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Preamble

References:

• Robert Wald, General Relativity (UCP 1984), the best reference for GR, but very little on GW

• Steven Weinberg, Gravitation and Cosmology (Wiley 1974), old but still quite good for the
general background material including GW

• Eric Poisson and Clifford Will, Gravity (CUP 2014), for a more detailed description of gravita-
tional waves and for going further than these lecture notes. Focuses on LL approach

• Michele Maggiore, Gravitational waves (OUP 2008), for a more detailed description of gravita-
tional waves and for going further than these lecture notes. Focuses on averaging approach, but
gives relation to the LL approach and effective-one-body

• Luc Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries (2013), https://arxiv.org/abs/1310.1528, for the advanced reader who knows al-
ready the PN expansion algorithm (not treated here)

1 Introduction

It is a great pleasure to start these lectures just a couple of days after the announcement by NanoGRAV
of GW signals through PTA.

When the famous apple drops on Newton’s head, the mass distribution of the Earth changes.
Accordingly, the gravitation field created by the mass distribution having the apple on the tree is
different than the one created when the apple has fallen. In Newton’s time, this variation, however
negligible, was assumed to be the effect of some instantaneous ‘action at a distance’. After the discovery
that the speed of light is finite, and that all causal effects in our universe seem to be subject to this
limitation, it seems natural to expect that also the variations of the gravitational field will not be felt
instantaneously in the whole universe, but will rather be propagated at the speed of light - or less.1

The propagation of this perturbation of the gravitational field is intuitively what we call a gravitational
wave. Conceptually, it is the same thing as a water wave or an electromagnetic wave propagating a
modification in the height of water or the intensities of the electromagnetic field, respectively. What
makes these waves physical is that they carry energy. Just like a charged particle emits electromagnetic
waves when moving along a closed trajectory, the Earth emits gravitational waves when orbiting the
sun, these carry away energy and make the orbit decay.

1We will shortly see that Einstein’s GR predicts that they propagate at exactly the speed of light, and if some future
experiment shows that they propagate at a lesser speed, than this would be an explicit violation of GR.
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But in practise, it is a much subtler effect. First of all, because the absence of fixed background
structure in GR makes the concept of a propagating way potentially ambiguous, and many decades
passed before a consensus was reached. Famously, Einstein himself initially doubted the physical
existence of GW, for reasons that we will briefly review and clarify below. Second, because if we think
them as waves propagating a medium, this medium is extraordinarily rigid: therefore they go very
fast and have very tiny amplitudes. To give an idea, the power emitted by the Earth in the form of
GW is around 200W a year. This rigidity has to do with the weakness of gravity. You may think
that gravity is strong when you are trying to beat that high jump record, or when you are skydiving.
But this strength is ridiculously small compared to the much much stronger electro-magnetic force.
Example of the chalk. Background independence and weakness of the signal are typical issues that
one has to face when studying GWs.

2 Linearized general relativity

Einstein’s equation of general relativity are given by

Rµν −
R

2
gµν + Λgµν =

κ2

2
Tµν , κ2 =

16πG

c4
. (2.1)

The value of the cosmological constant Λ can be determined from the observed acceleration of the
cosmological expansion assuming homogeneity and isotropy on large scales, and turns out to be Λ ≃
10−52m−2. This scale is largely irrelevant to the perturbative description of GWs we will be concerned
with. Therefore, we will set Λ = 0 and ignore this term in the following.

The gravitational coupling κ2 ≃ 10−43kg−1m−1s−2 is stupendously small, and this is the origin
of the rigidity mentioned in the preamble. The smallness of this parameter has on the other hand a
positive side: the gravitational force is so weak that many of the observed phenomena, in particularly
virtually all solar system experiments, can be studied using the weak field approximation. This is
quite helpful because the Einstein’s equations are non-linear, and there is no general solution known.
Strong gravity effects occur only near very compact objects, and to treat them, one has to resort to
numerical techniques, or hope to be able to resum many order of the perturbative treatment.

Before discussing the weak field approximation, there are two fundamental facts about Einstein’s
theory that is useful to recall, to better appreciate what follows. First of all, its invariance under
general coordinate transformations, also known as diffeomorphisms. This invariance is very similar
to the gauge invariance of Maxwell and Yang-Mills theories. And indeed just like these theories, the
resulting field equations have a three-sided structure: part of the field is completely arbitrary because
of the gauge freedom, part is completely constrained because of the constraints associated with the
gauge symmetry via Noether’s theorem, and part describes independent degrees of freedom. This
three-sided structure is better exposed doing the Hamiltonianian analysis of the dynamics, but for
linear theories it can also be easily seen at the covariant level, as we will show below.

The second fact that is useful to recall is a direct consequence of diffeomorphism invariance, which
prevents the existence of any fixed background structure. In particular, there is no universal notion of
time, nor well-defined notion of energy density of the gravitational field. We will see that the weak field
approximation, by means of the flat Minkowski background it introduces and its associated class of
Cartesian observers, permits to select their proper time as preferred time. But the lack of well-defined
notion of energy density is a subtlelty that persists also at the weak-field level.
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2.1 Linearization of Einstein’s equations

After this preamble, let us discuss the weak-field approximation. It is based on assuming that spacetime
is on average flat, and only small departures from it are allowed. Accordingly, we write

gµν = ηµν + hµν , |hµν | ≪ 1 (2.2) {glin}{glin}

in some chosen coordinate system.2 We use the background metric to raise and lower indices, e.g.

hµν = ηµρηνσhρσ, h := ηµνhµν . (2.3)

The inverse metric at leading order is
gµν = ηµν − hµν . (2.4) {ginvlin}{ginvlin}

Using the expressions (2.2) and (2.4), we can systematically expand all other geometric quantities.
For instance, the background Levi-Civita connection vanishes if we use Cartesian coordinates, and the
first order is

Γµ
νρ =

1

2
ηµσ(2∂(νhρ)σ − ∂σhνρ). (2.5)

Similarly,
Rµνρσ = −∂ρ∂[µhν]σ + ∂σ∂[µhν]ρ. (2.6) {Riem1}{Riem1}

Contracting with the background metric, we obtain the expressions for the linearized Ricci tensor and
Ricci scalar,

Rµν = −1

2
□hµν + ∂(µ∂ρh

ρ
ν) −

1

2
∂µ∂νh, R = ∂µ∂νh

µν −□h, (2.7) {Ric1}{Ric1}

where □ is the flat space d’Alambertian. Using these results, the linearized Einstein’s equations
(multiplied by an overall −2 for convenience to have a unit coefficient in front of the d’Alambertian)
give

□hµν − 2∂(µ∂ρh
ρ
ν) + ∂µ∂νh+ ηµν(∂ρ∂σh

ρσ −□h) = −κ2Tµν . (2.8) {linE}{linE}
These equations are Poincaré covariant, a symmetry inherited from the chosen background. The

presence of the d’Alambertian suggests that wave solutions are indeed possible. However, there is an
intricate tensorial structure that needs to be dealt with. In particular, notice that the equations are
invariant under the transformation

hµν 7→ hµν + 2∂(µξν). (2.9) {hdiffeo}{hdiffeo}
By analogy with the similar invariance of Maxwell’s equations, we can refer to (2.9) as a gauge
transformation. This gauge transformation is nothing but an infinitesimal diffeomorphism: in fact,
recall that the transformation of the metric under infinitesimal diffeos is gµν 7→ gµν + £ξgµν . This
preserves the decomposition (2.2) and induces (2.9) at leading order. Therefore, the gauge-invariance
of (2.8) is nothing but the left-over of the diffeo-invariance of the non-linear theory. We will come
back to this point below when talking about gravitational energy.

This means that four of the components of the matrix hµν are not dynamical: they are not
determined by the field equations and can therefore take arbitrary values. Furthermore, four will be
fixed by the constraints, the linearized version of the diffeomorphism constraints of the full theory. A
linearized canonical analysis, which we report in Appendix B, exposes the three-sided nature of the
linearized equations, and establishes that there are only two propagating degrees of freedom, just like
in the full theory.

2This can be made covariant writing gµν = ḡµν + κhµν and expanding in powers of κ, but the results are equivalent
and comparative factors of κ can be restored easily with dimensional analysis.
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2.2 De Donder gauge

The invariance can be exploited to simplify the equations, and bring them closer to the form of a
standard wave equation. To that end, we require the De Donder gauge

∂µh
µ
ν −

1

2
∂νh = 0. (2.10)

(in the literature, it is also called Lorenz gauge by analogy with electromagnetism, or harmonic gauge
because of its derivation from the non-linear theory, see App. A) It is immediate to see that this gauge
can always be reached, choosing

□ξµ = −∂νhµν +
1

2
∂µh. (2.11) {DDc}{DDc}

In this gauge, the field equations simplify to

□(hµν −
1

2
ηµνh) = −κ2Tµν . (2.12)

It is then convenient to define

h̄µν := hµν −
1

2
ηµνh, (2.13)

so that the linearized equations and De Donder gauge can be written more compactly as follows,

□h̄µν = −κ2Tµν , ∂µh̄
µν = 0. (2.14) {boxbarh}{boxbarh}

The field equations are now in the form of a wave equation for the ten components of the matrix
h̄µν . However, not all components are allowed to freely propagate, because of the constraints that
have to be imposed to satisfy the De Donder gauge. Furthermore, the De Donder condition does not
fix completely the gauge, since (2.11) admits infinitely many solutions. In other words, once the De
Donder condition is satisfied, there remains a residual freedom of gauge transformations that satisfy
□ξµ = 0. We will see below how to further specialize the De Donder gauge to remove any residual
arbitrariness.

2.3 Static Newtonian sources

Let’s consider static solutions with respect to a Newtonian time t. In this case Tµν = ρ(x⃗)tµtν , and
(2.14) reduce to

∂2h̄00 = −κ2ρ. (2.15)

Recalling the the Newtonian potential satisfies ∂2V = 4πGρ, we identify V = −h̄00/4. All remain-
ing components satisfy the vacuum Poisson equation, therefore they vanish with suitable boundary
conditions. It follows that h = −h̄00 hence h00 = 1

2 h̄00 = −2V . Then from the geodesic equation we
get

ẍµ = −Γµ
00 =

{
0
1
2∂ah00 = −∂aV. (2.16)
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2.4 Spin and helicities of gravitational waves

A direct comparison of linearized gravity with electromagnetism is useful first to review many of the
same physical concepts in the algebraically simpler case of a vector field as opposed to a tensorial
field, and second to enhance the different physical behaviour due to the fact that one field has spin 1
(dipole moment) and the other has spin 2 (quadrupole moment). Let’s start first by understanding
why we talk about spin, and what is the difference between spin and helicity.

Recall that tensors in Minkowski space provide finite-dimensional representations of the Lorentz
group. This property can be used to decompose each tensor into irreducible parts, namely the decom-
position is preserved and not mixed up by a Lorentz transformation. Furthermore, one can restrict
attention to a rotation subgroup of the Lorentz group, and decompose the tensor into different spin
representations. For instance, a 4-vector or a 4-form like the Maxwell potential Aµ transforms under
the irreducible Lorentz representation (12 ,

1
2). Under the rotation little group preserving the time axis,

this splits into two irreducible representations, 1 ⊕ 0, given by the spatial vector Aa and the spatial
scalar A0. We can interpret these components of the field as spin-1 and spin-0 modes respectively.
Introducing the time direction tµ = (1, 0, 0, 0), t2 = −1, we can write this decomposition in terms of
two projectors

P (1) = δµν + tµtν , P (0) = −tµtν , 1 = P (1) + P (0). (2.17)

The spin-1 mode can be further decomposed into three different helicities: this is nothing but
the familiar decomposition of spherical harmonics in spins l and magnetic numbers m given by the
projection of the angular momentum along a given direction. In the case of mass-less waves (or
particles), there is a preferred direction given by the spatial momentum. The projection along this
direction defined what is called helicity of the wave (or particle). The decomposition of the spin-1
field into two components, one including the pair of helicities ±1, and one of helicity 0, is a special
case of the Helmholtz decomposition.

Recall the Helmholtz decomposition of a 3d vector field into solenoidal and irrotational parts:

Aa = Aa
T +Aa

L, ∂aA
a
T = 0, Aa

L = ∂aA, ∇× A⃗L = 0. (2.18) {AHelmholtz}{AHelmholtz}

This decomposition is unique up to harmonic functions, ∂2f = 0, which can be freely traded from
one piece to the other. Since the Poisson equation admits a unique solution for suitable boundary
conditions, the Helmholtz decomposition is also unique up to boundary conditions. In the simplest
case these are given by vanishing fields at the spatial boundary, and then all harmonic functions vanish
exactly. Then we can do the usual Fourier transform, and for each mode this decomposition is nothing
but the standard resolution of the identity into projectors,

1
(1) = P (1)

T + P (1)
L , P (1)

T
a
b = T a

b := δab − papb
p⃗ 2

, P (1)
L

a
b = La

b :=
papb
p⃗ 2

, (2.19)

so that

Aa
T = P (1)

T
a
bA

b, Aa
L = P (1)

L
a
bA

b =
papb
p⃗ 2

Ab, A =
p⃗ · A⃗
p⃗ 2

. (2.20)

Remark: often one gives up the extra step of working in Fourier space and writes instead the projectors
in configuration space, e.g.

