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In this chapter we focus on the detection and emission of GWs.

2.1. Detection of GWs

2.1.1. Coordinate displacements versus physical displacements

To study the effect of a gravitational wave, we consider a family of free-
falling test masses. These follow time-like geodesics, whose tangent vector field
uµ satisfies the geodesic equation

uνNewAνu
µ = duµ

dτ
+ Γµνρuνuρ = 0, uµ∂µ = d

dτ
. [2.1]

Here τ is the proper time τ , and u2 = −c2. If the masses are initially at rest,
we have ua = 0 and

duµ

dτ
= −Γµ00c

2 =
(

1
2∂

µh00 − ∂0h
µ
0

)
c2. [2.2]

The right-hand side vanishes if h0µ = 0, which as we have seen occurs for
vacuum solutions in the TT gauge (and for any solution in the temporal gauge).
Hence masses initially at rest will remain at rest at all times, and the coordinate
distance as well as the coordinate time delay between two nearby time-like
geodetics remains the same during the passage of the wave. This result provides
us with an interpretation of the TT gauge: it is a choice of coordinates which
are labelled by the position of test masses, just like the temporal gauge in the
full theory is a choice of coordinates attached to free-falling observers. Now,
even though the coordinate distance between two test masses remains the same
in this gauge, their physical distance does not. It is given by

L =
∫ L0

0
dλ
√
gabêaêb =

∫ L0

0
dλ

(
1 + 1

2h
TT
ab ê

aêb
)

+O(h2). [2.3]

Here êa is the tangent to the curve and λ an arbitrary parametrization thereof.
To compare with the coordinate distance, let us choose êa to be constant along
a coordinate axis, and take λ as coordinate. Then L0 is the coordinate dis-
tance. It coincides with the physical distance in the background flat metric,
but differs from it when the spacetime is perturbed. If we further assume that
the wavelengths of the wave are much bigger than L0, we can ignore the space
dependence of hTT

ab and write the result as

L '
(

1 + 1
2h

TT
ab ê

aêb
)
L0. [2.4]
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The approximation becomes of course exact if the direction of propagation of
the wave is orthogonal to the axis connecting the masses.

The discussion offers an example of one of the most important lessons of
general relativity, namely the importance of distinguishing coordinate effects
from physical results. General covariance guarantees that all calculations can
be performed in any coordinate system. But one has to always make sure that
the physical consequences derived from the calculations are coordinate inde-
pendent. In this example, we found that the trajectories of test particles are
unaffected by the passage of the wave. This is a coordinate dependent state-
ment, because the parametrization of the trajectories is coordinate-dependent.
The relevant coordinate-independent quantity is the physical distance, and we
found that it changes. In fact, it is easy to see that it would have changed in the
same way in any coordinate system preserving the endpoints of the integral. In
other words, the geodetic distance between two points physically identified is
an observable. As we have already discussed, even though any coordinate sys-
tem can be chosen, choosing a good coordinate system is important to simplify
calculations. The fact that TT coordinates hide the passage of the wave may
look like a negative feature, but it is in fact very convenient because it allows us
to write the physical distance using fixed extrema in the integral at all times.
The same effect is used when choosing the synchronous gauge in cosmology, it
is often convenient to choose a coordinate system such that the values of the
coordinate grid represent galaxies, so that their coordinate distance does not
change, but the physical distance does.

The change of proper distance [2.4] also shows the meaning of the wave’s
polarizations. Using the example [1.84] of a monochromatic wave propagating
along the z axis, and setting the test masses at z = 0, we can write the relative
change in physical distance as

δL

L0
:= L− L0

L0
'
(

1
2h+(êxêx − êy êy) + h×ê

xêy
)

cosωt. [2.5]

An h+ polarization would cause pairs of masses along the x and y axis to
periodically approach and recede, hence drawing a +-like pulse in time, see
Figure 2.1. An h× polarization would cause the same effect but along the axis
êa = (1, 1, 0)/

√
2, namely rotated by 45 degrees. This type of deformation is

also called ‘shear’ of the congruence of time-like geodesics followed by the test
masses.

