

Sources of gravitational waves: A panorama

Chris Van Den Broeck

1st MaNiTou Summer School on Gravitational Waves, Marseille/Luminy, 4-8 July 2022

Strength of gravitational wave signals: quadrupole formula

$$h_{ij} = \frac{G}{c^4} \frac{2}{r} \frac{d^2 Q_{ij}}{dt^2} \qquad \qquad Q_{ij} = \int \rho \, x_i x_j \, d^3 x$$

Back-of-the-envelope:

$$h \sim \epsilon \frac{G}{c^4} \frac{1}{r} M v^2$$

$$\frac{G}{c^4} \simeq 8.3 \times 10^{-45} \frac{\text{s}^2}{\text{kg m}}$$

$$\epsilon \quad : \text{asymmetry of the source}$$

$$M \quad : \text{mass}$$

$$v \quad : \text{characteristic speed}$$

$$r \quad : \text{distance to observer}$$

T : distance to observe

Detectability of gravitational waves:

- Limited by detector sensitivity
 - Current ground-based detectors, short-duration source: Need $h \gtrsim 10^{-22}$
 - Long signal of known shape: "signal-to-noise ratio" grows as $\propto T^{1/2}$ with T the observation time

ET-D-LF

ET-D-HF

ET–D sum

10⁴

> Different detectors will be sensitive in different frequency ranges

> Pulsar timing arrays: down to $\sim 10^{-10}$ Hz

"Burst" sources

Transient signals

Fast-spinning neutron stars

Stochastic gravitational waves

Inspiral, merger, and ringdown

Detecting signals from coalescing binaries

Matched filtering:

 \blacktriangleright Signal-to-noise ratio $ho(t_0)$ peaks when a signal is present in the data

Detecting signals from coalescing binaries

Many different choices for masses m₁, m₂ in the trial waveforms: "Template bank"

90 candidate detections so far

- Mostly binary black holes
- Binary neutron stars: GW170817, GW190425
- Neutron star-black hole: GW200105, GW200115

LIGO + Virgo+ KAGRA, arXiv:2111.03606

GW170817: binary neutron star inspiral

LSC, Virgo, arXiv:1710.05832

- Gamma ray counterpart
 - Origin of gamma ray bursts
- Thanks to LIGO-Virgo "triangulation": Discovery of "kilonova" afterglow
 - Origin of heavy elements
- New cosmic distance markers
 - Novel way of doing cosmology
- Measurement of neutron star tides

- Structure of neutron stars
- Can we learn more about dense nuclear matter by also including information from heavy ion collision experiments on Earth? E.g. Huth et al, arXiv:2107.06229

Other "special events"

➢ GW190412

Binary black hole with significantly different masses

(8 and 30 solar masses)

• First observation of **harmonics** of the basic signal

LSC, Virgo, arXiv:2004.08342

≻ GW190521

- Binary black hole, 66 + 85 solar masses
- Can not have been formed directly from stars!
 o Resulting from earlier mergers?
- Remnant black hole: 142 solar masses

Searching for sub-solar mass black holes

> If black holes with mass significantly below 1 solar mass: most likely primordial

LSC, Virgo, KAGRA, arXiv:2109.12197

Future detectors

LISA

- Overlap between Einstein Telescope and LISA
 - Intermediate mass binary black holes $M \sim 10^2 10^4 M_{\odot}$

- New sources for LISA
 - Supermassive binary black holes $M \sim 10^5 10^9 M_{\odot}$
 - Extreme mass ratio inspirals, e.g. $M = 10^6 M_{\odot} + 10 M_{\odot}$

"Burst" sources

Any source that is short(ish) in time

- Compact binary coalescences
- Supernovae in or near our galaxy
- Neutron star instabilities
- Cosmic strings
- Long gamma ray bursts
- Soft gamma-ray repeater giant flares
- Accretion disk instabilities
- •
- The unknown
- Many of these are poorly modeled
 - Can't necessarily used matched filtering
 - Look for "coherent power" in multiple detectors
 - Common features in different detector outputs around the same time, consistent with a single sky location

"Burst" sources

[cm]

 $D \cdot h_+$

 $D \cdot h_+$

E 2.5

 $_{2} = 10\dot{M}$ [B]