δab − ∂a∂b
∂2

. (2.21)

This expression is somewhat implicit because one needs to specify boundary conditions in order to
have a well-defined inverse of ∂2. With the understanding that the boundary conditions are those of
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vanishing fields at spatial infinity, then the projector is equivalent to the momentum space definition.
The latter is more explicit since unambiguous, and manifestly well-defined since p⃗ ̸= 0 for a null vector,
but you can find both in the literature.

The notation T and L stand respectively for transverse and longitudinal, and should be obvious
from the explicit expressions. The shorthand notation T a

b and La
b will be useful below. To check that

these correspond to helicities ±1 and 0, we consider a wave propagating along the z axis with positive
frequency ω. Then p⃗ = ω(0, 0, 1), and the rotation matrix of the little group is given by

Ra
b =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 . (2.22) {Rz}{Rz}

Furthermore the projectors take the simple form

P (1)
T

a
b =




1 0 0
0 1 0
0 0 0


 , P (1)

L
a
b =




0 0 0
0 0 0
0 0 1


 . (2.23)

Next we take the eigenvectors of the projectors and study how they behave under this rotation:

P (1)
T

a
be

b
± = ea±, ea± =

1√
2




1
±i
0


 , Ra

be
b
± = e±iθea±, (2.24)

P (1)
L

a
be

b
0 = ea0, ea± =




0
0
1


 , Ra

be
b
0 = ea0. (2.25)

The story is exactly the same for a gravitational perturbation. The symmetric matrix hµν trans-
forms under the reducible Lorentz representation (1,1)⊕ (0,0). Under the rotation subgroup SO(3),
this splits into four spin-irreps, 2⊕ 1⊕ 0⊕ 0, given respectively by

hab −
1

3
δabh

c
c, h0a, h00, hcc. (2.26)

For a given direction of propagation of the wave, we can also introduce the notion of helicity,
namely the projection of the spin along the axis of propagation. This amounts to looking at the
component J⃗ · p̂ of the rotational generators. A spin-2 mode then splits into 5 helicities ±2,±1, 0 and
a spin-1 mode into 3 helicities ±1, 0.

To see how this is done, the spin 0 and spin 1 parts work as before. For the spin-2 part, one needs
a generalization of the Helmholtz decomposition, which is given by

1
(2) = P (2)

TT + P (2)
L + P (2)

LL , (2.27)

P (2)
TT

ab
cd = T a

(cT
b
d) −

1

2
T abTcd, P (2)

L
ab
cd = T a

(cL
b
d) + La

(cT
b
d), P (2)

LL
ab
cd = L

⟨a
⟨cL

b⟩
d⟩. (2.28)

Here ⟨ab⟩ is the symmetric and traceless combination. One can easily check that these are projectors
and that they are orthogonal to one another. Furthermore thanks to having defined them as traceless,
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their action on hab − 1
3δabh is the same as the action on hab. Explicitly, using these projectors and

suitable fall-off conditions at spatial boundaries to define the inverse of ∂2/Fourier transform, we have

hTT
ab = P (2)

TT
ab
cdh

cd =

(
T a
c T

b
d − 1

2
T abTcd

)
hcd, (2.29)

P (2)
L

ab
cdh

cd = 2p(a

(
δb)c − pb)pc

p⃗ 2

)
pdh

cd

p⃗ 2
= 2∂(aBb), Ba = 2

(
δba −

∂b∂a
∂2

)
∂d
∂2
hcd, (2.30)

P (2)
LL

ab
cdh

cd =

(
papb

p⃗ 2
− 1

3
δab
)
pcpd
p⃗ 2

hcd = (∂a∂b −
1

3
δab∂

2)B, B =
∂c∂d
∂4

hcd. (2.31)

One can then write

hab = [(P (2)
TT + P (2)

L + P (2)
LL + P (0)

TR )h]ab = hTT
ab + 2∂(aBb) + (∂a∂b −

1

3
δab∂

2)B +
1

3
δabhcc. (2.32)

Next, to study the different helicities of the spin-2 mode, we proceed as before and consider their
transformation under a rotation along the axis of propagation. Because the spin-2 mode belongs to
the 5-dimensional irrep of the rotational group, we would need to use the 5x5 version of Rẑ. However
no need to work that out, because this irrep is built simply as the symmetric and traceless tensor
product of two spin-1 irreps, hence the 5d action is isomorphic to the action on the vector space of
symmetric-traceless 3x3 matrices Aab 7→ (RART )ab. The action of the projectors is

P (2)
TT

ab
cdA

cd = (TAT )ab − 1

2
Tr(TA)T ab =




1
2(A11 −A22) A12 0

A12 −1
2(A11 −A22) 0

0 0 0


 , (2.33) {PTTA}{PTTA}

and similarly for the other two. Then it is easy to check that the eigenvectors of the projectors are

e+ab =




1 0 0
0 −1 0
0 0 0


 , e×ab =




0 1 0
1 0 0
0 0 0


 , (2.34)

f 1
ab =




0 0 1
0 0 0
1 0 0


 , f 2

ab =




0 0 0
0 0 1
0 1 0


 , eLL

ab =




0 0 0
0 0 0
0 0 1


 . (2.35)

Defining as before the circular polarizations,

e±ab := (e+ab ± ie×ab), f±ab := 2p(a(e
1
b) ± ie2b)), (2.36)

we have under the rotation (2.22)

Rc
aR

d
b e

±
cd = e±2iθe±ab, Rc

aR
d
b f

±
cd = e±iθf±ab, Rc

aR
d
b e

00
cd = e00ab, Rc

aR
d
b e

tr
cd = etrab.

In the following, we will use often the TT projector, and just denote it PTT removing the spin-2
label for short. Now the question is how many of these 10 different helicity modes are truly dynamical.
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2.5 Gauge-invariant description: many Newton potentials

Consider first Maxwell’s equations
□Aµ − ∂µ∂νA

ν = jµ. (2.37)

They are invariant under the gauge transformation Aµ 7→ Aµ + ∂µλ. Accordingly, the covariant
divergence ∂µA

µ drops out, meaning that this component of the field is undetermined. In other
words, it is a pure gauge quantity. This means that even fixing initial conditions, the PDE operator
cannot be inverted, and the Green’s function does not exist. This fact can be solved decomposing the
equations in gauge-invariant quantities that can be inverted for, or by introducing a choice of gauge.
Let us see one procedure at a time.

The Helmholtz decomposition seen earlier is useful to identify the gauge-invariant components of
the magnetic vector potential, and make the ‘three-sided’ structure of Maxwell’s equations manifest
without recurring to the Hamiltonian analysis. Starting from (2.18), we see that Aa

T and Φ := A0 − Ȧ
are gauge-invariant, and Maxwell’s equations can be split into

∂2Φ = j0, □Aa
T + ∂aΦ̇ = ja, □Aa

T = jaT (2.38)

We see that one part of the field, Φ, is dynamical but its dynamics is entirely constrained by the matter
content; one part, AT has independent propagating degrees of freedom; and one part has dropped out
and is left arbitrary. This is the ‘three-sided’ structure we where referring to earlier. Notice also
that the distinction between independent degrees of freedom and constrained ones is non-local in
configuration space. Therefore it is not possible with any local measurement to distinguish between
the two. [But with a full Cauchy slice at disposal then yes, see the recent gendanken experiments by
Bob]

In the static limit, it is possible to neglect radiation and study the Coulombic part alone. However
one should be careful that this is a non-relativistic description: the Coulombic interaction is described
as an ‘action-at-a-distance’ which violates causality. For instance, if I switch on a localized elctric
source at a given instant of time, the electric field outside the light-cone will remain zero, but to see
this one needs explicitly the radiative part of the field. Using the Coulombic part only, one gets an
electric field instantaneously changing in the whole universe.

The fact that the gauge-invariant quantities are non-local functions of the fundamental variables
makes them often unpractical for performing explicit calculations, and one is then better off working
with a fixed gauge instead. Consider for instance the Coulomb gauge ∂aA

a = 0. This sets A = 0 and
leads to important simplifications: the gauge-invariant potential coincides with the temporal potential
A0, and the transverse modes coincide with the vector potential, thus eliminating the non-locality.
Another common gauge choice is the temporal gauge A0 = 0, which corresponds to the reduced phase
space most commonly used in the canonical analysis. This choice also simplifies the description of the
gauge-invariant potential by relating it to the single component Ȧ. However the resulting potential
A is then time dependent also when the source is static. This time dependence is clearly a gauge
artefact, hence the Coulomb gauge is clearly preferable when working on static problems.

For radiative problems on the other hand, neither of these choices are preferable. The problem
is that they are manifestly not Lorentz-invariant, whereas the field equations are. As a consequence,
one ends up working with more cumbersome Green’s functions. If we look again at the Maxwell’s
equations, we see that there is a Lorentz-invariant choice that is particularly helpful: the Lorenz
gauge ∂µA

µ = 0, which leads to
□Aµ = jµ. (2.39)
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One can now solve for the 4 components of Aµ using a simple and covariant Green function, and the
solution will be valid provided it satisfies the Lorenz gauge condition. However, notice that there
are infinitely many solutions to the Lorenz gauge condition. Given a solution, any other is obtained
performing a further gauge transformation whose parameter satisfies the wave equation, □λ = 0.

One may wonder whether the Coulomb or temporal gauges are part of this family. The answer
depends on whether there are sources or not: the Coulomb is compatible with the Lorenz gauge only
in vacuum or with static sources, and temporal only in vacuum (everywhere).

To see this, notice that we can always achieve A0 = 0 = ∂aA
a on some initial slice t = 0, by

suitably choosing λ̇(0, x⃗) = −A0 and λ(0, x⃗) = −1/∂2∂aA
a. This fixes a unique solution of the wave

equation for λ, and thus exhausts the gauge freedom. Then by the Lorenz gauge, Ȧ0(0, x⃗) = 0. Then
from the Maxwell’s equations in Lorenz gauge we find □A0 = j0, which fixes A0 everywhere uniquely
in terms of j0 and the initial data A0(0) = Ȧ0(0) = 0. In particular A0 = 0 in vacuum. But if we are
not in vacuum, then A0 ̸= 0 as a consequence of the Lorenz gauge.

Similarly, the Coulomb gauge everywhere is only compatible with the Lorenz gauge in vacuum
or at most with static sources, since imposing ∂aA

a = ∂µA
µ = 0 everywhere implies Ȧ0 = 0 and

∂2A0 = j0.
In conclusion, we see that two components of the electromagnetic field Aµ are non-physical, there-

fore the theory only propagates two independent degrees of freedom. Further, the nature of the
non-propagating degrees of freedom is of two different type: one is arbitrary, and one is fully con-
strained.

These considerations apply also to the gravitational field. The Newtonian approximation given
by Newton’s equation alone is only meaningful in the static limit. It describes an instantaneous
interaction, and causality is restored restoring the radiative dofs.

We can do the same for the gravitational perturbations, introducing gauge-invariant potentialas
was studied initially by York and Bardeen. We denote

h00 = −2V, (2.40)

h0a =Wa =WT
a + ∂aW (2.41)

hab = hTT
ab + 2∂(aBb) + (∂a∂b −

1

3
δab∂

2)B +
1

3
δabhs. (2.42)

From these we can extract 6 gauge-invariant quantities:

hTT
ab , (2.43)

Φ := V + Ẇ − 1

2
B̈ = −1

2
h00 + ∂aḣ0a −

3

4

∂a∂b
∂4

hab, (2.44)

Φa =WT
a − Ḃa = (δab −

∂a∂b
∂2

hab)− 1

∂2
∂bḣab + ∂a

∂b∂c
∂4

ḣbc, (2.45)

Ψ = −hs + ∂2B =
3

2
(
∂a∂b
∂2

hab − haa). (2.46)

In terms of these variables,

G00 =
1

3
∂2Ψ, G0a =

1

3
∂aΨ̇− 1

2
∂2Φa, (2.47) {linconstraints}{linconstraints}

Gab = −1

2
□hTT

ab + ... (2.48)
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Decomposing Tµν also in irreducible parts,

T00 = ρ, T0a = sa + ∂as, Tab = σab + 2∂(aσb) + (∂a∂b −
1

3
δab∂

2)σ +
1

3
δabτ, (2.49)

one can rewrite the linear equations in terms of the following six independent ones,

□hTT
ab = −κ2TTT

ab , (2.50)

∂2Ψ =
3

2
κ2T00, (2.51)

∂2Φa = −κ2TT
0a, (2.52)

∂2(Φ− 1

6
Ψ) =

3

4
κ2(s− 1

3
τ). (2.53)

Check static source: Ψ = 6Φ thus ∂2Φ = κ2/4ρ ok.
Why so many ‘Newton potentials’? Similar situation in e.m: relativistic invariance forces us to go

from one potential to two. Consider two charged wires and the analogy with Biot-Savart. Here we go
from one to 4, as a consequence of the higher tensorial nature of the field. The new relativistic effects
include precessions of equinoxes, light bending, and frame dragging (Lense-Thirring effect).