2.1.2. Gravitational waves and tidal forces

The quadrupolar nature of the gravitational force is evident from the shape
of the tidal distribution of earth’s oceans. The same type of tidal forces are
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produced by the waves. To see this effect we look at the geodesic deviation
equation. The analysis will also be useful to compare the description of the
waves in two different coordinate systems. We recall that the geodesic deviation
equation is given by

uρNewAρ(uνNewAνξ
µ) = Rµνρσu

νuρξσ, [2.6]

where ξµ is a vector connecting neighbouring geodesics, chosen such that ξ ·u =
[ξ, u] = 0. At first order in h, and with the assumption of vanishing initial
velocities, it reduces to

d2ξa

dt2
= −2Γa0νu0ξ̇ν − c2ξν∂νΓa00. [2.7]

In the TT gauge, the last term vanishes and the first one too if the initial ve-
locity was zero. The coordinate distance between the geodesics stays constant,
in agreement with the result already derived using the geodesic equation.

The description changes completely if we use a gauge corresponding to a
local inertial frame, such as the Fermi normal coordinates, which can be used to
set to zero the Christoffel symbols all along a chosen geodesic. As we see from
[1.30], the metric only changes at quadratic order in the coordinate distance
fro the origin, hence coordinate distances coincide with physical distance at
first order. In this local inertial frame gauge, the first term of [2.7] vanishes but
not the second, which furthermore matches the lowest order of the Riemann
tensor. Hence we have

d2ξa

dt2
= c2Ra00bξ

b = 1
2 ḧ

ab
TTξb, [2.8]

where in the second equality we have neglected any contribution from the
potentials. Hence if we have a detector that can detect tidal effects, it will be
sourced precisely by the physical components of the GW, and not by the gauge
ones. At first order in h, the geodesic deviation equation [2.8] is solved by

ξa(t) = ξa(0) + 1
2h

ab
TTξb(0). [2.9]

Since in this gauge the coordinate distance coincides with the physical dis-
tance at first order, we recover the gauge-invariant result [2.4] but where this
time the metric is unchanged, and it is the extremum of the integral that has
moved. The equation [2.9] can be used to visualize the physical effect of the
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passage of the wave. To that end, we consider a circular distribution of test
masses centered around the origin in the plane perpendicular to the direction
of propagation of the wave, see Fig. 2.1. Then we can identify the displacement
vector with the coordinate vector of each mass (labelled by i), and the effect
of a monochromatic wave of frequency ω is

xi(t) = xi(0) + h+(t)xi(0) + h×(t)yi(0),

yi(t) = yi(0)− h+(t)yi(0) + h×(t)xi(0).

The effect is shown in Fig. 2.1, where the period T = 2π/ω.

t
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0
T
4

T
2
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4 T
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êy

êx
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1

Figure 2.1: The effect of the two polarizations on a circular distribution of test
masses. In the upper panel (red circles) h+ 6= 0 and h× = 0. The lower panel has
h× 6= 0 and h+ = 0.

If external forces are present, on top of the gravitational one, then [2.1] and
[2.6] acquire additional terms on the right hand side. So in particular [2.8] now
reads

d2ξa

dt2
= c2Ra00bξ

b + F a

m
. [2.10]

as an example, consider a material bar. While the effect of the gravitational
wave is to stretch spacetime changing the physical distance between the
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molecules of the bar, there are also electromagnetic forces that hold the bar
together, and which are intrinsically much stronger. For instance, the
Coulomb interaction between two electrons one angstrom apart is ∼ 1042

times stronger the its Newtonian counterpart. For this reason, one could in
principle use simply a rigid ruler measuring the distance between two freely
falling masses to detect gravitational waves. The problem with this is the
weakness of the waves, which requires one to set up more sophisticated
experiments.

