Multivariate analysis of the EW gauge bosons' polarisation at the LHC Comité de Suivi Individuel

Mathis DUBAU Laboratoire d'Annecy de Physique des Particules - ATLAS group

15th July 2024

Standard Model

• Theory used in particle physics

Cross section of $e^+e^- \rightarrow$ hadrons processes as a function of center-of-mass energy [16]

• Successfully confirmed by the discovery of the Higgs Boson in 2012 at the LHC by the ATLAS [14] and CMS [13] experiments

Standard Model of Elementary Particles three generations of matter I II III **interactions / force carriers** u ≈2.2 MeV/c² **up down charm** s **strange** t **top** b **bottom LEPTONS** e ≈0.511 MeV/c² **electron** νe μ **muon** νμ τ **tau** ντ **GAUGE BOSONS VECTOR BOSONS gluon** γ **photon** Z **Z boson** W **W boson** H **higgs**

Standard Model

• Highly accurate and extensively tested model

Invariant mass distribution of di-photon mvariant mass distribution of di-photon
[ca](#page-29-0)ndidates for combined data at $\sqrt{s} = 7$: TeV candidates for combined
and $\sqrt{s} = 8$: TeV [14]

Tensions in the Standard Model

 4.2σ deviation between the Fermilab measurement of the muon's magnetic moment [\[1\]](#page-29-1) and the prediction by the Muon g-2 Theory Initiative [\[3\]](#page-29-2)

• Lack of a dark matter candidate particle

Energy density distribution of the Universe [\[9\]](#page-29-3)

[My analysis](#page-4-0)

- [Qualification Task](#page-17-0)
- [Other works](#page-25-0)
- [Next steps for 2nd year](#page-27-0)

[Motivation](#page-5-0) [The methodology](#page-11-0)

- **2** [Qualification Task](#page-17-0)
- **3** [Other works](#page-25-0)
- 4 [Next steps for 2nd year](#page-27-0)

- **2** [Qualification Task](#page-17-0)
- **3** [Other works](#page-25-0)
- **4** [Next steps for 2nd year](#page-27-0)

Polarization of Electroweak Sector Bosons

Spin

Intrinsic property of a particle

Massive vector bosons

3 degrees of freedom represented by 3 different polarizations, one arise from the higgs mechanism when the bosons acquire mass

The decay products of W or Z bosons retain traces of the bosons' polarization.

Why study VBS ?

 $\frac{2 \text{m}}{2 \text{m}}$ interaction gauge boson scattering (VBS *) processes [2] \sim \sim Effective cross-section (in nb) for five different longitudinally [p](#page-29-4)olarized weak \mathcal{L} + \mathcal{L}

Measuring polarization in boson scattering (WZ production, for example) provides a direct probe of EW symmetry breaking mechanism.

[√] $*$ Vector Boson Scattering $8 / 30$

Cross Section for VV Pairs

Summary of cross section measurements for Standard Model processes by the CMS experiment [\[18\]](#page-29-5)

Production of WZ Pairs and 2 Tagging Jets

The leptons considered in this study are electrons and muons A fist step towards joint-polarisation measurement for WZjj-EW

WZ-EW analysis group

The ATLAS team at LAPP (Emmanuel, Iro, Lucia ...) has been analyzing WZ boson pairs for several years, in particular

- the first observation of the production of a WZ pair in an electroweak process [\[6\]](#page-29-6)
- the first observation of the joint polarization states of gauge bosons in the WZ production [\[7\]](#page-29-7)

We also collaborate with the Thessaloniki team on VBS and the Victoria University team on EFT.

Display of event candidate $WZ \rightarrow e \nu_e \mu \mu$

- **2** [Qualification Task](#page-17-0)
- **3** [Other works](#page-25-0)
- **4** [Next steps for 2nd year](#page-27-0)
- Different machine learning techniques first with simple one with TMVA [\[20,](#page-29-8) [10\]](#page-29-9) and then DNN with Tensorflow [\[11\]](#page-29-10)
- Discrimination between EW process vs QCD process and then polarisation discrimination for TMVA's method, one more discrimination for WZ events versus other process for the DNN (such as tZ , ZZ , $t\overline{t}V$, VVV , ...)