¨⃗x = −∇⃗V − ˙⃗
W + v⃗ ×∇× W⃗ − 2(ḣv⃗) + ... (2.54)

whose first two terms look like a Lorentz force.
This rewriting of the linearized equations in terms of gauge-invariant quantities makes theirs three-

sided nature manifest: We have the four constrained modes, the two independent degrees of freedom,
and four pure gauge quantities that dropped out of the equations. One solves first the equations for
the dynamical modes, then fixes a gauge to determine the whole metric tensor.

In spite of being conceptually appealing, this decomposition turns out to be not very practical for
studying perturbation theory. As in the Maxwell case, it is non-local and non-Lorentz covariant.

Considering gauge-fixing, the best option to study radiation is to use a covariant one like the
De Donder. This is however not unique. It turns out that it can be uniquely specified requiring
h = h0a = 0. This is called the transverse-traceless gauge, and can always be achieved in vacuum.
Once this is done, h00 is fully constrained by the matter content, in particular it vanishes only if there
is no matter anywhere.

If we have a solution in a generic De Donder gauge, we can put it in TT gauge applying the
projector

hTT
ab = PTTcd

abh
DeD
cd , PTTcd

ab := (P c
(aP

d
b) −

1

2
PabP

cd), Pab = δab −
papb
p⃗ 2

. (2.55) {PTT}{PTT}

The last term can also be written in terms of a unit vector on the sphere, representing the direction
of propagation of the wave. Notice that this projector is defined in Fourier space; it is non-local, and
fully gauge-invariant.

2.6 Polarization tensors

We can solve the vacuum wave equation decomposing it in plane waves,

h̄µν(x) =

∫
d4p eµν(p)e

ip·x + cc. (2.56)
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where eµν(p) is the polarization tensor, whose form is determined by the field equations and the gauge
choice. To simplify the notation in the following, we can without loss of generality consider a single
monochromatic plane-wave,

h̄µν(x) = eµν(p) cos(p · x). (2.57)

Imposing the vacuum equations in the DeD gauge we get

p2 = 0, pµeµν = 0. (2.58)

From the first, we have that p0 = ±|p⃗ |. We choose pµ to be future-pointing, and accordingly denote
ω := p0 > 0. This convention permits to identify the positive-frequency modes.3 We can then write

p = ω(1, p̂), p̂ap̂bδab = 1 (2.59)

The second condition gives 4 algebraic equations constraining the 10 components of the 4×4 symmetric
matrix eµν . There are six independent solutions, that can be parametrized in terms of pµ and a choice
of spatial orthonormal basis ei, i = 1, 2, in the plane orthogonal to p⃗ (namely tµeiµ = 0 = pµeiµ): {6sols}

pµpν , p(µe
i
ν), e1µe

1
ν + e2µe

2
ν , (2.60a) {4sols}{4sols}

e1(µe
2
ν), e1µe

1
ν − e2µe

2
ν . (2.60b) {2sols}{2sols}

[MAP these to the previous notation, show which of the ten eab we have eliminated.] It is straightfor-
ward to check that these are all the independent solutions. It is however often convenient to be more
explicit, and pick a specific direction for the momentum. For instance, let’s suppose that the 4-vector
p is aligned with the z-direction, namely

pµ = ω(1, 0, 0, 1). (2.61) {pz}{pz}

There is no loss of generality in this choice, because we can always achieve this configuration by a
Lorentz transformation, and the theory is Lorentz covariant: all results obtained in this frame can be
trivially mapped to results in any other frame using a Poincare transformation. Then the equation to
be solved is e0ν + e3ν = 0, and this is done by (2.60) with eiµ = δiµ, i = 1, 2. In the following, we will
write both the general form of the solution, and the one specialized to (2.61).

Notice that we have chosen the independent solutions (2.60) so that they are all traceless, except
the last one of (2.60a). However, not all solutions are physical. In fact, we still have the freedom
to perform residual gauge transformations. For instance, consider ξµ := −2eiµ sin(p · x). This is
admissible since □ξµ = 2p2ϵiµ sin(p · x) = 0, and will set to zero the second of (2.60). Another
example is ξµ := pµ sin(p · x), which will set to zero the first solution. In fact, the four solutions
(2.60a) can be simultaneously put to zero with residual gauge transformations.

To see this, consider a general linear combination of (2.60a), with arbitrary coefficients a, b, c, d:

hµν(x) =




aω2 −bω −cω −aω2

−bω d 0 bω
−cω 0 d cω
−aω2 bω cω aω2


 cos

(
ω(t− z)

)
. (2.62) {PWgauge}{PWgauge}

3This is one instance where the Minkowski background structure plays a key role, thanks to its time translation
symmetry. In a general dynamical spacetime, there is no time-like Killing vector that can be used to identify positive-
frequency modes.
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But as shown above, in vacuum it is always possible to reach the TT gauge in which h0µ = h = 0.4

In terms of this basis of polarization tensors, this implies that in the TT gauge a = b = c = d = 0. In
other words, (2.62) is a pure gauge solution in vacuum, and can be set to vanish identically without
loss of physical information. For the same reason, it is also possible to make another diffeomorphism
which will replace the t−z in the cosine with t−vz for an arbitrary constant v. Hence the pure gauge
modes don’t really propagate, and if a gauge is chosen so that they look like they are propagating, well
one can do this with an arbitrary speed, the speed is not constrained in any way by the dynamics. Only
for the physical modes, the propagation speed is fixed to be the speed of light by Einstein’s equations.
To use Eddington’s words, the non-physical gauge modes propagate at the “speed of thought”.

The only gauge-invariant ones are the the polarizations (2.60b),

e+µν := 2e
(µ
1 e

ν)
2 =




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


 , e×µν := eµ1e

ν
1 − eµ2e

ν
2 =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 . (2.63) {polz}{polz}

As a result, the general physical plane-wave solution has the form

hµν(x) = (h+e
+
µν + h×e

×
µν) cos(p · x) =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


 cos

(
ω(t− z)

)
, (2.64) {PWsol}{PWsol}

for some constants h+ and h×. In the second equality we used the polarization tensors given by (2.63)
when the wave propagates in the z direction. Notice that we removed the bar since the solution is
traceless, hence h̄µν = hµν .

The solution (2.64) was found in a special case of the De Donder gauge. We see that the resulting
wave tensor is transverse to the direction of propagation, and traceless. For this reason, this gauge
is referred to as transverse-traceless gauge. Here we showed it for a special monochromatic ansatz.
But this gauge can always be reached for vacuum solutions. On the other hand, it is not possible to
achieve this gauge inside sources. This is quite analogue to the electromagnetic case, where the Lorenz
gauge is only compatible with the Coulomb gauge in vacuum, and not inside sources.

The resulting perturbed metric is

ds2 = −dt2 + (1 + h+ cosωu)dx2 + (1− h+ cosωu)dy2 + (1 + 2h× cosωu)dxdy + dz2, (2.65) {linmetric}{linmetric}

in terms of retarded time u := t− z to shorten the notation. This metric is not a solution of the exact
Einstein’s equations; but it is a solution of the linearized theory. In other words, there are vacuum
solution the take approximately the form (2.65) in some regions of spacetime, but none that has that
exact form everywhere in spacetime.

Since we have ∞3 choices of possible momenta for a plane wave, we conclude that a general
superposition of plane waves will be described by 2 × R3 arbitrary numbers. These are the physical
degrees of freedom of gravitational waves. The linearized approximation has allowed a complete
characterization of the physical degrees of freedom of the theory. Notice that it is the same number
of the Maxwell field, and of two scalar fields. However what changes between these three examples

4If we were not in vacuum, (2.60) are not solutions.
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is the behaviour under Lorentz transformations of the plane waves. It is clear from the pictures that
the two modes of a GW are related by a π/4 rotation. The electromagnetic modes on the other hand
occur on orthogonal planes and are thus related by a π/2 rotation, see Fig. 2. This difference can be
characterized in terms of a physical property of the waves called helicity, as we discussed earlier.

Fig. 4: Electric and magnetic fields in a plane electromagnetic wave in free space. The wave vector k⃗ is in the
direction of the +z axis.

3.2 Wave equation for the magnetic field
So far, we have only considered the electric field. But Maxwell’s equation (3) tells us that an electric
field that varies with time must have a magnetic field associated with it. Therefore, we should look for a
(non-trivial) solution for the magnetic field in free space. Starting with Eq. (14), and following the same
procedure as above, we find that the magnetic field also satisfies the wave equation:

∇2B⃗ − 1

c2

∂2B⃗

∂t2
= 0, (25)

with a similar solution:
B⃗ = B⃗0 cos

(
k⃗ · r⃗ − ωt + φ0

)
. (26)

Here, we have written the same constants ω, k⃗, and φ0 as we used for the electric field, though we do
not so far know they have to be the same. We shall show in the following section that these constants do
indeed need to be the same for both the electric field and the magnetic field.

3.3 Relations between electric and magnetic fields in a plane wave in free space
As we commented above, although taking additional derivatives of Maxwell’s equations allows us to
decouple the equations for the electric and magnetic fields, we must impose additional constraints on the
solutions to ensure that the first-order equations are satisfied. In particular, substituting the expressions
for the fields (21) and (26) into Eqs. (12) and (13), respectively, and noting that the latter equations must
be satisfied at all points in space and at all times, we obtain

k⃗ · E⃗0 = 0, (27)

k⃗ · B⃗0 = 0. (28)

Since k⃗ represents the direction of propagation of the wave, we see that the electric and magnetic fields
must at all times and all places be perpendicular to the direction in which the wave is travelling. This is
a feature that does not appear if we only consider the second-order equations.

Finally, substituting the expressions for the fields (21) and (26) into Eqs. (15) and (14), respec-
tively, and again noting that the latter equations must be satisfied at all points in space and at all times,
we see first that the quantities ω, k⃗, and φ0 appearing in (21) and (26) must be the same in each case.
Also, we have the following relations between the magnitudes and directions of the fields:

k⃗ × E⃗0 = ωB⃗0, (29)

THEORY OF ELECTROMAGNETIC FIELDS
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Figure 1:
Figpols
Left panel: . Right panel: By comparison if it were a circular distribution of charged test particles

and there is an electromagnetic field passing through, in the linearized approximation in which we neglect their
self-interaction and the magnetic interactions, the whole circle will just move up and down along the axis of
polarization of the wave, without deforming.

Figure 2:
Figpols

Left panel: x polarization. Right panel: Circular polarization, right-handed if direction of
propagation is towards the viewer.

The mapping between notations:

e±ab := (e+ab ± ie×ab), f±ab := 2p(a(e
1
b) ± ie2b)). (2.66)

Under the rotation (2.22) we obtain

Rc
aR

d
b e

±
cd = e±2iθe±ab, Rc

aR
d
b f

±
cd = e±iθf±ab, Rc

aR
d
b e

00
cd = e00ab, Rc

aR
d
b e

tr
cd = etrab.

The last two above are shorthand notations for the pp and trace modes in (2.60a). We conclude that
the physical modes have helicity 2, whereas the gauge modes have helicities 1 and 0.
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The fact that these modes are pure gauge and can be set to zero will see has the important
implication that GW cannot have neith monopole nor dipole radiation terms, similar to how the pure
gauge nature of AL means that e-m radiation has no monopole component. Since this is strictly
related to the gauge invariance of the system, it would be different for massive theories, and it can
be understood in physical terms as a consequence of the symmetries of the theory, associated to the
invariances by Noether’s theorem.

The fact that only maximal helicities are propagated by the Maxwell and linearized Einstein’s equa-
tions leaves an imprint also in quantum field theory: massless particles must always be in eigenstates
of maximal helicities, unlike massive particles.

2.7 Covariant gauge-invariant description

For the reader familiar with QFT, it is probably more customary to revisit the discussion using
covariant projectors, which don’t rely on a 3+1 splitting. Pro: covariant description of the spin-irreps,
achieved without selecting a given time direction. Cons: off-shell description.

