

Sous-système " β ": $B \rightarrow \pi^0 \pi^0$, $K_S \pi^0$, K^+K^-

Même jeu, dans le cas d'école où on néglige l'annihilation, la solution prend la forme:

$$\sqrt{1 - C_{K_S \pi^0}^2} |\mathcal{D}| \cos(2\beta - 2\beta_{\text{eff}} + \varepsilon) = (1 + \lambda^2)^2 - 2\lambda^2 \sin^2 \gamma \left[1 + \frac{\text{BR}(\pi^0 \pi^0)}{\text{BR}(K_s \pi^0)} \right]$$

- La zone d'intérêt change peu
- Très contraignant!
- Bon accord avec le SM (pValue > 30%)
- Principales contributions au χ^2 : BR(K_s π^0), S(K_s π^0), BR(K⁺ π^-)

45

Système complet de mesures: Extrapolations pour 2008

Très contraignant!

• en haut: 2 usines B avec 1000fb⁻¹ + erreurs CDF inchangées

• en bas: ajout de C(B_s \rightarrow K⁺K⁻), S(B_s \rightarrow K⁺K⁻), et C(B_s \rightarrow K⁺ π ⁻) (TDR 2003 LHCb)

Dans le futur: jusqu'à 38 observables pour 15 inconnues permettant de déterminer des paramètres de brisure de SU(3) ou de Nouvelle Physique à partir des données

Conclusions

• Les rapports d'embranchement et les asymétries de CP des modes $B^{\pm} \rightarrow K^{\pm}\pi^{0}$ et $B^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ ont été mesurés

${\cal B}_{\pi\pi^0}$	=	$(5.6 \pm 0.6 \pm 0.4) \times 10^{-6}$
$\mathcal{B}_{K\pi^0}$	=	$(11.5 \pm 0.7 \pm 0.6) \times 10^{-6}$
${\cal A}_{\pi\pi^0}$	=	$-0.01 \pm 0.10 \pm 0.02$
$\mathcal{A}_{K\pi^0}$	=	$0.06 \pm 0.06 \pm 0.01$

- Les asymétries de CP sont compatibles avec 0, et les rapports d'embranchement ont maintenant des erreurs statistiques et systématiques du même ordre
- Les systématiques dues aux variables de forme pourront être réduites d'un facteur 2 d'ici à 2008
- Ces modes sous SU(3) devraient permettre de déterminer des paramètres de brisure de SU(3) ou de Nouvelle Physique à partir des données dans le futur proche (LHCb, Belle@Υ(5S))