A special cases of external forces appearing on the right-hand side of [2.10]
are the inertial forces. These, by the equivalence principle, can be reabsorbed in
a coordinate transformation of the metric. For instance if the frame has both
an acceleration ~a and an angular velocity ~Ω with respect to a local inertial
frame, then (Ni and Zimmermann 1978)

ds2 = −c2dt2
(

(1 + 1
c2
~a · ~x)2 − 1

c2
(~Ω× ~x)2 +R0c0dx

cxd
)

+ 2cdtdxa
(

1
c
εabcΩbxc −

2
3R0cadx

cxd
)

+ dxadxb
(
δab −

1
3Racbdx

cxd
)

+O(x2), [2.11]

and [2.10] becomes

d2~ξ

dt2
= −~a− 2~Ω× ~v +

~F

m
+O(x2). [2.12]

All the gravitational effects as well as further non-inertial effects such as cen-
trifugal acceleration are O(x2). So in order to be capable of detecting gravita-
tional waves, a detector must first of all be freed from all the external forces
that would otherwise drown the signal in noise.

In realistic physical systems, the emission will not be a plane wave, but
rather a wave packet with finite temporal extension. The effect on the circular
distribution will then be a superposition of different frequencies and differ-
ent helicities, each with their own (time-dependent) amplitude. The temporal
finiteness of the signal can also lead to a new type of effect: after the wave
has passed, the distribution will stop oscillating, but its shape will in general
not be the same as before the wave’s arrival. This effect is called displacement
memory, and we will see below in Sec.2.4.5 an explicit example. The effect car-
ries the memory of the wave, since it permits in principle to detect the passage
of a gravitational wave even after the event. In practise though the detection is
very difficult, because the external forces that make up the matter distribution
will act and bring it back to its rest configuration. It is nonetheless one of the
targets of future detectors (Grant and Nichols 2023).
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2.1.3. Interferometers

Let us briefly describe how the formulas above are used in the most common
type of detectors, laser interferometers. Other chapters in this collection will
cover more details as well as the types of detectors. The basic idea of a laser
interferometer is to detect physical changes like [2.3] from the time-of-flight
of monochromatic light signals. This can be done easily in the linear theory
if we make the additional approximations that gravitational potentials can be
neglected,1 and that the wavelength of the signal is much longer that the arms
of the interferometer. The first approximation guarantees that the only source
of curvature comes from the wave, hence the Riemann tensor scales like λ−2. We
can then set up a free falling frame say in Fermi normal coordinates centered on
the beam splitter’s geodesic. Thanks to the second approximation, the spatial
projection of the null geodesics follows straight lines, hence the time of flight is
directly related to the physical distance along the interferometer’s arms. The
latter is given by [2.4] regardless of the direction of the wave, thanks again
to the assumption that the wavelength is much larger than the arms’ length.
Denoting êa1,2 the two axis, we have

L2 − L1 = L0

2 hTT
ab (êa1 êb1 − êa2 êb2). [2.13]

For a typical signal h ∼ 10−21 (see overview Section 1.1.4), hence the difference
in arrival time would be ∆T = (L2 − L1)/c ∼ 10−26s which is way too small
to be measurable. Two ingenious ideas come to the rescue. First, Michelson-
Morley’s idea to measure not time but phase interferences, and two increasing
the effective path of light through Fabry-Perot cavities.

If we set the lasers so that the phases at the beam splitter are identical, the
phase shift after the travel to and back from the mirrors will be

∆φ = 2πν
c
Np(2L1 − 2L2), [2.14]

where Np = 1 for a Michelson device and up to 300 for the Fabry-Pérot one
used in Ligo/Virgo. Plugging in the previous result we arrive at

∆φ = 2πν
c
NpL0h

TT
ab (êa1 êb1 − êa2 êb2), [2.15]

1. The potentials generated by the source can be naturally neglected because they
fall off faster than the radiative modes, so this approximation concerns mostly the
local gravitational field.
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Figure 2.2: World lines of photon trajectories between the beam splitter and
the end mirrors in an intertferometer with arms of equal length. Blue dashed
lines: with no gravitational wave. Red lines: perturbed trajectories. In the long
wavelength approximation λ � L0 the red lines are straight (but still have
different angles than the unperturbed blue lines), and ∆T = 2∆L/c.

where now êa are the unit vectors giving the direction of each arm.