Short-hand notation:
ωµν :=

pµpν
p2

, θµν := δµν − ωµν . (2.67)

Spin projectors:

P (2) =
1

2
(θµρθνσ + θµσθνρ)−

1

3
θµνθρσ (2.68)

P (1) =
1

2
(θµρωνσ + θµσωνρ + θνρωµσ + θνσωµρ) (2.69)

P (0)
s =

1

3
θµνθρσ, P (0)

ω = ωµνωρσ, P (0)
sω =

1√
3
θµνωρσ, P (0)

ωs =
1√
3
ωµνθρσ (2.70)

Using these, we have (adding a source term)

□
(
P (2) − 2P (0)

)
hµν = −κ2Tµν . (2.71)

This formulation is used in perturbative quantum gravity, and it is also the starting point of the
EFT application to classical gravitational perturbation theory Notice the mixing with the spin 0: this
is ultimately responsible of the Van Damme discontinuity that rules out applications of linearized
massive gravity to solar system physics. We see that one spin-0 and the spin-1 modes drop out: they
are arbitrary, pure gauge. Of the remaining 6, only two propagate independently. However it is slightly
harder to see this here, because going on-shell introduces divergences in the propagator. So what one
has to do is to contract the propagator with conserved sources, then compute the residues at the pole.
Would be nice to add a reference where this is done explicitly.

3 Detection of GWs

3.1 Gauge and reference frames

There is another difference between e-m gauge, which is not observable, and gravitational gauge,
which has instead a physical interpretation. Different coordinate systems can in fact be thought of as
describing different type of reference frames attached to different observers.
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For instance in flat spacetime, Cartesian coordinates describe Newtonian inertial observers, and
rotating coordinates e.g. those obtained from (2.22) with θ = ωt describe a non-interntial observer on
a rotating frame of constant angular velocity.

More in general in curved spacetime Cartesian coordinates don’t exist, but they can be introduced
locally and this is an implementation of the equivalence principle in Riemannian geometry. For
instance, Riemann normal coordinates satisfy gµν = ηµν and Γµ

νρ = 0 at one chosen point. These
coordinates describe a local inertial frame. One can explicitly construct such coordinates, and prove
that

gµν = ηµν −
1

3
Rµρνσx

ρxσ +O(x3), Γµ
νρ = −2

3
Rµ

(νρ)σ check (3.1)

Another example is Fermi normal coordinates, that satisfy Γµ
νρ = 0 along a time-like geodesics.

These coordinates describe a freely falling frame, and are relevant to describe the physics of Lisa to a
first approximation.

5

How about the TT gauge used to simplify the solution of the GW equation in vacuum? In this
gauge

Γµ
00 = ∂0h

µ
0 −

1

2
∂µh00 +O(h2) = 0 +O(h2). (3.2) {Gm00}{Gm00}

This implies that at first order the coordinate distance between two nearby time-like geodetics remains
the same, and also that their coordinate time delay is the same. To see this, let us look at the geodesics
equation

duµ

dτ
+ Γµ

νρu
νuρ = 0, (3.3)

where

uµ =
dxµ

dτ
, u2 = −1 (3.4)

describes time-like trajectories in proper time. If the velocity is constant, then u0 = γ and ua = γva

where va = dxa/dt is the velocity wrt lab time. Now assume that these geodesics define a collection
of particles which are initially at rest: ua = 0. Then

u̇µ = −Γµ
00u

0u0 = 0 (3.5)

at first order, thanks to (3.2). It follows that test particles at rest before the passage of the wave
remain at rest even doing the passage of the wave, at first order. Then using these test masses to
build the coordinate system, we obtain one that remains constant across a gravitational wave. This is
kind of like the temporal gauge that gives us spatial coordinates which are Lie-dragged by the normal,
and a constant lapse function.

3.2 Coordinate displacements versus physical displacements

To study the effect of a gravitational wave, let us look at the geodesics equation

duµ

dτ
+ Γµ

νρu
νuρ = 0. (3.6)

5Uses a FW transported tetrad and proper time coordinate τ , d
dτ

vµ = 2u[µaν]vν . Then g00 = −1−2aax
a+O(x2), g00 =

O(x2), gab = δab + O(x2) on the whole trajectory, and hence linear order vanish for a geodesics. With a more general
transport, other inertial effects can be included.
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At first order, using our solution (2.64), we find that the spatial coordinates are constant:

dua

dτ
= −(∂0h0

a − 1

2
∂ah00)u

0u0 = 0. (3.7) {geo0}{geo0}

Therefore, the coordinate distance between two points x and x′ remains the same.
So this gives a meaning to the TT gauge: it is the gauge in which coordinates oscillate together

with the wave, so that any two points remain at the same coordinate distance at first order. We could
have chosen another gauge, than coordinate distance would change arbitrarily.

However, recall that the physical distance between two points is not merely the coordinate distance,
but it includes the effect of the curving of spacetime described by the metric,

L =

∫ x′

x
ds
√
gµνuµuν , (3.8) {Lxx}{Lxx}

where s is an affine parameter for the curve connecting the two points, and uµ = dxµ/ds its tangent
vector. For instance, let us consider two points along the x axis, say x1 and x2, and a monochromatic
plane wave going in the z direction. By (3.7), the coordinate distance ∆x := x2 − x1 is constant even
if a GW like (2.64) is passing through. But the physical distance changes and oscillates in time:

L =

∫

∆x
dx

√
gxx =

∫

∆x
dx
√
1 + h+ cosωt =

√
1 + h+ cosωt∆x ≃ (1 +

1

2
h+ cosωt)∆x. (3.9) {DL}{DL}

The physical distance, also known as proper distance, which can be measured e.g. bouncing light back
and forth, changes. This is how we can detect GWs!

Notice the important role played by the difference between coordinate and physical distances. It
is something that you should be already familiar with, for instance if you took a course in cosmology.
There, it is often convenient to choose a coordinate system such that the values of the coordinate grid
represent galaxies, so that their coordinate distance does not change, but the physical distance does.

It is in other words a good example of the most fundamental lesson of general relativity: coor-
dinates are absolutely void of any physical meaning, and one can always find coordinates systems
in which things look like nothing is happening. To understand the true dynamics, one has to look
at physical quantities, which are geometric observables built in a coordinate-invariant way, such as
proper distances.

This does not mean that coordinates are useless! They are very often necessary to perform cal-
culations, and it is important to choose a clever coordinate system adapted to the physical system
under scrutiny in order to simplify the calculations. If no mistakes are made, all physical results
will be independent of such choices in the end. In this specific example, it was important to choose
coordinates preserving the location of the test particle, so to be able to use (3.8) at all values of t
without having to change the extrema of the integral. Had we chosen a different coordinate gauge,
we would have needed to incorporate the t dependence of the extrema. Calculation harder, but same
result in the end.

Let us further elaborate on (3.9). We can dispose of the coordinate distance ∆x if we look at the
relative change in physical distance

δL

L0
:=

L− L0

L0
≃ 1

2
h+ cosωt, (3.10)

where L0 is the unperturbed physical distance. To see the difference between the h+ and h× compo-
nents, let us consider a circular distribution of point masses in the z = 0 plane. Using (2.64), it is
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clear that h+ causes a shear in the xy directions, hence the label “+”, whereas h× causes a shear in
directions tilted by 45 degrees, hence the label “× ”. We can then deduce that the effect for two test
masses initially at distance L0 along the direction ea in the plane orthogonal to the wave is

δL

L0
≃ 1

2
hTT
ab e

aeb. (3.11)

We have assumed that the wave is perfectly perpendicular to the distribution of test masses. If it is
not, integration will be more complicated. However it remains trivial if we assume that λ≫ L. Then
the formula is still valid, and ea can be any spatial direction for any given direction of propagation of
the wave.

This result can also be derived from the geodesic deviation equation.
We have seen that gravitational waves change the physical distance between bodies. And if we have

a circular distribution of test masses, their spin-2 nature shows up in the quadrupolar deformation of
the distribution. So the most direct way to detect a GW would be to measure the relative acceleration
of two test masses, namely the time-dependence of the gravitational tidal force. For two nearby
free-falling test masses, this force is described by the geodesic deviation equation,

d2ξµ

dτ2
= Rµ

νρσu
νuρξσ, (3.12)

where ξµ is a vector connecting neighbouring geodesics, chosen orthogonal to uµ. If moving slowly,

d2ξa

dτ2
= Ra

00bξ
b =

1

2
ḧabTTξb (3.13)

hence if we have a detector that can detect tidal effects, it will be sourced precisely by the physical
components of the GW, and not by the gauge ones.

If the spacetime curvature is caused by a GW, and the if the distance between the masses is smaller
than the wavelength, then Riemann is roughly constant in space and we can trivially integrate this
equation to get

ξa(t) = L0(e
a +

1

2
hTT
ab e

b), L = eaξ
a = L0(1 +

1

2
hTT
ab e

aeb) (3.14)

as before.
This result can be used to detect waves measuring the distance between test masses. Via laser

bemas, or connecting them say with a resonant bar (a solid bar would be set into oscillation by the
stresses, and one could look for resonant frequencies)

If we set the lasers so that the phases at the beam splitter are identical, the phase shift after the
travel to and back from the mirrors will be

∆ϕ =
2πν

c
Np(2L1 − 2L2), (3.15)

where Np = 1 for a Michelson device and up to 300 for the Fabry-Pérot type used in Ligo/Virgo.
Plugging in the previous result we arrive at

∆ϕ =
2πν

c
NpL0h

TT
ab (e

a
1e

b
1 − ea2e

b
2), (3.16)

where now ea are the unit vectors giving the direction of each arm.
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Figure 5. Antenna response pattern for a LIGO gravitational wave detector, in

the long-wavelength approximation. The interferometer beamsplitter is located at

the center of each pattern, and the thick black lines indicate the orientation of the

interferometer arms. The distance from a point of the plot surface to the center of

the pattern is a measure of the gravitational wave sensitivity in this direction. The

pattern on the left is for + polarization, the middle pattern is for ⇥ polarization, and

the right-most one is for unpolarized waves.

established using the laser wavelength, by measuring the mirror drive signal required to

move through an interference fringe. The calibration is tracked during operation with

sine waves injected into the di↵erential-arm loop. The uncertainty in the amplitude

calibration is approximately ±5%. Timing of the GW channel is derived from the Global

Positioning System; the absolute timing accuracy of each interferometer is better than

±10 µsec.

The response of the interferometer output as a function of GW frequency is

calculated in detail in references [36, 37, 38]. In the long-wavelength approximation,

where the wavelength of the GW is much longer than the size of the detector, the

response R of a Michelson-Fabry-Perot interferometer is approximated by a single-pole

transfer function:

R(f) / 1

1 + if/fp

, (1)

where the pole frequency is related to the storage time by fp = 1/4⇡⌧s. Above the pole

frequency (fp = 85 Hz for the LIGO 4 km interferometers), the amplitude response

drops o↵ as 1/f . As discussed below, the measurement noise above the pole frequency

has a white (flat) spectrum, and so the strain sensitivity decreases proportionally to

frequency in this region. The single-pole approximation is quite accurate, di↵ering from

the exact response by less than a percent up to ⇠1 kHz [38].

In the long-wavelength approximation, the interferometer directional response is

maximal for GWs propagating orthogonally to the plane of the interferometer arms,

and linearly polarized along the arms. Other angles of incidence or polarizations give a

reduced response, as depicted by the antenna patterns shown in Fig. 5. A single detector

has blind spots on the sky for linearly polarized gravitational waves.
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Figure 3:
FigScheme
Left panel: Schematics of an interferometer like LIGO/Virgo. Right panel: Antenna pattern

functions for LIGO in the long-wavelength approximation, from [?].

This equation is only valid for λ ≫ L, otherwise further terms are needed. This is the case for
resonant bars and Ligo but not Lisa, so further effects need to be taken into account.

It is possible to express the result in terms of the two wave polarizations, if we introduce a rotation
from R(θ, ϕ) := Rẑ(ϕ)Rx̂(θ) from the detector’s frame to the frame of propagation, plus a reflection.
This leads to

∆ϕ =
4πν

c
NpL0(F+h+ + F×h×), (3.17)

where

F+ =
1

2
(1 + cos2 θ) cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ (3.18)

F× =
1

2
(1 + cos2 θ) cos 2ϕ sin 2ψ + cos θ sin 2ϕ cos 2ψ (3.19)

are called detector’s pattern functions. Here ψ is the angle between the x̂, ŷ axis obtained after the
rotation and whatever basis is used to define the two polarizations. This is interesting because we see
that there are directions in which the detector is blind, like (θ, ϕ) = (π2 ,

π
4 ).

So with 3 detectors we can deduce θ, ϕ and ψ and then we are sensible to polarization.
For non-orthogonal arms, F multiplied by an overall sinχ, provided we orient them symmetrically

with respect to the initial frame.