: 11 À

Adv. LIGO ET-D

[Hz-

 $\bigvee_{10^{-23}}^{u} 10^{-23}$

 $|(f)^+ \hat{h}(f)|^+ 10^{-24}$

Hz

-HA

= 10 kpc

Adv. LIGO

ET-D

 $10M_{\odot}$

 $12M_{\odot}$

 $13M_{\odot}$ $19M_{\odot}$

 $25 M_{\odot}$

 $60M_{\odot}$

f [Hz]

Core collapse supernovae:

- For collapsing stars of $M \gtrsim 9 M_{\odot}$: Formation of a proto-neutron star
- Convection
- Standing-accretion shock: Large non-radial oscillations

"Burst" sources

Cosmic strings:

 Formation of "cusps" that briefly travel at nearly speed of light:

 $h \propto f^{-4/3}$

- Formation of "kinks" through the interaction of two strings: $h \propto f^{-5/3}$
- Non-detection enables upper limits on the string tension
- Accumulation of GW bursts from cusps and kinks can lead to stochastic background

LSC, Virgo, KAGRA, arXiv:2101.12248

Continuous waves

- Emission by fast-spinning neutron stars
 - Isolated neutron stars: Asymmetry due to "starquakes"
 - Neutron stars in binaries: Accretion
- The signals are weak!

 $h \sim 10^{-25} \left(\frac{10 \,\mathrm{kpc}}{r}\right) \left(\frac{mR^2}{10^{38} \,\mathrm{kg} \,\mathrm{m}^2}\right) \left(\frac{f}{1 \,\mathrm{kHz}}\right)^2 \left(\frac{\epsilon}{10^{-6}}\right)$

- But, for very long-lived signals, signal-to-noise ratio $\propto T^{1/2}$
- Targeted searches when sky position and pulsar frequency known: Crab pulsar, Vela pulsar, ...
- Computationally challenging to perform all-sky searches
 - Signals Doppler-modulated due to motion of Earth
 - Need to search over sky position in addition to other parameters

Continuous waves

LSC, Virgo, KAGRA, arXiv:2111.13106

Continuous waves

X-ray observations of neutron stars accreting matter from a companion star

- Recall the cosmic microwave background
 - Electromagnetic radiation
 - Generated ~300,000 years after the Big Bang, when first atoms formed

- There may also exist stochastic backgrounds of gravitational waves
 - Astrophysical:
 - Superposition of periodic signals from all the pulsars stars in the Milky Way
 - Superposition of signals from binary black hole and neutron star mergers throughout the Universe
 - Primordial:
 - Phase transitions in the early Universe
 - End of inflation (decay of the inflaton)
 - Superposition of bursts from cosmic strings

Typically involve energies that are inaccessible to e.g. particle colliders

Convenient to define

$$\Omega_{\rm GW}(f) = \frac{1}{\epsilon_c} \frac{d\epsilon_{\rm GW}}{d\ln f}$$

 $\epsilon_{\rm GW}~$: energy density of GW background

 ϵ_c : critical density needed to close the Universe

Stochastic background takes the form of correlated noise between multiple detections

Search for cross-correlations between detectors:

 $Y = \int \tilde{s}^*(f) \,\tilde{Q}(f) \,\tilde{s}_2(f) \,df$

... which is similar to matched filtering but now using two detector outputs

Optimal filter:

$\tilde{Q}(f) \propto \frac{\gamma(f) \,\Omega_{\rm GW}(f)}{f^3 S_1(f) \, S_2(f)}$ where $\gamma(f)$ "overlap reduction function"

- Need to make a choice for the form of $\Omega_{GW}(f)$
 - For many types of background, Ο within the sensitive frequency range can be approximated by a power law: $\Omega_{\rm GW}(f) = \Omega_0 f^{\alpha}$
 - E.g. background from binary coalescences: Ο $\alpha = 2/3$

- The observed binary black hole coalescences are giving us access to merger rates and mass distributions
- From these, can estimate $\Omega_{GW}(f)$ for all binary black hole coalescences in the visible Universe

LSC, Virgo, arXiv:1903.02886

- > For LISA: background from all **white dwarf binaries** in the Milky Way
- When searching for other sources (e.g. supermassive binary black holes), effectively becomes a contribution to the noise

Primordial stochastic backgrounds

Kalogera et al., arXiv:2111.06990

"Burst" sources

Transient signals

Fast-spinning neutron stars

Stochastic gravitational waves