It is possible to express the result in terms of the two wave polarizations, if
we introduce a rotation from R(θ, ϕ) := Rẑ(ϕ)Rŷ(θ) from the detector’s frame
to the frame of propagation, plus a reflection to to take into account the fact
that the axis of propagation is opposite to the direction of the source acting
also on y to keep right-handed orientation of the frame. The result is

∆φ = 4πν
c
NpL0(F+h+ + F×h×), [2.16]

where the coefficients

F+ = 1
2(1 + cos2 θ) cos 2ϕ, F× = cos θ sin 2ϕ [2.17]



The theoretical foundations of gravitational waves:
detection and emission 77

are called detector’s pattern functions.2 This shows that while a single two-
armed interferometer is sensitive to both polarizations, it cannot distinguish
them. It also shows that the sensitivity depends on the relative orientation with
respect to the sources. The dependence is very strong, to the point that there
are directions in which the detector is completely blind, like (θ, ϕ) = (π2 ,

π
4 ).

Hence the importance of multiple detectors in order to increase sensitivity in
every direction and the possibility of distinguishing the polarizations. Multiple
detectors also allow studying the localization of the source via triangulation.

If the approximation λ � L0 is no longer valid, then one has to take into
account the redshift changes during the time of flight, see for instance discussion
in (Andersson 2019).

2.2. Generation of GWs from sources

2.2.1. Introducing sources

Following the principle of general covariance, the matter Lagrangian should
satisfy the property [1.23], namely be written solely in terms of the dynamical
matter fields and spacetime metric, and no additional background fields. The
simplest way to obtain a viable matter Lagrangian is then to start from the
one used in the absence of gravity, and ‘covariantize’ it by the replacements

ηµν → gµν , ∂µ → NewAµ, d4x→
√
−gd4x. [2.18]

Doing so introduces a minimal coupling of matter to the gravitational field.
Additional interactions can be included if phenomenologically or theoretically
motivated, provided they respect [1.23].3 Having done so, we define the matter
energy-momentum tensor

Tµν = − 2c√
−g

δLM

δgµν
. [2.19]

Inserting this definition in [1.23], and using [1.20], we obtain

ξνNewAµT
µν + ∂µ(ξµLM − Tµνξν) = 1√

−g
Eψ δξψ [2.20]

2. This formula can be generalize to include an additional angle between the polar-
ization basis, as well as a non-perpendicular angle between the arms.
3. Or not, if one is considering modified theories of gravity.
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where we recall that ψ denotes the matter fields and Eψ the matter field Euler-
Lagrange equations. On solutions of the matter field equations Eψ = 0, and
since the equation holds for any ξ, we conclude that

NewAµT
µν = 0 [2.21]

in the absence of boundaries. This equation replaces the familiar conservation
of the energy-momentum tensor guaranteed by Noether’s theorem in flat space-
time. More precisely, the Noether current of the total Lagrangian LEH + LM

is

jµξ = c3

8πG

(
Eµνξ

ν −NewAνNewA[µξν]
)
, [2.22]

where E are Einstein’s equations [1.16], namely [1.24] with the vacuum equa-
tions replaced by the equations in the presence of matter), and whose conserva-
tion requires to be on-shell of both the Einstein’s and matter’s field equations:

NewAµj
µ
ξ = c3

8πGE
µνNewAµξν −

1
c

NewAµT
µνξν =̂ 0. [2.23]