4 Generation of GWs: Introducing sources

At leading order we have (4.1). Hence the sources follow geodesics on Minkowski. Test bodies cannot
be affected by gravity at linear order. To see the effect of gravity, we need to go beyond lowest order,
and look at the geodesic equation, which is associated with ∇µT

µν = 0. So recovering Newton’s
law from the geodesics already requires going beyond the linearized approximation. In other words,
the linearized approximation still treats GR as a force on flat spacetime, really. It includes however
special relativistic effects not present in the Newtonian description if we go beyond the slow-motion
approximation.
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We recover Newton’s equations. However recall that we have a very different perspective here:
notion of inertia are different. We now go beyond the static limit. Beyond the static limit, it is not
meaningful to look at the Poisson equation alone: it describes an instantaneous action at a distance,
incompatible with causality. As in electromagnetism, restoration of causality is restored appreciating
that radiative modes are necessarily excited in non-static configurations.

4.1 Source multipoles

Let us go back to the linearized field equation (??), and discuss now the situation in the presence of a
non-vanishing right-hand side. The first thing to notice is that by the linearized Bianchi identities on
the left-hand side, the source energy-momentum must be conserved with respect to the background
metric,

∂µT
µν = Ṫ 0ν + ∂aT

aν = 0. (4.1) {pT0}{pT0}

This is nothing but the zeroth order of the covariant conservation law ∇µT
µν = 0. Recall from

your GR classes that this equation implies that test masses follow geodesics. Hence, in the linearized
approximation the matter sources follow geodesics of flat spacetime. This means that matter can
interact with itself, but not with the gravitational field: all bodies must move on geodesics of the
Minkowski metric. To include sources whose energy has a non-negligible gravitational origin, we
must go beyond this approximation. Therefore the linearized theory is valid in weak field, but also
neglecting gravitational self-interactions. In other words, the linearized theory still describes gravity in
the Newtonian way, namely as a force acting in flat spacetime. However, it already contains departures
from Newton’s theory, since it includes the special relativistic effects such as the gravito-magnetic
interaction and radiation.

A student asked if these quantities are gauge invariant. The answer is yes, but in a trivial way:
this Tµν is the lowest-order one, it is evaluated wth metric η. Therefore it is not a diffeo tensor (but
only a Poincare tensor), and does not transform under diffeos.

This standard flat spacetime conservation law immediately implies conservation of the total energy
and momentum,

M =

∫
d3xT 00, Ṁ = 0, P a =

∫
d3xT 0a,

˙⃗
P = 0. (4.2)

where we used integration by parts and vanishing boundary conditions. Although the first is truly the
total energy, it is customary to denote it as a mass, using Newtonian language. Next, we look at the
center of mass position,

Ma =

∫
d3xxaT 00, Ṁa = −P a. (4.3)

Thus recovering the familiar result that the total momentum vanishes in the center-of-mass frame.
The quantity Ma can be also called mass-dipole moment. The term moment comes because if we see
ρ = T00 as a distribution, this quantity represent the first moment of that distribution. We define all
higher moments as

Mab... =

∫
d3xT00x

axb . . . , (4.4)

and similarly for P a,

P ab... =

∫
d3xT 0axb . . . . (4.5)
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Another useful identity

xaxbT̈ 00 = −xaxb∂cṪ c0 = Ṫ c0∂c(x
axb) = 2x(aṪ b)0 = −2x(a∂cT

b)c = 2∂cx
(aT b)c = 2T ab. (4.6)

from which it follows that ∫
d3xT ab =

1

2

∫
d3x T̈ 00xaxb. (4.7) {TabtoT00}{TabtoT00}

The trace-less part of this second momentum of the energy density is the quadrupole moment.

4.2 Solving the wave equation with sources

Having found vacuum solutions of the wave equations in the previous Section, let us go back to (??)
and look for inhomogeneous solutions. For this we can use Green’s method for solving differential
equations. First we look for a solution to the distributional problem

□xG(x, x
′) = δ(4)(x− x′). (4.8)

There are two independent solutions, called retarded and advanced, and characterised by whether
they vanish respectively for x in the past or the future of x′,

G±(x, x
′) = −δ(t− t′ ∓ |x⃗− x⃗′|)

4π|x⃗− x⃗′| = − 1

2π
Θ
(
± (t− t′)

)
δ
(
(t− t′)2 − |x⃗− x⃗′|2

)
. (4.9)

The retarded solution imposes no-incoming radiation boundary conditions, and it is the one relevant
to study the emission of waves from a source. Then, in De Donder gauge we have

h̄µν = −κ2
∫
d4x′G(x, x′)Tµν(x

′) =
κ2

4π

∫
d3x′

Tµν(t− |x⃗− x⃗′|, x⃗′)
|x⃗− x⃗′| . (4.10) {hwithT}{hwithT}

Recall that outside the source, we can achieve the TT gauge without loss of generality, so h = 0
and h0a = 0, but h00 will not be zero, but rather constrained in terms of the matter distribution.
This integral is in general very complicated and we don’t have an analytic solution. So we resort to
approximation schemes.

We now introduce two independent approximations:

(i) Wave-zone approximation: we assume to be very far away from the sources, hence r := |x⃗| ≫ |x⃗ ′|.
This is an expansion in powers of 1/r, where

1

|x⃗− x⃗′| =
1

r
+
x⃗ · x⃗′
r3

+
3

2
(x′ax

′
b −

r′2

3
δab)

xaxb

r5
+ . . . (4.11) {rinvexp}{rinvexp}

with r := |x⃗|, n⃗ = x⃗/r.

Furthermore, the direction of propagation of the wave coincides with the direction from the
source r̂a := xa/r (assuming the origin inside the source). Hence TT projector can be written
in terms of n̂.

From

|x⃗− x⃗ ′| = r − x⃗ · x⃗ ′

r
+ . . . . (4.12)

we also have the Taylor series the components of the energy-momentum tensor,

Tµν(t− |x⃗− x⃗ ′|, x⃗ ′) ≃ Tµν(t− r, x⃗ ′) + n̂ · x⃗ ′ Ṫµν(t− r, x⃗ ′) + . . . (4.13) {Texp}{Texp}
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(ii) Slow dynamics: We assume that the dynamics of the source is slow, so that time derivatives can
be neglected. This is an expansion in v/c≪ 1 and it is called Post-Newtonian expansion.

For non-gravitational interactions, this is an independent approximation, on top of the weak
grav field. But if the source is held together by gravity, then this is a necessary approximation
in order to be consistent with the weak-field approximation. In the Newtonian approximation,
energy conservation gives µv2 = Gµm/r and thus v2/c2 = rS/(2r). Weak gravitational fields
hence implies small velocities.

This allows us to neglect higher-order terms in (4.13).

As a consequence of (ii), we can neglect the O(1/r) term in (4.13) since it involve time variations.
With these two approximations, which are by the way typical also in electromagnetic theory, we arrive
at

hµν(x) =
κ2

4πr

∫
d3x′ Tµν(t− r, x⃗ ′). (4.14)

Indeed we can confirm this result from the leading order approximation we just derived, which
gives6

h00 =
κ2

4πr

∫
d3x′ T00(t− r, x⃗′) =

4G

c4
M

r
. (4.16)

This reproduces the Newtonian result (and notice M constant as a consequence of the conservation
law).

Concerning the radiation part, we write in TT gauge

hTT
ab =

κ2

4πr
PTT

∫
d3x′ Tab(t− r, x⃗ ′), (4.17)

where the propagation direction in the TT projector is r̂.7 This formula can be further manipulated
to bring out the multipoles of the source. Also a static source cannot radiate so better to make this
explicit bringing in time derivatives. Conservation laws implies that the integrand vanishes if the
source is static. In fact, from the conservation law one has the identity (4.7). and we recall that
T 00 = ρ is the energy density of matter. This is the second momentum of the energy distribution.
This quantity differs from the quadrupole moment only by a trace term, see (??). But the trace term
is irrelevant because of the projector, therefore we can freely replace the right-hand side with Q̈ab/2.
We conclude that

hTT
ab (t, x⃗) =

2G

c4
1

r
Q̈TT

ab (t− r). (4.18) {Qformula}{Qformula}

6This result may look unfamiliar, since the Schwarzschild metric in static coordinates differs from it by a factor of 2.
But recall that our analysis assumes De Donder gauge – otherwise (4.10) is immediately incompatible with conservation
of Tµν ! –, aka harmonic gauge. The Schwarzschild metric in harmonic gauge reads

ds2 = −ρ− rs/2

ρ+ rs/2
dt2 +

ρ+ rs/2

ρ− rs/2
dρ2 + (ρ+ rs/2)

2dΩ, ρ = r − rs/2,

and then

h00 =
2M

ρ
, hrr =

2M

ρ
, hAB = 2MρhS2

AB , h = −h00 + haa =
4M

ρ
. (4.15)

So the factor 4 instead of 2 is because we are in traceless gauge, which is not the usual coordinates in which we write
the metric.

7This is line with the far-away approximation we are taking: the structure of the source is neglected, and the direction
of propagation of the wave identified with the direction between the source and the observer.
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This is the celebrated quadrupole formula, derived by Einstein in 1918: The dominant radiation in
the slow-motion approximation arises from the acceleration of the quadrupole moment. From the
derivation, we see that it is the first term in a multipolar expansion of the field. Similarly to what we
did with (4.7), the higher order multipolar corrections can also be rewritten in terms of the energy
and momentum of the source. For instance, the next term coming from (4.13) depends on Ṫ ab, and

this can be rewritten in terms of
...
T

00
and T̈ 0a.

The fact that the lowest contribution is quadrupole means that there is no monopole nor dipole.
Absence of monopole is familiar already from Maxwell theory. In particular, if a source has a varying
energy distribution but preserves spherical symmetry, it does not radiate GWs.

Absence of dipole comes on the other hand from the conservation of the energy momentum tensor.
In e-m, the total charge is conserved, but not the charge dipole:

D⃗ =
∑

i

qix⃗i,
˙⃗
D =

∑

i

qiv⃗i,
¨⃗
D =

∑

i

qia⃗i. (4.19)

In gravity (even Newtonian), the mass dipole is conserved:

D⃗ =
∑

i

mix⃗i,
˙⃗
D =

∑

i

p⃗i,
¨⃗
D =

∑

i

˙⃗pi = 0 (4.20)

and similarly the magnetic dipole from ang. mom. conservation.
Absence of monopole and dipole radiation should be expected on general grounds. At the linearized

level, it follows from Ṁ =
˙⃗
P = 0. These are no longer valid through interactions and back reaction

which lead to a gravitational system losing energy. However they are replaced by other conservation
equations that guarantee absence of monopole and dipole radiation to all orders.

Let’s make some estimates. Imagine that the matter distribution M in a volume of radius R, with
typical time-scale T . Then Q ∼ MR2, and Q̈ ∼ MR2/T 2 = M(v/c)2. Hence an order-of-magnitude
estimate gives

h ∼ 1

r

GM

c2
v2

c2
= 5× 10−19

(
M

10M⊙

)(
1Mpc

r

)
v2

c2
. (4.21)

at 100 Mps for 10 solar mass BHs at orbital distance of 10 rS and relativistic velocities we get 10−21.
Angular distribution: Using (2.33) with p̂ = ẑ,

QTT
ab = PTT(Q) = PTT(M) =




1
2(M11 −M22) I12 0

M12 −1
2(M11 −M22) 0

0 0 0


 (4.22)

namely for a wave travelling in the z direction,

h+(t, r) =
G

c4
1

r
(M̈11 − M̈22)|t−r, h× =

2G

c4
1

r
M̈12(t− r) (4.23)

say the north pole. Then if travelling in an arbitrary direction at an angle (θ, ϕ) from the north pole,
we can reach this point with a rotation R(θ, ϕ) := Rẑ(ϕ)Rx̂(θ), under which M

′ = R(θ, ϕ)MRT (θ, ϕ),
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leading to

h+ =
G

c4
1

r

(
M̈11(cos

2 ϕ− sin2 ϕ cos2 θ) + M̈22(sin
2 ϕ− cos2 ϕ cos2 θ)− M̈33 sin

2 θ

−M̈12 sin 2ϕ(1 + cos2 θ) + M̈13 sinϕ cos 2θ + M̈23 cosϕ sin 2θ
)

(4.24)

h× =
2G

c4
1

r

(
M̈12 cos 2ϕ cos θ − M̈13 cosϕ sin θ + M̈23 sinϕ sin θ +

M̈11 − M̈22

2
sin 2ϕ cos θ

)
(4.25)

Summary of approximations:

• long-distances, Far away, namely 1/r and related to multipole

• smalle velocities, PN slow motion of source

• We are still only at first order in G! PM expansion.