• 2D or 3D map made from the output of the ML techniques and give to a statistic tools to compute significance

Particle Information

- Leptons
- Bosons
- Tagging Jets

Different Properties

- Kinematics
- Energy
- Centrality
- Number of jets

Schematic view of angular observables sensitive to polarization states

Examples of 2D and 3D map

Example of 3D map of the W0Z0 sample with the W0ZX vs WTZX DNN

2D map for a W0Z0 EW sample

Significance

Significance for the observation of WZjj-EW polarisation process with different methods and variables at $\mathcal{L} = 140$ fb⁻¹ corresponding at the Run 2 data

Significance for the observation of WZjj-EW polarisation process with different methods and variables at $\mathcal{L} = 300$ fb⁻¹ corresponding at the expected Run 3 data

Methods	$W0ZX$ vs WTZX	$WXZ0$ vs WXZT	$W0Z0$ vs others	WTZT vs others	$W0ZT$ vs others	$WTZ0$ vs others
Likelihood	1.97	2.01	0.77	3.9	1.21	1.16
MLP	2.6	2.81	0.94	5.42	1.73	1.86
BDTG	2.89	3.17	1.09	5.76	1.93	2.08
DNN	3.69	3.98	1.4	7.08	2.44	2.53

Where X means 0 or T.

Combined Run 2 and Run 3

Significance for the observation of WZjj-EW polarisation process with different methods and variables at $\mathcal{L} = 139 + 300$ fb⁻¹

Where X means 0 or T.

This was done by considering two signal region, one for Run 2 with $\mathcal{L} = 139$ fb⁻¹ and one for Run 3 with $\mathcal{L} = 300 f b^{-1}$ who were the same respectivly as the one used on the previous slide for the DNN.

Yet, no control region were used and also the data simulated for Run 3 are exactly the same as the one for Run 2 but rescaled to simulate the increasing luminosity

Next step: fractions of polarisation with uncertainty

[My analysis](#page-4-0)

[Qualification Task](#page-17-0)

[Other works](#page-25-0)

[Next steps for 2nd year](#page-27-0)

ATLAS Upgrade Phase 2

Improved $|\eta|$ coverage rate from 2.5 to 4.0 during ATLAS Phase 2 Upgrade, enabling more "forward" electrons/muons to be used.

Diagram of the quarter $(z > 0, \eta > 0)$ of the current Trajectograph and ITk

Leptons as final decay with great power of discrimination in the forward region, the ITk upgrade is a welcome one for the VBS analysis we're doing.

Pseudorapidity $η$

Inclination with respect to the beam, $\eta = 0 \iff$ perpendicular, $\eta = \pm \infty \iff$ parallel

- Trying to set up a p_T -independent identification discriminant in order to make easier the measurement and the treatment of data vs MC discrepancies, as well as the extrapolation to phase space (high p_T) where those can't be measured
- For this, using input variables to a DNN that have little correlation with pT (after employing a decorrelation technique) Identification efficiencies of electr[ons](#page-29-11) from

 $Z \longrightarrow ee$ decays as a function of the electron's E_T [5]

- A single DNN can then be trained for all p_T
- To recover and adjust best working points, cuts on this DNN can finally be set in bins of p_T
- Note that in order to adapt to the different detector geometry (boundaries, granularity,...) this process is repeated independently in different bins of $|\eta|$

Variables

Example of variables we can get from the detectors

p_T decorrelation

decorrelation between reconstructed p_T and the seven clusters moments by training a linear regression model to fit pT versus the 7 C.M (background and it pT versus the 7 C.M (background and it pT versus them to the C.M fit a_T versus the 7 C.M. (for signal only). Then we take the residuals to subtract them to the C.M. (background

Representation of the pile-up effect

Luminosity-weighted distribution of the mean number of interactions per crossing for pp collisions for Run 1, 2 and 3

Pile-up $< \mu >$

Number of proton-proton collisions per bunch crossing at the interaction point

DNN prediction for signal and background with cut on signal efficiency

ROC curve and various workings points

DNN WP Signal efficiency - $2.7 \leq |\eta| \leq 3.2$

Signal efficiency for DNN WP for data test at $\langle \mu \rangle = 200$ and $\langle \mu \rangle = 1$

The number above the DNN WP at $\langle \mu \rangle = 1$ is the difference in percentage between the one at $\langle \mu \rangle = 200$ On average, signal efficiency at $\langle \mu \rangle = 1$ is a few percent higher than $< \mu > = 200$ for loose and medium The sensitivity of the signal selection to pile-up is only a few percent

[My analysis](#page-4-0)

- [Qualification Task](#page-17-0)
- [Other works](#page-25-0)
- [Next steps for 2nd year](#page-27-0)

Formations

- Research ethics 15h
- Fundamentals of Big Data 24h
- \bullet Gif School 2023 24h
- PhD and career development 24h
- Introduction to parallel computing 36h
- European School of High Energy Physics end of 2024

Work on the side

- 21h30 of lectures on Introduction to python for 1st year student at the USMB
- Vulgarisation scientifique pour Fête de la science of LAPP 2023 and at Mercredi du LAPP
- CERN Guide
- Shift in the control room for the Calorimeter / Forward detector desk - 208h
- Develop a [website t](https://interactive-data-lapp-vbs-interactive-data.app.cern.ch/)o visualise our datasets
- E/gamma Workshop in Valencia in the context of my QT