Even though [2.21] is often referred to as the general covariant version of
energy-momentum conservation, it is important to remark that it is not a
conservation equation in the usual sense. To understand this point, let us follow
the usual procedure to obtain Noether charges from the current, and apply
Stokes’s theorem to a finite region M with boundary ∂M . To do so we need a
scalar, which we obtain by contracting the left-hand side of [2.21] with a vector
ξµ. After integrating by parts, we find∫

M

NewAµT
µνξν
√
−gd4x =

∮
∂M

Tµνξνnµ
√
qd3y

+
∫
M

TµνNewAµξν
√
−gd4x, [2.24]

where we denoted by nµ the normal and by y the coordinates of ∂M . If
NewA(µξν) vanishes, namely if the Killing equations is satisfied, then [2.21]
can be turned into a conservation law. To do so, we consider the case in which
∂M consists of two space-like hypersurfaces Σ1 and Σ2 connected by a time-like
boundary T , see Fig.2.3. If the fields satisfy conservative boundary conditions
at T (typically T asymptotically far away and fall-off conditions on the fields),
then

Qξ :=
∫

Σ1

Tµνξνnµ
√
qd3y =

∫
Σ2

Tµνξνnµ
√
qd3y [2.25]
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for each Killing vector ξ. Therefore [2.21] gives as many conserved quantities as
there are isometries in spacetime. For flat spacetime, these are the ten Poincaré
charges. For a generic dynamical spacetime, there are none.

Figure 2.3: A region of spacetime bounded by two space-like hypersurfaces
Σ1,2 and a time-like one T . With conservative boundary conditions on T , [2.25]
establishes as many conservation laws as there are Killing vectors.

The validity of [2.21] implies the matter equations of motion, as we have seen
from its derivation. In particular, if matter consists of test particles, namely free
motion without self-interaction and ignoring the back-reaction on the metric,
this equation implies the geodesics equation in curved spacetime. This is for
instance how one can derive the relativistic corrections to the Kepler problem,
by evaluating [2.21] on the Schwarzschild background. At lowest order in the
weak-field expansion [1.46], [2.21] reduces to the energy-momentum conserva-
tion law in flat spacetime,

∂µT
µν = 0. [2.26]

This means that at lowest order the matter can interact with itself, but not with
the gravitational field: the sources follow geodesics in flat spacetime (that is,
straight lines). To include the effect of gravity on the sources we must go beyond
the lowest order. In other words, the linearized theory still describes gravity in
the Newtonian way, namely as a force acting in flat spacetime. Of course, it
already contains departures from Newton’s theory, since it includes the special
relativistic effects such as the gravito-magnetic interaction and radiation.

2.2.2. Source multipoles

Let us study the conserved quantities [2.25] that arise on the Minkowski
background. We choose Σ to be a global hypersurface of constant time t, write
its unit normal as nµ = −∂µt, and the ξ′ are the ten Poincaré Killing vectors
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[1.48]. We can thus identify ten conserved quantities corresponding to energy
and momentum

c2M :=
∫
d3xT 00, cP a :=

∫
d3xT 0a, [2.27]

which correspond to taking aµν = 0 and unit values of bµ, and relativistic
angular momentum

cLa = c

2ε
a
bcL

bc := εabc

∫
d3xxbT 0c,

c2Ka :=
∫
d3x (T 0act− T 00xa), [2.28]

which correspond to taking bµ = 0 and unit values of aaν and a0
ν respectively.

Their conservation can be easily checked. We start by separating [2.26] in time
and space components,

c−1Ṫ 00 + ∂aT
a0 = 0, c−1Ṫ 0a + ∂bT

ab = 0. [2.29]

Then using Stokes’ theorem and vanishing boundary conditions we immediately
see that

Ṁ = Ṗ a = L̇a = K̇a = 0. [2.30]

While the first of [2.27] is the the total energy, we followed the custom in the
literature to denote it M and refer to it as ‘mass’, using Newtonian language.
The first of [2.28] is the angular momentum with respect to the frame defined by
nµ = −∂µt. The second conserved quantity can be rewritten as Ka = Ia− tP a,
where we introduce the center-of-mass position

Ia = 1
c2

∫
d3xT 00xa. [2.31]

Conservation of Ka is thus the statement that the center of mass moves fol-
lowing the total momentum.