Adding higher-order terms, and calling T00 = ρ,

h00 =
κ2

4πr

∫
d3x′

[
ρ+ n̂ · x⃗′ ρ̇+ 1

r
n̂ · x′ ρ+ . . .

]
|t−r =

4G

c4

(
M

r
− 1

r
n̂ · P⃗

c
+
n̂ · M⃗
r2

+ . . .

)
|t−r (4.26)

where we used Ṫ00 = ∂aT
a
0 followed by an integration by parts. We see the multipolar and PN

expansions arising at once.
Similarly,

hTT
ab (t, x⃗) =

4G

c4
1

r
PTT[Sab +

1

c
ncṠab,c +

1

2c2
ncndS̈ab,cd](t− r). (4.27)

and the NLO triple time der of mass octupole and double time der of current quadrupole:

Q̈ab +
1

6
n̂c

...
M

abc
+

2

3
(P̈ (ab)c − P̈ cab). (4.28)

5 Energy of GWs

As we know from a basic course in general relativity, there is no universal notion of energy, just like
there is no universal notion of time. By diffeomorphism invariance, there cannot be any scalar or
tensorial local quantity that fully describes the gravitational energy.8 In particular, the Hamiltonian
one finds from the Legendre transform of the Lagrangian is a sum of constraints and thus identically
zero when evaluated on solutions. Any attempt to work around these facts and define quasi-local
observables representing the gravitational energy unavoidably run into trouble with ambiguities and
dependence on purely kinematical structures. The only well-defined resolution to this problem is to
work with global notions of energy. Such global notions are useful to describe isolated systems, namely

8Such quantity will have to be zero in a local free-falling frame where the effects of gravity are absent, and if it were {footenergy}
a tensor, it would then be zero in any frame. A tensorial quantity capturing some aspects of gravitational energy can
be constructed using the Bel-Robinson tensor, but it is fourth-order in derivatives, therefore does not have the right
physical dimensions, and will capture only higher-order terms of the gravitational energy.
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spacetimes that are fully dynamical in a certain region, but become well approximated by flat spacetime
at large distances from this region. In this case, one can introduce a physically meaningful notion of
boundary to the spacetime, and exploit the fact that the Hamiltonian picks up a boundary contribution
which is non-vanishing on solutions. The resulting surface charges can be used to characterise the
total energy of the system, as well as other quantities such as angular momentum associated with the
isometries of the flat metric at the boundary.9

These classical difficulties with the definition of gravitational energy arise already at the linearized
level, as we are about to see. Let us look at the gravitational wave perturbation simply as a spin-2 field
moving on Minkowski. Thanks to the Poincaré invariance of the background, we can apply Noether’s
theorem and derive a conserved energy-momentum tensor for hµν . An explicit calculation starting
from the linearized Lagrangian and using the TT gauge giveS

tNµν =
1

2κ2

(
∂µhαβ∂νhαβ − 1

2
δµν ∂λhρσ∂

λhρσ
)
, (5.1) {tNoether}{tNoether}

where the label N stands for Noether. See (A.27) in the Appendix for details. This tensor is conserved,
namely ∂µt

Nµν = 0, but has no physical meaning, because it is not gauge-invariant: It changes under
a linearized diffeomorphism (2.9), and consequently assigns non-zero value to pure gauge modes.
Furthermore, it is a tensor only with respect to the global Lorentz transformations, and not with
respect to arbitrary diffeomorphisms. Therefore it can have arbitrary values in an arbitrary coordinate
system. For instance, we can make it to vanish at any point using Riemann normal coordinates, since
in these coordinates the first derivatives of the metric vanish at that point. We are thus seeing
explicitly the difficulties sketched at the beginning of the section. This lack of gauge-invariance is a
direct consequence of the equivalence principle.10

A partial resolution to this problem is to consider spatial averages. We consider a region L whose
size is much larger than the typical wavelength λ of the perturbation, but much smaller than the
typical wavelength λB of the background (which is infinite for a flat background). This definition as
such is coordinate dependent, but there exist a more precise way to make it covariant and coordinate-
independent. Then we can safely assume that the perturbations vanishes at the boundary of the
region. Therefore expressions under the averaging sign can be freely integrated by parts in space and,
upon going on-shell, also in time derivatives since a wave propagates on the light-cone. For instance,

⟨∂µhαβ∂µhαβ⟩ = −⟨hαβ□hαβ⟩ = 0 (5.2)

in vacuum. Under this procedure, we define

tµν := ⟨tNµν⟩ =
1

κ2
⟨1
2
∂µhαβ∂νhαβ⟩ =

1

κ2
⟨1
2
∂µhαβTT∂νh

TT
αβ⟩. (5.3)

The resulting tensor is gauge-invariant!

9At spatial infinity, these are the ten Poincaré charges, namely energy and momentum, angular momentum and center-
of-mass location. At null infinity, where the gravitational waves go, there is an infinite amount of additional charges,
called super-translation charges, and associated with memory effects. The symmetry group is called BMS group, and
contains an infinite number of different Poincaré subgroups, one for each memory configuration.

10It is instructive to put this problem in perspective with what happens in the electromagnetic case. If one computes
the canonical energy-momentum tensor of Maxwell’s theory using the Noether formula, one finds a meaningless gauge-
dependent expression. However, the Noether construction only defines the tensor up to total divergences, and it is possible
to find one such that the resulting is gauge inv. Furthermore, it coincides with he metric one. So the construction can
be completes. In gravity we have a similar problem, but the construction cannot be completed. Only total energy well
defined, as discussed earlier.
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This is in line with Einstein’s initial derivation. It is valid, but has important limitations: first, it
relies heavily on the special background chosen, and had we worked with a non-isometric one, then
there would be no Noether charge possible. Second, it is not clear how to extend this construction to
higher orders in perturbation theory.

These shortcomings can be resolved if we look at the actual back-reaction on the metric caused by
the waves. In fact the actual “effective” source that determines the second-order metric perturbation

is not (5.1), but rather the second order expansion of the Einstein tensor, G
(2)
µν (h). To see this, let us

look at the higher orders of the expansion of Einstein’s equations:

G(0)
µν (η)

−−0−−
+G(1)

µν (h)
−−1−−

+G(2)
µν (h) +G(1)

µν (h
(2))

−−−−−−2−−−−−−
+ . . . = 0. (5.4) {G012}{G012}

The zeroth order term imposes that the background is a solution. The first order term has given us
the linearized gravitational wave solution. Using this solution in the first second order term, we see

that back-reaction on the metric must be included, in the form of a second-order correction h
(2)
µν to

be added to (2.2), otherwise the Einstein’s equations are violated.11 Keeping the second order terms
alone, we can rearrange the equation they have to satisfy as

G(1)
µν (h

(2)) =
κ2

2
tGµν , tGµν := − 2

κ2
G(2)

µν (h), (5.5)

where the label G is to remind us that this tensor is built out of the Einstein tensor. It is conserved in
flat spacetime, but an explicit calculation – not reported here – shows that it is different from (5.1).
The difference is a term ∂ρ∂σUµρνσ where U is an arbitrary local quadratic function of hµν with the
same symmetries of the Riemann tensor. This structure guarantees that both tensors have vanishing
divergence.

This second candidate definition of energy-momentum tensor of gravity actually depends on second
derivatives of the metric, so it cannot be made to vanish at any give point. However it is still not
gauge-invariant: hence its value depends on arbitrary choices of coordinates. Therefore one has to
invoke again the averaging procedure. Upon doing so, one finds out that

⟨tGµν⟩ = tµν , (5.6)

so the two procedures give the same answer! So tG offers a generalization of Einstein’s construction
that is valid for an arbitrary background, and furthermore can be now systematically extended to
any order in perturbation theory. The extension is however not straightforward, since one has to
recompute the higher order expansions of Gµν and evaluate them on the perturbed solutions in order
to identify it. Another shortcoming is that the interpretation of a piece of the field equations as
energy-momentum tensor is ambiguous: it depends on the way the equations are written, and the
variables used. For example, in the Landau-Lifshitz reformulation of the Einstein’s equations one
uses a density-weighted inverse metric as fundamental variable, and the field equations are arranged
in a different way. Then an expansion like the one used in (5.4) leads to a third candidate for the
energy-momentum tensor, which again differs from the previous two by a term ∂ρ∂σUµνρσ. This third
candidate, known as Landau-Lifshitz pseudo-tensor, has also the same sort of problems, like gauge-
dependence and vanishing at a point in Riemann normal coordinates, and coincides at leading order
under the averaging procedure:

⟨tLL
µν⟩ = tµν +O(h3). (5.7)

11A valid alternative is to change the background instead, which is for instance the approach taken in Maggiore, see
p.47.
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Even if coordinate-dependent, this approach has the merit of being set up in a way that makes it very
natural to develop a systematic perturbative expansion, since the pseudo-tensor is defined already in
an exact form, and does not need to be calculated order by order as in the previous example. For this
reason, this reformulation is widely used by the community working in the post-Newtonian expansion,
and it is briefly reviewed in Appendix C.

Then for the emitted power we have

dE

dt
=

∫

Σ
ṫ00d

3x =

∫

Σ
∂at

a
0d

3x =

∮

∂Σ
ta0uadS =

∮

∂Σ
t0rdS, (5.8)

using (4.1), Stokes theorem and in the last step we choose as boundary a 2-sphere of radius r, hence
the outgoing unit normal is simply ua = ∂ar. Continuing and using the explicit form of t,

dE

dt
=

∮

∂Σ
t0rdS =

1

2κ2

∮

∂Σ
⟨ḣTT

ab ∂rh
TT
ab ⟩dS = − G

8πc5
1

r2

∮

∂Σ
(
...
Q

TT

ab )
2dS, (5.9) {Energyloss}{Energyloss}

where in the last step we used (4.18) and its consequence that ∂rh
TT(ct − r) = −(1/c)∂th

TT(ct −
r) + o(r−1). To evaluate the integral, we observe that the only angular dependence occurs in the TT
projector (2.55). Using the following formula,

∮

S2

PTTcd
ab d

2Ω =
2π

15
(11δcaδ

d
b − 4δabδ

cd + δdaδ
c
b), (5.10)

we find

dE

dt
= − G

5c5
(
...
Qab)

2(t− r). (5.11) {Energyloss1}{Energyloss1}

(Notice no more TT part). This is the second famous quadrupole formula of Einstein, here recovered
in a more modern perspective (with the averages) which is amenable to avoid the criticism of the
historical debate, and to set up a systematic perturbative expansion.

Add numerical estimates
Comments. This formula gives the instantaneous power radiated at a distance r from the source

and a time t, as a function of the energy drained from the system at the retarded time t− r. Notice
that the notion of retarded time used relies heavily on the assumption of a flat background. When
higher orders are included, the relation becomes more complicated. But also, another tricky effect
comes in: the waves self-interact, unlike e-m waves. This creates a delay in part of the signal, which
starts travelling inside the light-cone, similar to light slowing down in a medium due to interactions
with the medium. Then the total GW consists of the WF plus a tail that arrives later. Then hard to
have an expression like the quadrupole formula in general, see Maggiore 5.3.5

To get some numerical estimates from the formula we just derived, (2.64) with h× = 0,

tEff
tt =

ω2h+

2κ2
= 1.5

mW

m2

(
h+

10−22

)2 ( ν

1kHz

)2
(5.12)

6 Emission of GWs by a binary system

As an example of production of gravitational waves, we will consider a binary system.
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Figure 4:
Fig1
Keplerian orbits

6.1 Preamble: integrability of the Newtonian 2-body problem

Consider two stars of mass m1 and m2 in orbit around each other. We define the center of mass
location and the relative distance via

r⃗c := m1r⃗1 +m2r⃗2, r⃗ := r⃗1 − r⃗2. (6.1)

Inverting,

r⃗1 = r⃗c +
m2

m
r⃗, r⃗2 = r⃗c −

m1

m
r⃗. (6.2)

We choose for convenience the origin of the coordinate system such that r⃗c = 0, and choose the
center-of-mass frame in which v⃗c = 0. In this frame, the total momentum is conserved in the absence
of external sources. The total energy of the system is then

E =
∑

i

1

2
miv⃗

2
i −

Gm1m2

|r⃗1 − r⃗2|
=

1

2
µv⃗ 2 − Gmµ

r
, (6.3)

which we see is equivalent to the energy of a single body of mass µ under an effective acceleration
r̈ = −Gm/r2r̂.

We now specialize to circular orbits. For circular orbits,

r⃗ = (d cosωt, d sinωt, 0), ω2d =
Gm

d2
, d =

(
Gm

ω2

)1/3

(6.4) {om2d}{om2d}

Now let’s compute the mass moments.