[My analysis](#page-4-0)

- [Qualification Task](#page-17-0)
- [Other works](#page-25-0)
- [Next steps for 2nd year](#page-27-0)

The QT

• Completing the QT, we will request more statistic to consolidate the first result presented here. There will be an implementation of the DNN inside the Athena framework

The analysis

- Continuing the VBS study by increasing the MC statistic
- Use fraction of polarisation instead of significance
- Definition of control regions and study of associated systematic uncertainties through the statistical treatment

Work on the side

• Continue to dispense python lectures for 1st year student at USMB

References

- [1] B. Abi et al. ["Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm".](https://doi.org/10.1016/j.physletb.2012.08.020) In: Phys. Rev. Lett. 126.14 (2021), p. 141801. doi: 10.1103/PhysRevLett.126.141801. arXiv: 2104.03281 [hep-ex].
- Ana Alboteanu, Wolfgang Kilian, and Jürgen Reuter. "Resonances and unitarity in weak boson scattering at the LHC". In: Journal of High Energy Physics 2008.11 (Oct. 2008), pp. 010–010. doi: 10.1088/1126-6708/2008/11/010.
- [3] T. Aoyama et al. "The anomalous magnetic moment of the muon in the Standard Model". In: Phys. Rept. 887 (2020), pp. 1–166. doi: 10.1016/j.physrep.2020.07.006. arXiv: 2006.04822 [hep-ph].
- [4] François Chollet et al. Keras. https://keras.io. 2015.
- ATLAS Collaboration. "Electron and photon efficiencies in LHC Run 2 with the ATLAS experiment". In: Journal of High Energy
Physics 2024.5 (May 2024). issn: 1029-8479. poi: 10.1007/jhep05(2024)162. url:: http://dx.doi.org/10.1007/JHEP05(2024)162.
- [6] ATLAS Collaboration. "Observation of electroweak ^W±^Z boson pair production in association with two jets in pp collisions at [√] $\sqrt{s} = 13$ TeV with the ATLAS detector". In: Physics Letters B 793 (June 2019), pp. 469-492. pot: 10.1016/j.physletb.2019.05.012.
- 10. 0166); physlete1.2019. 05.012.
[7] ATLAS Collaboration. [Observation of gauge boson joint-polarisation states in W](https://doi.org/10.1016/j.physrep.2005.12.006)[±]Z production from pp collisions at √s = 13
TeV with the ATLAS detector. 2022. arXiv: 2211.09435 [hep-
- *IeV with the AILAS detector. 2022.* arXiv. 2211.09435 [hep-ex].
[8] Gessinger, Paul et al."The Acts project: track reconstruction software for HL-LHC and beyond". In: *EPJ Web Conf.* 245 (2020),
[8] Cessinger, Paul et al
- p. 10003. Dr.: 10.1.051/epjconf/202024510003. Uni... https://doi..org/10.1.051/epjconf/202024510003.
[9] G. Hinshaw et al. "Nine-Year Wikinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results" In: Astrophys. J. Suppl. 208 (2013), p. 19. DOI: 10.1088/0067-0049/208/2/19. arXiv: 1212.5226 [astro-ph.C0]
[10] Andreas Hoecker et al. "TMVA: Toolkit for Multivariate Data Analysis". In: PoS ACAT (2007), p. 040. arXiv:
- physics/0703039.
- physica/0703039.
[11] Martín Abadi et al. **TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems**. Software available from
tensorflow.org. 2015. url.: https://www.tensorflow.org/. tensorflow.org. 2015. URL: https://www.tensorflow.org/.
[12] Sascha Mehlhase. "ATLAS detector slice (and particle visualisations)". In: (2021). URL
- https://cds.cern.ch/record/2770815.
- [13] "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC". In: Physics Letters B 716.1 (Sept. 2012), pp. 30–61. doi: 10.1016/j.physletb.2012.08.021. url: https://doi.org/10.1016/j.physletb.2012.08.021.
- [14] "Observati[on of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC".](https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined) In: Physics Letters B 716.1 (Sept. 2012), pp. 1–29. pp.: 10.1016/j.physletb.2012.08.020. url:: https://doi.org/10.1016/j.physletb.2012.08.020.
- [15] Louis Portales. "Observation of electroweak WZjj production and studies on pile-up mitigation with the ATLAS detector". Theses. Université Savoie Mont Blanc, Oct. 2020. url: https://theses.hal.science/tel-03550156.
- [16] "Precision electroweak measurements on the Z resonance". In: Phys. Rept. 427 (2006), pp. 257–454. por: 10.1016/j.physrep.2005.12.006. arXiv: hep-ex/0509008.
- 10.1016/.)- physics , 2006. 12. 006 and/s begins a state in WZ pair production at the LHC with the ATLAS
(17) Luka Selem. "Measurement of gauge boson joint-polarisation states in WZ pair production at the LHC with the AT ATLAS". Presented 27 Sep 2022. Savoie U., 2022. URL: http://cds.cern.ch/record/2841405 [18] Summaries of CMS cross section measurements.
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined. June 2023.
- ¹⁹] "The ATLAS Experiment at the CERN Large Hadron Collider". In: *JINST* [3 \(2008\). Also published by CERN Geneva in 20](https://doi.org/10.22323/1.120.0510)10, S08003. Doi: 10.1088/1748-0221/3/08/S08003. url: https://cds.cern.ch/record/1129811.
- S08003. non: 10.1088/1748-0221/3/08/808003. unu: https://eds..cern.ch/record/1129811.
[20] Jan Therhaag. "TMVA Toolkit for multivariate data analysis in ROOT". In: PoS [ICHEP2010 \(2010\). Ed. by Bernard Pire et al.,](https://gitlab.cern.ch/TRExStats/TRExFitter/)
p. 510. p. 510, por: 10.22323/1.120.0510.
[21] TRExFitter. https://gitlab.cern.ch/TRExStats/TRExFitter/. 2023.
-

