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Standard Model

• Theory used in particle physics
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Figure 1.1: The lowest-order s-channel Feynman diagrams for e+e− → ff. For e+e− final states,
the photon and the Z boson can also be exchanged via the t-channel. The contribution of Higgs
boson exchange diagrams is negligible.
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Figure 1.2: The hadronic cross-section as a function of centre-of-mass energy. The solid line is
the prediction of the SM, and the points are the experimental measurements. Also indicated
are the energy ranges of various e+e− accelerators. The cross-sections have been corrected for
the effects of photon radiation.
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Cross section of e+e− → hadrons processes as a
function of center-of-mass energy [16]

• Successfully confirmed by the discovery
of the Higgs Boson in 2012 at the LHC
by the ATLAS [14] and CMS [13]
experiments

Standard Model of Elementary Particles
three generations of matter

(fermions)

I II III

interactions / force carriers
(bosons)

mass

charge

spin

Q
U

A
R

K
S

u
≈2.2 MeV/c²

⅔

½

up

d
≈4.7 MeV/c²

−⅓

½

down

c
≈1.28 GeV/c²

⅔

½

charm

s
≈96 MeV/c²

−⅓

½

strange

t
≈173.1 GeV/c²

⅔

½

top

b
≈4.18 GeV/c²

−⅓

½

bottom

L
E

P
T

O
N

S

e
≈0.511 MeV/c²

−1

½

electron

νe
<1.0 eV/c²

0

½

electron
neutrino

μ
≈105.66 MeV/c²

−1

½

muon

νμ
<0.17 MeV/c²

0

½

muon
neutrino

τ
≈1.7768 GeV/c²

−1

½

tau

ντ
<18.2 MeV/c²

0

½

tau
neutrino G

A
U

G
E

 B
O

S
O

N
S

V
E

C
T

O
R

 B
O

S
O

N
S

g
0

0

1

gluon

γ
0

0

1

photon

Z
≈91.19 GeV/c²

0

1

Z boson

W
≈80.360 GeV/c²

±1

1

W boson

S
C

A
L

A
R

 B
O

S
O

N
S

H
≈124.97 GeV/c²

0

0

higgs

Standard Model
• Highly accurate and extensively tested

model
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Tensions in the Standard Model

• 4.2σ deviation between the Fermilab
measurement of the muon’s magnetic
moment [1] and the prediction by the
Muon g-2 Theory Initiative [3]

γ
µ

γ

µ

• Lack of a dark matter
candidate particle

26.8%
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68.3%

Dark matter
Ordinary matter
Dark energy

4.9% 26.8%

Energy density distribution of the
Universe [9]
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Polarization of Electroweak Sector Bosons

Spin
Intrinsic property of a particle

Massive vector bosons
3 degrees of freedom represented by 3 different polarizations,
one arise from the higgs mechanism when the bosons acquire
mass

εµ− =
1√
2
(0, 1,−i , 0) εµ0 =

1

mV
(kz , 0, 0,E) εµ+ = − 1√

2
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𝑧𝑧𝑧

Boson 𝑉Projection du spin

𝑆𝑧 =− 1 𝑆𝑧 = 0 𝑆𝑧 =+ 1

Representation of transverse (T ) and longitudinal (0) polarization states
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The decay products of W or Z bosons retain traces of the bosons’ polarization.

7 / 30



Why study VBS ?
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Figure 14: Cross sections (in nanobarns) for the five different scattering processes of longi-
tudinal weak gauge bosons: SM with a 120 GeV and a 1 TeV Higgs in the upper line, in the
middle: SM without a Higgs without and with K-matrix unitarization, respectively. In the lower
line, the case of α4,5 switched on are shown, on the left without, on the right with K matrix
unitarization. The contribution from the forward region is cut out by a 15 degree cut around
the beam axis.
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(a) Without Higgs boson
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Figure 14: Cross sections (in nanobarns) for the five different scattering processes of longi-
tudinal weak gauge bosons: SM with a 120 GeV and a 1 TeV Higgs in the upper line, in the
middle: SM without a Higgs without and with K-matrix unitarization, respectively. In the lower
line, the case of α4,5 switched on are shown, on the left without, on the right with K matrix
unitarization. The contribution from the forward region is cut out by a 15 degree cut around
the beam axis.
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(b) With Higgs boson

Effective cross-section (in nb) for five different longitudinally polarized weak
interaction gauge boson scattering (VBS ∗) processes [2]

Measuring polarization in boson scattering (WZ production, for example)
provides a direct probe of EW symmetry breaking mechanism.