ρ(t, x⃗) =
2∑

i=1

miδ
(3)(x⃗− r⃗i) (6.5)

hence
Mab =

∑

i

mir
a
i r

b
i = µrarb, µ =

m1m2

m1 +m2
(6.6)

From this we can compute

Ṁab = 2
∑

i

mir
(a
i v

b)
i (6.7)
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and we notice that under a global translation r⃗i 7→ r⃗i + a⃗, we have Ṁ 7→ Ṁ + 2P (aab). Therefore
choosing the center-of-mass frame, conservation of total momentum in the absence of external forces
also guarantees that the quadrupole momentum M̈ is independent of the choice of origin.

Then, (check signs...)

Iab =
1

2
µd2




1− cos 2ωt sin 2ωt 0
1 + cos 2ωt 0

0


 (6.8)

and

Ïab = 2µd2ω2




cos 2ωt − sin 2ωt 0
− cos 2ωt 0

0


 (6.9)

From the explicit form of the TT projector, we find that

QTT
ab = PTT(Q) = PTT(M) =




1
2(M11 −M22) M12 0

M12 −1
2(M11 −M22) 0

0 0 0


 (6.10)

Thanks to the fact that the orbit is planar, Q13 = Q23 = Q33 = 0.
Therefore from (4.18) and (??), we read

h+(t, x⃗) =
4Gµd2ω2

c4
1

r
cos 2ωt, h+(t, x⃗) =

4Gµd2ω2

c4
1

r
sin 2ωt. (6.11) {hbinary}{hbinary}

Using (6.4), we can rewrite the magnitude of the amplitude as

h =
4G2m

c4d

1

r
. (6.12)

ADD estimates
Some observations: the frequency of the wave emitted is twice the frequency of the source. This

is due to the perfect monochromaticity of the source. If we had a source with a superposition of two
frequencies, e.g. ω and 2ω then the GW would be emitted with also lower frequencies, e.g. ω, 2ω, 3ω
and 4ω. So smaller frequencies than the double. In general GWs are emitted at wavelengths larger or
equal than the source’s wavelength, the opposite of what happens in e-mag. More like sound waves,
cannot be used to reconstruct image directly.

Now for the radiated power:

...
M

ab
= 4µd2ω3




− sin 2ωt − cos 2ωt 0
sin 2ωt 0

0


 (6.13)

and thus

(
...
Qab)

2 = (
...
Mab)

2 − 1

3
(
...
Maa)

2 = (
...
Mab)

2 = 16µ2d4ω6(2 sin2 2ωt+ 2 cos2 2ωt) = 32µ2d4ω6. (6.14)

The from (5.9) we find

P = − G

5c5
(
...
Qab)

2(t− r) = −32Gµ2d4ω6

5c5
(6.15) {Elossbinary}{Elossbinary}
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P = −32

5

Gµ2

c5
d4ω6 = −32

5

G4m3µ2

c5d5
(6.16) {ElossC}{ElossC}

and in one period, T = 2πω,

Equad

T =
64π

5

Gµ2

d

(v
c

)5
(6.17)

TODO: plug in numbers for the earth.

6.2 Adding the inclination of the source

In general, the orbital plane will be tilted with respect to our line of sight. We can describe this tilt
with the help of a rotation connecting the orbital frame (in which we have chosen the z axis to be
perpendicular to the orbital motion) to the observer’s frame (in which we have chosen the z axis to
be the line of sight). add drawing Let us denote by ι the angle of inclination, and by φ the angle
between the chosen x axis of the orbital frame, and the one of the observer’s frame.12

n̂ = Rẑ, Rẑ(φ)Rŷ(ι). (6.18)

Then starting from the orbital frame, the projected, rotated quadrupole is

PTT

(
RT Q̈R

)
=




QTT−R

11 QTT−R

12 0
QTT−R

12 −QTT−R

11 0
0 0 0


 (6.19)

with

QTT−R

11 =
1

2
(Q11(cos

2 φ− sin2 φ cos2 ι) +Q22(sin
2 φ− cos2 φ cos2 ι)−Q12 sin 2φ cos2 ι), (6.20)

QTT−R

12 =
1

2
(Q11 −Q22) sin 2φ cos ι+Q12 cos 2φ cos ι. (6.21)

These extra angles introduce a non-trivial bending of the basic sinusoidal curves

h+(t, x⃗) =
4Gµd2ω2

c4
1

r

1 + cos2 ι

2
cos 2ωt, h+(t, x⃗) =

4Gµd2ω2

c4
1

r
cos ι sin 2ωt. (6.22) {hbinary}{hbinary}

Remarks.

• If the system is edge-on, namely ι = π/2, then h× = 0: we have linear polarization of the waves

• If the system is face-on, namely ι = 0, then h×(t) = h+(t+ π/2) (check): circular polarization

• Intermediate configurations give elliptic polarizations

Hence, by measuring the polarization of the waves, we can derive ι.

12If the x axis are determined by some predetermined conventions one may need two independent ẑ rotations, see e.g.
longitude of pericenter and of ascending nodes used in celestial mechanics.
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6.3 The chirp amplitude

Where does the energy emitted from GW comes from? in this approximation, of test bodies slowly
orbiting, can only come from the gravitational energy of the system.13 We have seen that in the
quadrupolar approximation, the energy loss by gravitational waves for the simplest case of circular
waves, scales like the inverse fifth power of the distance between the stars. Therefore as the system
loses energy and inspirals, the energy loss increases. Therefore the two stars inspiral towards one
another until they coalesce.

The potential energy of the orbit is

E = −Gmµ
2d

, (6.23)

hence using (6.16),

Ė =
Gmµ

2d2
ḋ = −32

5

G4m3µ2

c5d5
. (6.24)

From this formula we can deduce the orbital distance loss, and consequently the orbital frequency
increase, via

ḋ = −64

5

G3m2µ

c5d3
(6.25)

and
ω̇

ω
= −3

2

ḋ

d
= −96

5

G5/3m2/3µ

c5
ω8/3, (6.26)

where we used (6.4) again. The quantity

M5/3
c := µm2/3 (6.27) {Mc}{Mc}

will be useful below. In terms of this quantity,

ω̇ = −96

5

(
GMc

c3

)5/3

ω11/3. (6.28)

Integrating we find

−3

8
ω−8/3

∣∣∣∣
ω

ωc

=
96

5

(
GMc

c3

)5/3

(t− tc). (6.29)

The frequency will stop increasing once we reach coalescence (actually even before this approximation
will break down, but let’s forget about that). Neglecting that much higher contribution to the LHS,
we can rewrite it as

−3

8
ω−8/3 =

96

5

(
GMc

c3

)5/3

(t− tc), (6.30)

hence

ω =

(
5

256

1

tc − t

)3/8(GMc

c3

)−5/8

(6.31)

(Recall that the monochromatic emission will be at 2ω)

13In fact corrections depending on the internal structure and the fact that energy can be released also from there only
enter at a much higher approximation level
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To get some estimates, in terms of the frequency of the wave. Consider two stars of mass 1.4M⊕.
The chirp mass is then 1.21M⊕, and

νGW =
ω

π
= 134Hz

(
1.21M⊕
Mc

)5/8( 1s

tc − t

)3/8

. (6.32)

In the range 10− 100− 1000Hz we get the radiation emitted from 17 minutes to coalescence, the last
two seconds, and the last few milliseconds. For the kHz frequence, the Kepler’s radius is only 30km!

Number of cycles in a detector’s bandwidth:

∫ tωmax

tωmin

νdt (6.33)

Then from

h =
4mµ

d

1

r
∝ ω2/3 ∝ (tc − t)−1/4 (6.34)

so the amplitude increases as we approach the coalescence. See the picture.

3000 3500 4000 4500
t(M)

-0.15

-0.10

-0.05

0.05

0.10

0.15

h+ /hmax

Figure 5:
Figchirp
Example of a chirp amplitude.

As the GWs are emitted, the amplitude and the frequency both increase. For this reason it is
called a chirping, and the quantity (6.27) is the parameter that control the chirp, this is why it is
called chirp mass.
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Appendix

A Perturbative expansion around arbitrary backgrounds
{AppLin}

We report in this Appendix explicit formulas useful to describe the perturbative expansion. We begin
with general formulas around an arbitrary background, and then specialize to Minkowski. The idea
is to to write

gµν = ḡµν + hµν , (A.1)
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and expand all relevant quantities in powers of h. From this we compute

gµν = ḡµν − hµν + hµρhρ
ν +O(h3), (A.2)

√−g =
√−ḡ

[
1 +

1

2
h+

1

2

(
1

4
h2 − 1

2
h2µν

)]
+O(h3), (A.3)

√−ggµν =
√−ḡ(ḡµν + 1

2
ḡµνh− hµν) +O(h2). (A.4) {gg}{gg}

From the last formula we see that

∂µ(
√−ggµν) = −√−ggµρΓν

µρ = ∂µ(
√−ḡḡµν)(1 + h)−√−ḡ(∇̄µh

µν − 1

2
∇̄νh) +O(h2), (A.5) {pgg}{pgg}

where ∇̄ is the background covariant derivative. This equation allows us to understand the relation
between the De Donder gauge and harmonic coordinates. Harmonic coordinates are defined by

□xµ = 0 ⇔ gνρΓµ
νρ = 0, (A.6)

and using (A.5) we see that the harmonic condition is preserved if the perturbation satisfies

∇̄µh
µν − 1

2
∇̄νh = 0. (A.7)

Using the expansion formulas in the definition of the Riemann tensor, one finds

Γµ
νρ = Γ̄µ

νρ + Γ(1)µ
νρ + Γ(2)µ

νρ +O(h3), (A.8)

Γ(1)µ
νρ =

1

2
ḡµσ(2∇̄(νhρ)σ − ∇̄σhνρ), (A.9)

Γ(2)µ
νρ = −1

2
hµσ(2∇̄(νhρ)σ − ∇̄σhνρ), (A.10)

Rµνρσ = R̄µνρσ +R(1)
µνρσ +R(2)

µνρσ +O(h3), (A.11)

R(1)
µνρσ = (A.12)

Rµν = R̄µν +R(1)
µν +R(2)

µν +O(h3), (A.13)

R(1)
µν = −1

2
□̄hµν + ∇̄(µ∇̄ρh

ρ
ν) −

1

2
∇̄µ∇̄νh+ R̄ρ(µhν)

ρ − R̄µρνσh
ρσ (A.14)

R(2)
µν =

1

2
hρσ∇̄ν∇̄µhρσ − hρσ∇̄ρ∇̄(µhν)σ +

1

2
hρσ∇̄ρ∇̄ρhµν − (∇̄ρh

ρ
σ − 1

2
∇̄σh)(∇̄(µh

σ
ν) −

1

2
∇̄σhµν)

+
1

4
∇̄µhρσ∇̄νh

ρσ + ∇̄ρhσµ∇̄[ρhσ]ν +O(h3), (A.15)

R = R̄+R(1) +R(2) +O(h3), (A.16)

R(1) = ∇̄µ∇̄νh
µν − □̄h− R̄µνh

µν , (A.17)

R(2) = gµνR(2)
µν − hµνR(1)

µν + hµρhνρR̄µν (A.18)

= hρσ□̄hρσ +
3

4
∇̄ρhµν∇̄ρhµν − 1

2
∇̄µhνρ∇̄νhµρ − 2hµν∇̄µ∇̄ρh

ρ
ν + hµν∇̄µ∇̄νh

−
(
∇̄µh

µ
ν −

1

2
∇̄νh

)2

+ R̄µνρσh
µρhνσ (A.19)

= −1

4
(∇̄µhνρ)

2 +
1

2
(∇̄µh

µ
ν )

2 − 1

4
(∇̄µh)

2 +
1

2
R̄µνρσh

µρhνσ +
1

2
R̄µνh

µρhνρ + b.t. (A.20)
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where in the last equality we used

∇̄µhνρ∇̄νhµρ = b.t.+ (∇̄µh
µ
ν )

2 + R̄µνρσh
µρhνσ − R̄µνh

µρhνρ. (A.21)

To find the linearized Einstein’s equations, it is sufficient to look at the O(h) terms in the Ricci
expansions. For the Lagrangian on the other hand, one needs the quadratic order, hence

L =
√−g(R− 2Λ) =

√−ḡL̄+
√−ḡL(1) +

√−ḡL(2) +O(h3), (A.22) {EHlin}{EHlin}
L̄ = R̄− 2Λ, (A.23)

L(1) = ∇̄µ(∇̄νh
µν − ∇̄µh)− hµν(Ḡµν + Λḡµν) (A.24)

L(2) =
1

2

(
1

4
h2 − 1

2
h2µν

)
(R̄− 2Λ) +

1

2
hR(1) +R(2)

= −1

4
(∇̄ρhµν)

2 +
1

2
∇̄ρhµν∇̄µhνρ − 1

2
∇̄µh

µν∇̄νh+
1

4
(∇̄µh)