Spontaneous Symmetry **Breaking**

$$
\langle \phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}
$$

⇓ Quantum Fluctuations

$$
\phi(x)=\frac{1}{\sqrt{2}}\begin{pmatrix}\phi_1(x)+i\phi_2(x)\\ \nu+\phi_4(x)+i\phi_3(x)\end{pmatrix}
$$

⇓ Unitary Gauge

$$
\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}
$$

Representation of the Higgs potential $V(\phi) = \mu^2 \phi^* \phi + \lambda (\phi^* \phi)^2$

The gauge bosons acquire mass and absorb a Goldstone boson, which manifests as a third polarization state.

Significance and p-value

p-value

Probability of obtaining a value t in the region of compatibility with H_0 as extreme or more extreme than the value observed in the real data.

$$
p = \int_{t_{obs}}^{\infty} f(t|H_0) dt
$$

Relation between significance Z and the p-value

Discovery in HEP

 $Z = 5$ or $5\sigma \Longleftrightarrow p$ -value = 2.87×10^{-7}

Phase space definition

Tables of variables used

We use **Tensorflow** [\[11\]](#page-29-10) and his API **Keras** [\[4\]](#page-29-14) to compute deep neural networks The dataset, is normalised for better performance with following normalization:

$$
x_{norm} = \frac{x - x_{max}}{x_{max} - x_{min}}
$$

to scale them between 0 and 1

We labeled signal as 1 and background as 0 as so use the binary cross entropy function:

$$
\mathcal{L} = \frac{-1}{N} \sum_{i=1}^{N} x_i \times \ln \hat{x}_i + (1 - x_i) \times \ln (1 - \hat{x}_i)
$$

We split the dataset as 80% of it for training and 20% for validation

We then search for the best hyperparemeters with a Bayesian optimizer from KerasTunner for the following values:

- number of hidden layers \in $[1 15]$
- number of neuron in hidden layers $\in [32 256]$
- learning rate $\in [10^{-2}, 10^{-3}, 10^{-4}]$

The optimizer for the loss function is Adam. The input layer is made of 41 neurons and the output one of only 1. Each layer except the output one has a ReLu function as activation function, the output one has a sigmoid function.

The KerasTunner will then compute 100 different model and test them on 10 epochs (with an early stopper focused on loss value with a patience of 3) and watch the best values.

The 100 steps were not done for the following results, only 10 to give a rough idea

Variables

Variables used for training

The six first Cluster Moments (f_{em} , longitudinal, $< \lambda^2 >$, <code>lateral</code>, $<$ $r^{2}>$ and λ_{center}) are the ones to ID the electron in the forward region presently

DNN prediction for signal and background with working points IN prediction for signal and
 $\begin{array}{ccc}\n\text{d} & \text{d} & \text{d} & \text{d} \\
\text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
\text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
\text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
\text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
\text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
\text{d} & \text$

ROC curve and various workings points

Here testing the $\langle \mu \rangle = 200$ WP on a $\langle \mu \rangle = 1$ sample \longrightarrow good stability with only a few percents change of efficiencies

DNN WP Background efficiency - $2.7 < |\eta| < 3.2$

Inverse background efficiency for DNN WP for data test at $\lt \mu \gt = 200$ and $\langle u \rangle = 1$

The number above the DNN WP at $\langle \mu \rangle = 1$ is the difference in percentage between the one at $\lt \mu \gt = 200$ On average, background efficiency at $\langle \mu \rangle = 1$ is the same than $<\mu>=200$ The sensitivity of the background selection to pile-up is the same