∗Vector Boson Scattering 8 / 30



Cross Section for VV Pairs
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CMS preliminary 18 pb 1 - 138 fb 1 (7,8,13,13.6 TeV)
Overview of CMS cross section results

September 2022Measured cross sections and exclusion limits at 95% C.L.
See here for all cross section summary plots

Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertainty
Light colored bars: 7 TeV, Medium: 8 TeV, Dark: 13 TeV, Darkest: 13.6 TeV, Black bars: theory prediction
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Summary of cross section measurements for Standard Model processes by
the CMS experiment [18]
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Production of WZ Pairs and 2 Tagging Jets

q q′′

q′ q′

W±

Z0

W∓

Z0

EW VBS Process - Signal

Decay Channel
WZjj → lllνjj

q

q′′

W±

q′

Z0

q′

QCD Process - Background

The leptons considered in this study are electrons and muons
A fist step towards joint-polarisation measurement for WZjj-EW
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WZ-EW analysis group

The ATLAS team at LAPP (Emmanuel, Iro, Lucia ...) has been
analyzing WZ boson pairs for several years, in particular

• the first observation of the production of a WZ pair in an
electroweak process [6]

• the first observation of the joint polarization states of gauge
bosons in the WZ production [7]

We also collaborate with the Thessaloniki team on VBS and the
Victoria University team on EFT.

Display of event candidate WZ → eνeµµ
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Steps of the study

• Different machine learning techniques first with simple one
with TMVA [20, 10] and then DNN with Tensorflow [11]

• Discrimination between EW process vs QCD process and then
polarisation discrimination for TMVA’s method, one more
discrimination for WZ events versus other process for the
DNN (such as tZ , ZZ , ttV , VVV , ...)

• 2D or 3D map made from
the output of the ML
techniques and give to a
statistic tools to compute
significance

x
DNN output for polarisation

y

DNN output WZ-EW vs WZ-QCD

z
DNN output WZ process vs others
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The Variables

Particle Information
• Leptons
• Bosons
• Tagging Jets

Different Properties

• Kinematics
• Energy
• Centrality
• Number of jets

Schematic view of angular observables
sensitive to polarization states
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Examples of 2D and 3D map
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Significance

Significance for the observation of WZjj-EW polarisation process with different methods and variables at
L = 140 fb−1 corresponding at the Run 2 data

Methods W 0ZX vs
WTZX

WXZ0 vs
WXZT

W 0Z0 vs
others

WTZT vs
others

W 0ZT vs
others

WTZ0 vs
others

Likelihood 1.39 1.42 0.54 2.76 0.85 0.82
MLP 1.84 1.99 0.67 3.84 1.23 1.32

BDTG 2.04 2.24 0.77 4.08 1.36 1.47
DNN 2.54 2.74 0.97 4.86 1.7 1.76

Significance for the observation of WZjj-EW polarisation process with different methods and variables at
L = 300 fb−1 corresponding at the expected Run 3 data

Methods W 0ZX vs
WTZX

WXZ0 vs
WXZT

W 0Z0 vs
others

WTZT vs
others

W 0ZT vs
others

WTZ0 vs
others

Likelihood 1.97 2.01 0.77 3.9 1.21 1.16
MLP 2.6 2.81 0.94 5.42 1.73 1.86

BDTG 2.89 3.17 1.09 5.76 1.93 2.08
DNN 3.69 3.98 1.4 7.08 2.44 2.53

Where X means 0 or T.
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Combined Run 2 and Run 3

Significance for the observation of WZjj-EW polarisation process with different methods and variables at
L = 139 + 300 fb−1

Methods W 0ZX vs
WTZX

WXZ0 vs
WXZT

W 0Z0 vs
others

WTZT vs
others

W 0ZT vs
others

WTZ0 vs
others

DNN 4.43 4.79 1.69 - 2.92 3.04

Where X means 0 or T.

This was done by considering two signal region, one for Run 2 with L = 139 fb−1 and one for
Run 3 with L = 300 fb−1 who were the same respectivly as the one used on the previous slide
for the DNN.