2

+ (hµρhνρ −
1

2
hhµν)R̄µν +

1

4
(
1

2
h2 − h2µν)L̄+ ∇̄µv

µ,

where

vµ = hνρ∇̄µhνρ − hµν(∇̄ρh
ρ
ν − ∇̄νh)− hνρ∇̄νh

µ
ρ +

1

2
hCµ (A.25)

A.1 Minkowski background

We now specialize the above formulas to Minkowski background. When the background is Minkowski,
we have ḡµν = ηµν and ∇̄µ = ∂µ in Cartesian coordinates. With an abuse of notation, we will use □
to mean the flat space d’Alambertian, even if sometimes the less ambiguous symbol ∂2 is also used
in the literature. The expansions of the Riemann and Ricci tensors simplify to (2.6) and (2.7) in the
main text, and the linearized EEs give

G(1)
µν = −1

2
□hµν + ∂(µ∂ρh

ρ
ν) −

1

2
∂µ∂νh− 1

2
ηµν(∂ρ∂σh

µν −□h) =
κ2

2
Tµν . (A.26)

As for the linearized action, we take (A.22) with Λ = 0, and using

R(2) = −1

4
(∂ρhµν)

2 +
1

2
(∂µhµν)

2 − 1

4
(∂µh)

2, (A.27) {L2Mink}{L2Mink}
1

2
hR(1) = −1

2
∂µh

µ
ν∂

νh+
1

2
∂µh

2, (A.28)

we get

L(2) = (
√−gR)(2) = −1

4
h2µν,ρ +

1

2
hµν,µ

2 − 1

2
hµν,µ∂

νh+
1

4
∂µh

2 = −1

2
hµνG(1)

µν , (A.29)

often called Pauli-Fierz Lagrangian in the literature. Adding the matter term (notice with opposite
sign due to δgµν = −hµν),

L
(2)
tot = L(2) +

κ2

2
Tµνh

µν . (A.30)

From the vacuum Lagrangian we can compute the Noether energy-momentum tensor, namely

tµν = − 1

κ2

(
∂L

∂∂µhαβ
∂νhαβ − δµνL

)
. (A.31)
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We have

∂L(2)

∂∂µhαβ
∂νhαβ = −1

2
∂µhαβ∂νhαβ + ∂νh

µα(∂ρhρα − 1

2
∂αh)−

1

2
∂νh∂αh

µα +
1

2
∂µh∂νh. (A.32)

This is quadratic in the field, and conserved. However it is not symmetric, and furthrmore not g.i.
As discussed in the main text, this expression is not gauge-invariant, and indeed there cannot be any
gauge-invariant two-derivative energy momentum tensor for gravity. In the De Donder gauge,

L
(2)
DeD = −1

4
h2µν,ρ +

1

2
(∂µh)

2,
∂L

(2)
DeD

∂∂µhαβ
∂νhαβ = −1

2
∂µhαβ∂νhαβ +

1

4
∂µh∂νh, (A.33)

and

tµν =
1

κ2

(
1

2
∂µhαβ∂νhαβ − 1

4
∂µh∂νh− ηµν(

1

4
h2µν,λ − 1

2
(∂µh)

2)

)
, (A.34)

which is (5.1) in the main text. In the TT gauge, which we recall can always be chosen in vacuum,
this reduces further to

tµν =
1

κ2
(
1

2
∂µhαβ∂νhαβ − 1

4
δµνh

2
µν,λ). (A.35)

Finally, invoking the averaging procedure that allows us to integrate by parts and use the field equa-
tions in vacuum, the second term vanishes and we end up with

tEff
µν =

1

2κ2
⟨∂µhαβ∂νhαβ⟩. (A.36) {teffA}{teffA}

It is then easy to see that this is gauge invariant, since replacing one h by ∂ξ and integrating by parts
we get zero by the divergenceless condition in vacuum. Hence, we can replace h with hTT.

A.2 Gauge-invariance and tµν

The linearized EH Lagrangian around Minkowski has two different symmetries. The first is under
linearized diffeomorphisms, acting as

xµ 7→ xµ − ξµ(x), hµν 7→ hµν + 2∂(µξν). (A.37) {local}{local}

This is a gauge symmetry: Noether’s theorem gives on-shell a vanishing charge up to boundary terms,
which are the linearized version of the Komar charge.

The second is under global Poincaré transformations, split in translations acting as

xµ 7→ xµ − ϵµ, hµν 7→ hµν + ϵρ∂ρhµν , (A.38) {global}{global}

and Lorentz transformations

xµ 7→ xµ − ϵµνx
ν , hµν 7→ hµν + ... (A.39) {globalL}{globalL}

These are standard symmetries of the action, in the sense that Noether charges are not zero, and
give instead an energy-momentum tensor tµν quadratic in the fields. This tensor is invariant under
(A.38), in agreement with Noether’s theorem, but not under (A.37), as can be easily seen. This lack
of invariance is not surprising, since tµν is by no means a charge for that symmetry.
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Notice that the second is a special case of a diffeo, with constant parameter. However, the trans-
formation induced on the field is not a special case of the first one: if we take constant ϵµ in the first
one, we obtain an invariant h, just like for a global gauge transformation in electromagnetism.

To resolve this apparent puzzle, we must recall that both transformations arise from the unique
diff-invariance of the full action. Under a diffeo the metric transforms as

g′µν(x
′) =

∂xρ

∂xµ
∂xσ

∂xν
gρσ(x), (A.40)

from which we read the infinitesimal generator

δξgµν(x) := g′µν(x)− gµν(x) = £ξgµν(x). (A.41) {gdiffeo}{gdiffeo}

Expanding both sides of (A.41) as background plus perturbation, gµν = ḡµν + hµν , we find

δξhµν(x) := h′µν(x)− hµν(x) = −δξ ḡµν(x) +£ξ ḡµν(x) +£ξhµν(x). (A.42) {totalVar}{totalVar}

We can treat this symmetry in two different ways in perturbation theory:

1. δξ ḡµν = 0, δξhµν = £ξ ḡµν +£ξhµν

2. δξ ḡµν = £ξ ḡµν , δξhµν = £ξhµν

Both transformations are symmetries of the Lagrangian at each order in the perturbative expansion.
However, it is the first that is the one most interesting physically, because only then it makes sense to
compare perturbations, since they are defined with respect to the same background. The implemen-
tation of the second transformation as symmetry is slightly subtler, because it mixes different orders
of h. To see that, we expand the Lagrangian,

L(ḡ + h) = L̄+ L(1)µνhµν +
1

2
hµνL

(2)µνρσhρσ + . . . (A.43)

where L̄ := L(ḡ), and so on. Then using the first option for the transformation,

δξL = L̄(1)µνδξhµν + hµνL̄
(2)µνρσδξhρσ + . . . (A.44)

= L̄(1)µν£ξ ḡµν + L̄(1)µν£ξhµν + hµνL̄
(2)µνρσ£ξ ḡρσ + hµνL̄

(2)µνρσ£ξhρσ + . . .

The symmetry is exact order by order in perturbation theory since it is a symmetry of the full theory.
At zeroth order this is obvious, since

L̄(1)µν£ξ ḡµν = ..∂µ(ξνG
((1))µν) (A.45)

thanks to the Bianchi identities, so it is a symmetry. Similarly for all higher order terms. Now let
us look at the first-order term. It has two contributions, and in general they are both required to
get a total derivative. However the first contribution vanishes if the background is on-shell. Only in
this case, we recover that δξhµν := £ξ ḡµν is a symmetry, and thus (A.37) when the background is
flat. Notice that this was manifest in (2.9) since flat spacetime is a solution of the background field
equations. The second-order term should be completed with an L(3) contribution. However, notice
that

hµνL̄
(2)µνρσ£ξhρσ =

1

2
L̄(2)µνρσ£ξ(hµνhρσ) =

1

2
ξα∂α(L̄

(2)µνρσhµνhρσ)−
1

2
hµνhρσL̄

(3)µνρσαβ£ξ ḡαβ.

(A.46)
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Therefore δξhµν = £ξhµν is also an off-shell symmetry of the truncated Lagrangian at quadratic order,
but only in the special case in which the background has isometries. This is also consistent with what
happens at the linear order, since for isometries £ξ ḡµν = 0 and then £ξh is also a symmetry off-shell
at this order.

Taking ḡ = η, the isometries are the Poincaré transformations, namely ξµ = ϵµνx
ν + ϵµ, to which

we find the global Noether charges. In particular for translations, we recover the δϵhµν = ϵρ∂ρhµν .
So this is the precise sense in which they are two different symmetries, and their origin from the

unique diff-invariance of the full action.

B Linearized canonical analysis
{AppCan}

We start from

L(2) = (
√−gR)(2) = −1

4
h2µν,ρ +

1

2
hµν,µ

2 − 1

2
hµν,µ∂

νh+
1

4
∂µh

2 = −1

2
hµνG(1)

µν , (B.1)

After an integration by parts to remove spatial derivatives from h0a , we find

πab :=
∂L(2)

∂ḣab
=

1

2
ḣab − 1

2
δabḣcc − ∂(ahb)0 + δab∂ch0c. (B.2)

From this we compute

π = −ḣcc + 2∂ch0c, ḣab = 2πab − δabπ + 2∂(ahb)0, (B.3)

and

S =

∫
dtd3x

(
πabḣab − h00H− h0aHa −H0

)
, (B.4)

where

H := ∂a∂bh
ab − ∂2hcc, Ha := −2∂bπ

ab, (B.5)

H0 :=
1

2
πabπab −

1

4
π2 + V (h), (B.6)

V (h) =
1

2
(∂ahbc)

2 − ∂ahbc∂bhca + ∂ah
ab∂bh

c
c −

1

2
∂ah

b
b∂

ahcc. (B.7)

We see the appearence of the linearized constraints; 4 as in the full theory, and still first class,
generating the linearized diffeomorphisms. The main novelty is the presence of a true Hamiltonian,
due to the presence of a preferred time in the background metric.

From this analysis we can count the physical dofs and we have a physical hamiltonian. The
problem of time has been resolved by the presence of a background Minkowski spacetime and its class
of privileged inertial observers. On the other hand, the dual to it, the lack of localization of the energy,
is still present, as we saw in the main text.

Would be nice to do it for arbitrary background, and keeping track also of the linear term. See
explicitly what the constraints generate.
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C Landau-Lifshitz approach
{AppLL}

It is a reformulation of the Einstein’s equations based on a change of fundamental variables, motivated
precisely by the search back in the day of an energy-momentum tensor for gravity. As a reformulation
it is exact, and valid in any coordinate system; However, it is only convenient when studying the
linearized expansion around flat metric in Cartesian coordinates. The main technical idea is to work
with a density-weight one pseudo-tensor given by

gαβ :=
√−ggαβ. (C.1)

From this, one constructs
Hαµβν := gαβgµν − gανgβµ (C.2)

which has the same symmetries as the Riemann tensor, and whose second derivatives can be related
to the Einstein tensor as follows,

∂µ∂νH
αµβν = (−g)(2Gαβ + κ2tαβLL ). (C.3)

Here tαβLL is a density-weight two pseudo-tensor, given explicitly by some horrible expression in terms
of second derivatives of the metric. The use of densities instead of tensors is a sciagura from the point
of view of general covariance. One must understand that right from the start, this is a brute force
computational approach without any desire of using geometric quantities. In particular, one should
avoid any temptation of giving any strong interpretation as a genuine energy-momentum. Being a
pseudo-tensor for instance, it can be made to vanish at any given point of spacetime, by adopting
Riemann normal coordinates in the neighbourhood. (Compare this with a genuine tensor like the
Riemann tensor, if it can be made zero in a point in a given coordinate system, then it will be zero in
any coordinate system)

Thanks to that identity, the EEs can be rewritten as

∂µ∂νH
αµβν = κ2(−g)(Tαβ + tαβLL ), (C.4)

with “conservation law”
∂µ

(
(−g)(Tαβ + tαβLL )

)
= 0 (C.5)

valid only on-shell on the EEs and compatible with the identity ∂α∂µ∂νH
αµβν = 0. This is the value of

this reformulation: it suggests a definition for the energy-momentum, which although as discussed is
coordinate-dependent, can nonetheless provide a useful starting point for perturbation theory around
Minkowski and around Cartesian coordinates.

Pµ :=

∫
(−g)(Tµ0 + tµ0LL)d

3x (C.6)

Jµν :=

∫
(−g)2x[µ(T ν]0 + t

ν]0
LL )d

3x (C.7)

Ten conserved quantities including the position of the center of mass.
Can be turned into surface integrals via

Pµ :=
1

κ2

∫
∂νH

µν0βdSβ (C.8)

Jµν :=
1

κ2

∫
(2x[µ∂αH

ν]α0β + 2H [µ0ν]k)dSβ (C.9)

Reduce to ADM values at infinity.
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