Yet, no control region were used and also the data simulated for Run 3 are exactly the same as
the one for Run 2 but rescaled to simulate the increasing luminosity

Next step: fractions of polarisation with uncertainty
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ATLAS Upgrade Phase 2
Improved |η| coverage rate from 2.5 to 4.0 during ATLAS Phase 2 Upgrade,
enabling more ”forward” electrons/muons to be used.

Envelopes

Pixel

SCT barrel

SCT end-cap

TRT barrel

TRT end-cap

255<R<549mm
|Z|<805mm

251<R<610mm
810<|Z|<2797mm

554<R<1082mm
|Z|<780mm

617<R<1106mm
827<|Z|<2744mm

45.5<R<242mm
|Z|<3092mm

Cryostat

PPF1

Cryostat
Solenoid coil

z(mm)

Beam-pipe

   Pixel
support tubeSCT (end-cap)

TRT(end-cap)
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8

Pixel

400.5
495

580
650

749
853.8

934
1091.5

1299.9
1399.7

1771.4 2115.2 2505 2720.20
0

R50.5
R88.5

R122.5

R299
R371
R443
R514
R563

R1066

R1150

R229

R560

R438.8R408
R337.6

R275

R644

R1004
2710848

712 PPB1

R
a
d
i
u
s
(
m
m
)

TRT(barrel)

SCT(barrel)
Pixel PP1

3512ID end-plate

Pixel

400.5 495 580 6500
0

R50.5

R88.5
R122.5

R88.8

R149.6

R34.3

;

Current Trajectograph
;

Inner Tracker (ITk)

Diagram of the quarter (z > 0,η > 0) of the current Trajectograph and ITk

Leptons as final decay with great power of discrimination in the forward region,
the ITk upgrade is a welcome one for the VBS analysis we’re doing.

Pseudorapidity η

Inclination with respect to the beam, η = 0 ⇐⇒ perpendicular, η = ±∞ ⇐⇒
parallel
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Methodology

• Trying to set up a pT -independent
identification discriminant in order
to make easier the measurement
and the treatment of data vs MC
discrepancies, as well as the
extrapolation to phase space (high
pT ) where those can’t be
measured

• For this, using input variables to a
DNN that have little correlation
with pT (after employing a
decorrelation technique) Identification efficiencies of electrons from

Z −→ ee decays as a function of the
electron’s ET [5]

• A single DNN can then be trained for all pT
• To recover and adjust best working points, cuts on this DNN can finally

be set in bins of pT
• Note that in order to adapt to the different detector geometry (boundaries,

granularity,…) this process is repeated independently in different bins of |η|
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Variables

;

Clusters moments varaibles Current Trajectograph

Example of variables we can get from the detectors
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pT decorrelation

Independent variable (X)
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)

Regression line (predicted y)

Actual data (actual y)

Residuals (error) 
(actual y- predicted y)

y-intercept 
(a)

y =a+bX+ε

ΔX

Δy

Slope (b=Δy / ΔX)

Linear regression and residuals

decorrelation between reconstructed pT and the seven clusters moments by training a linear regression model to
fit pT versus the 7 C.M (for signal only). Then we take the residuals to subtract them to the C.M (background
and signal). The pT variable is then unchanged, and is uncorrelated from the 7 C.M
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(b) After uncorrelation

Correlation matrix between pT and the seven clusters moments for the signal before and after uncorrelated them with a linear regression model
example for 2.7 ≤ |η| ≤ 3.2

As expected, the decorrelation process allows for using in the DNN these 7 input variables independent of pT
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Pile-up

Representation of the pile-up effect
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crossing for pp collisions for Run 1,
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Number of proton-proton collisions per bunch crossing at the
interaction point
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Bin [20;25] for data with < µ >' 200 - 2.7 ≤ |η| ≤ 3.2
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DNN prediction for signal and
background with cut on signal
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ROC curve and various workings
points
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DNN WP Signal efficiency - 2.7 ≤ |η| ≤ 3.2
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Signal efficiency for DNN WP for data test at < µ >= 200 and < µ >= 1

The number above the DNN WP at < µ >= 1 is the difference in
percentage between the one at < µ >= 200
On average, signal efficiency at < µ >= 1 is a few percent higher than
< µ >= 200 for loose and medium
The sensitivity of the signal selection to pile-up is only a few percent
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Formations
• Research ethics - 15h
• Fundamentals of Big Data - 24h
• Gif School 2023 - 24h
• PhD and career development - 24h
• Introduction to parallel computing - 36h
• European School of High Energy Physics - end of 2024

Work on the side
• 21h30 of lectures on Introduction to python for 1st year student

at the USMB
• Vulgarisation scientifique pour Fête de la science of LAPP 2023

and at Mercredi du LAPP
• CERN Guide
• Shift in the control room for the Calorimeter / Forward detector

desk - 208h
• Develop a website to visualise our datasets
• E/gamma Workshop in Valencia in the context of my QT
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The QT
• Completing the QT, we will request more statistic to

consolidate the first result presented here. There will be an
implementation of the DNN inside the Athena framework

The analysis

• Continuing the VBS study by increasing the MC statistic
• Use fraction of polarisation instead of significance
• Definition of control regions and study of associated

systematic uncertainties through the statistical treatment

Work on the side
• Continue to dispense python lectures for 1st year student at

USMB
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Higgs Mechanism

Re(φ)

Im(φ)

V (φ)

A
B

Representation of the Higgs potential
V (φ) = µ2φ∗φ+ λ (φ∗φ)

2

Spontaneous Symmetry
Breaking

〈φ〉 = 1√
2

(
0
v

)
⇓

Quantum Fluctuations

φ(x) = 1√
2

(
φ1(x) + iφ2(x)

v + φ4(x) + iφ3(x)

)
⇓

Unitary Gauge

φ(x) = 1√
2

(
0

v + h(x)

)

The gauge bosons acquire mass and absorb a Goldstone boson, which manifests as
a third polarization state.
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Significance and p-value

p-value
Probability of obtaining a value t in the region of compatibility with
H0 as extreme or more extreme than the value observed in the real
data.

p =

∫ ∞

tobs

f (t|H0)dt

Z

p-value
x

Relation between significance Z and the p-value

Discovery in HEP
Z = 5 or 5σ ⇐⇒ p-value = 2.87× 10−7
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Phase space

Phase space definition

Variables Fiducial WZjj-EW
Lepton |η| < 2.5

pT of lZ , pT of lW [GeV] > 15, > 20

mZ range [GeV]
∣∣mZ − mPDG

Z
∣∣ < 10

mW
T [GeV] ≥ 30

∆R(l−Z , lZ+), ∆R(lZ , lW ) > 0.2, > 0.3
pT two leading jets [GeV] > 40

|ηj | two leading jets < 4.5
Jets multiplicity ≥ 2

ηj1 · ηj1 < 0
mjj [GeV] > 500
∆R(j, l) > 0.3
Nb−quark = 0
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Variables

Tables of variables used
Usage Symbol Description Type information

Variables of the DNN of differentiation
of polarizations VBS EW [17]

∆φ(lW , lν) Difference in azimuthal angle φ of leptons from W

Information about leptons
∆φ(lZ1 , lZ2 ) Difference of azimuthal angle φ of leptons from Z

pWl ,Zl
T Transverse impulse of leptons from W and Z

Emiss
T Missing transverse energy

pWZ
T Transverse impulse of the WZ system

Information on jets and bosons

Variables of the BDTG of differentiation
EW processes vs QCD [15]

∆R(j1,Z) Angular separation between the first tagging jet and the Z boson
Rhard

pT Transverse component of the vector sum of
the moments of the hard objects in the final state of events (leptons and jets),

divided by the sum of their transverse moments.
ζlep Centrality of leptons out of respect for the di-jet system
ζjet Centrality of the jets
mjj Mass of the di-jet system

Information on the tagging jets

Njets Multiplicity of jets
pj1,j2

T Transverse impulse of the two tagging jets
ηj1 Pseudorapidity of jet 1
∆ηjj Difference in pseudorapidity between the two tagging jets
∆φjj Difference in azimuth angle between the two tagging jets
ηW Boson pseudorapidity W

Boson information

mWZ
T Transverse mass of system WZ

pW ,Z
T Transverse impulse of the W and Z bosons

Variables common to DNN and BDTG |ylW − yZ | Difference in velocity between the Z boson and the lepton from the W boson

Additional variables

cos θW ,Z ,V cosine of the angle between the emission
of the two leptons in the frame of reference of W , Z and in the frame of reference at rest of WZ

r21 pT of the leading Boson pT divided by pT of the sub-leading Boson pT

ηWl ,Zl Pseudorapidity of the three leptons from W and Z
Information on the leptons

φWl ,Zl Azimuthal angle φ of the three leptons from the W and the Z
cos θVjj cosine of the angle between the two tagging jets in the WZ frame of reference at rest

Information on the tagging jets

ηj2 Pseudorapidity of jet 2
φj1,j2 Azimuthal angle of the two tagging jets
Ej1,j2 Energy of the two tagging jets
〈pT 〉 Average pT of the 2 tagging jets
Apjj

T
Asymmetry between the pT of the 2 tagging jets
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DNN

We use Tensorflow [11] and his API Keras [4] to compute deep
neural networks
The dataset, is normalised for better performance with following
normalization:

xnorm =
x − xmax

xmax − xmin

to scale them between 0 and 1
We labeled signal as 1 and background as 0 as so use the binary
cross entropy function:

L =
−1

N

N∑
i=1

xi × ln x̂i + (1− xi)× ln (1− x̂i)

We split the dataset as 80% of it for training and 20% for
validation
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Neural Network Architecture
We then search for the best hyperparemeters with a Bayesian optimizer from KerasTunner for the following
values:

• number of hidden layers ∈ [1− 15]
• number of neuron in hidden layers ∈ [32− 256]
• learning rate ∈ [10−2, 10−3, 10−4]

The optimizer for the loss function is Adam. The input layer is made of 41 neurons and the output one of only 1.
Each layer except the output one has a ReLu function as activation function, the output one has a sigmoid
function.

ReLU(x) =
{

x if x > 0
0 else

−5 5

5

x

f (x)

ReLU (Rectified Linear Unit) function

σ(x) = 1

1 + exp−x

−5 5

0.5

1

x

f (x)

Sigmoid function

The KerasTunner will then compute 100 different model and test them on 10 epochs (with an early stopper
focused on loss value with a patience of 3) and watch the best values.
The 100 steps were not done for the following results, only 10 to give a rough idea
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Variables

Variables names Variables information
time HGTD time information

calo_eta η from CaloCluster
calo_phi φ from CaloCluster
calo_E_2 Deposit energy on the 2nd layer of the EMCalo
calo_E_3 Deposit energy on the 3rd layer of the EMCalo
track_eta η from trackParticle
track_phi φ from trackParticle

pixels Number of pixels hits
strips Number of strips hits

ENG_FRAC_MAX fem Fraction of the cluster energy that is deposited in the most energetic cell of the cluster
LONGITUDINAL Shower shape in the clusters’ longitudinal direction, based on the distance of each cell to the shower core

SECOND_LAMBDA < λ2 > Second moment in λ - the distance of each cell to the cluster center along the shower axis
LATERAL Lateral moment of the shower taking into account the two most energetic cells (which constitutes the shower core)

SECOND_R < r2 > Second moment in r - the radial distance of each cell to the shower axis
CENTER_LAMBDA λcenter the distance of the shower center from the front of the calorimeter along the shower axis

SECOND_ENG_DENS < ρ2 > Second moment in energy density
delta_eta2 Delta squared in η between caloCluster and trackParticle
delta_phi2 Delta squared in φ between caloCluster and trackParticle

delta_phi_rescaled2
delta_phi_last

Variables used for training

The six first Cluster Moments (fem, longitudinal, < λ2 >,
lateral, < r2 > and λcenter) are the ones to ID the electron in
the forward region presently
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Bin [20;25] for data with < µ >= 1 - 2.7 ≤ |η| ≤ 3.2
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DNN output
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Signal < > = 1
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Loose < > = 200
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DNN prediction for signal and
background with working points

defined for < µ >= 200
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ROC Curve ATLAS Bin [20,25] GeV

ROC curve (area = 0.99) < > = 1
Random classifier
Tight
Medium
Loose
Calo WP < > = 1
LH WP < > = 1
DNN WP Train < > = 200
DNN WP Test < > = 200
DNN WP Test < > = 1

ROC curve and various workings
points

Here testing the < µ >= 200 WP on a < µ >= 1 sample −→
good stability with only a few percents change of efficiencies
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DNN WP Background efficiency - 2.7 ≤ |η| ≤ 3.2
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Inverse background efficiency for DNN WP for data test at < µ >= 200 and
< µ >= 1

The number above the DNN WP at < µ >= 1 is the difference in
percentage between the one at < µ >= 200
On average, background efficiency at < µ >= 1 is the same than
< µ >= 200
The sensitivity of the background selection to pile-up is the same
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