The conserved quantities can be used to fix a reference frame as follows.
First, we can choose the center-of-mass frame, in which P a = 0. This removes
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the freedom of Lorentz boosts. Then, we can fix the origin to be in the center-
of-mass, which removes the freedom of spatial translations 4. The rotation
freedom can be fixed choosing the axis so that La has only one component (say
z), and the remaining SO(2) freedom is fixed choosing an axis in the plane
perpendicular to La. Finally the time translation symmetry is fixed setting the
zero value of the clock.

The quantity Ia is also called mass-dipole moment. The terminology comes
about if we see ρ = c−2T00 as a distribution, then Ia is the first moment of
that distribution. Following this logic, we introduce a multi-index notation for
the higher multipole moments:

Iab... = 1
c2

∫
d3xT 00xaxb . . . , P a,b... = 1

c

∫
d3xT 0axb . . . ,

Sab,c... =
∫
d3xT abxc . . . . [2.32]

The conservation laws [2.29] together with integration by parts in the absence
of boundary terms provide relations between multipole moments and time vari-
ations of higher multipoles, such as

P a = −İa, Sab = 1
2 Ï

ab,

Ṡab,c = 1
6
...
I
abc + 1

3(P̈ a,bc + P b,ac − P c,ab), Ṗ a,b = Sab [2.33]

and so on. The first one above is the conservation of Ka already seen, and
relates the momentum monopole to the mass dipole time variation. The second
one allows one to determine the total effect of the stresses in the matter in
terms of the second time derivative of the mass quadrupole. These relations
are useful because it is typically easier to measure and interpret the multipole
moments of the mass and momentum distributions, rather than the spatial
stresses.

When working with multipoles, it is typically convenient to organize them
into irreducible representations of the rotation group, which are label by a
an integer number l and have 2l + 1 components each, as recalled earlier.
This can be achieved expanding the distribution in spherical harmonics, e.g.

4. Sometimes the two operation are referred collectively as ‘center-of-mass frame’,
something they are separated with the first one alone being called ‘center-of-
momentum’ frame.
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ρ =
∑
l,m ρl,mYl,m, then the integrals of the modes ρl,m are the irreducible

multipoles. It is possible although more cumbersome to do this composition
directly in Cartesian coordinates without introducing spherical harmonics. One
then gets

M = 1
c2

∫
d3xρ, Da = Ia = 1

c2

∫
d3xρxa, [2.34]

Qab = 1
c2

∫
d3xρ(xaxb − r2

3 δ
ab), Oabc = 1

c2

∫
d3xρ(15xaxbxc − 9x(aδbc)r2),

[2.35]

and so on.

2.2.3. Solving the wave equation with sources

We are interested in the emission of gravitational waves from matter sources,
without incoming radiation. This can be imposed choosing the retarded Green
function and setting to zero the independent degrees of freedom h◦TT

µν . The
general solution is then

h̄µν = −16πG
c4

∫
d4x′G(x, x′)Tµν(x′)

= 4G
c4

∫
d3x′

Tµν(t− 1
c |~x− ~x

′|, ~x′)
|~x− ~x′|

. [2.36]

using [1.145] and the specialized De Donder gauge with no homogeneous so-
lution. Even in the linearized approximation, the integral is in general very
complicated and there is no analytic solution. So we resort to approximation
schemes. In particular, we introduce two independent approximations:

(i) Wave-zone approximation: we assume to be very far away from the
sources, that is R := |~x| � |~x ′|. This allows us to expand the integrand
in powers of 1/R� 1. For the numerator, we have

|~x− ~x ′| = R− ~N · ~x ′ + . . . [2.37]

where ~N := ~x/R, and

Tµν(t− 1
c |~x−~x

′|, ~x ′) ' Tµν(tR, ~x ′)+
~N · ~x ′

c
Ṫµν(tR, ~x ′)+ . . . ,[2.38]
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where we introduce the retarded time5

tR := t− R

c
. [2.39]

For the denominator, we have

1
|~x− ~x′|

= 1
R

+
~N · ~x′

R2 + 3
2(x′ax′b −

r′2

3 δab)
NaN b

R3 + . . . [2.40]

Furthermore, the direction of propagation of the wave coincides with
the direction from the source, namely − ~N if we take the origin of the
coordinates inside the source. Hence the TT projector can be written in
terms of ~N instead of the wave vector.

(ii) Slow dynamics: We assume that the dynamics of the source is slow, so
that time derivatives in [2.38] are small corrections. To understand why,
consider that the integration coordinate ~x′ spans at most the size of the
source, and if this has a typical frequency scale ωs (for instance in a
binary, the frequency of the orbit), then vs := |~x′|ωs is the velocity scale
of the source. It follows that

|~x′|
c
Ṫµν ∼

|~x′|ωs
c

Tµν ∼
vs
c
Tµν [2.41]

is suppressed by v/c. The Taylor expansion [2.38] is therefore controlled
by the parameter v/c� 1, and it is called post-Newtonian expansion.

The approximated solution can thus be written as

h̄µν(x) = 4G
c4R

∫
d3x′

(
Tµν(tR, ~x ′) + Na

c
Ṫµν(tR, ~x′)x′a + Na

R
Tµν(tR, ~x′)x′a + . . .

)
[2.42]

The first term is the leading order; the second term is the first of the PN cor-
rections; the third term is the first of the 1/R corrections. Using the multipole
definitions [2.32] and their conservation laws [2.33], we can rewrite the different
components of the solution [2.42] as

5. Namely the time at which a signal travelling at the speed of light was sent in order
to arrive at t.
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h̄00 = 4G
c2R

(
M − Na

c
Pa + NaN b

2c2 Ïab + Na

R
Ia + . . .

) ∣∣∣
tR
, [2.43a]

h̄0a = − 4G
c3R

(
Pa + N b

2c Ïab + N b

2Rc (Lab + İab) + . . .

) ∣∣∣
tR
, [2.43b]

h̄ab = 4G
c4R

(
1
2 Ïab + N c

3c

(1
2
...
I abc + P̈a,bc + P̈b,ac − P̈c,ab

)
+ . . .

) ∣∣∣
tR
. [2.43c]

These are the first few terms of the double expansion in velocities and dis-
tance from the sources. Notice that we are not giving all metric components to
the same higher order; this is because our goal here is just to give a qualita-
tive understanding of how the expansion works. Furthermore which orders are
dominant depends on the type of question asked.

The lowest order of the time-time component reproduces the Newtonian
result.6 The first PN correction is the movement of the source, and can always
be set to zero by going to the rest frame. Doing so eliminates the lowest order of
the h̄0a component. The first corrections in that component contain the gravito-
magnetic effects relevant to the Lense-Thirring effect, for instance. Notice also
that the angular momentum is sub-leading in R, as one could have expected
from a large distance expansion of Kerr’s metric.

The radiative degrees of freedom are in the spatial components [2.43c] and
can be extracted acting with the projector [1.88]. We have the mass quadrupole
at leading order, and the first PN correction features the mass octupole and
momentum quadrupole. We can immediately remark the absence of monopole
and dipole contributions to the emission of waves. This is a direct consequence
of the conservation laws, since they imply that the mass monopole and dipole

6. This result may look unfamiliar, since the Schwarzschild metric in static coordinates
differs from it by a factor of 2. But recall that our analysis assumes De Donder
gauge – otherwise [2.36] would not be the right solution –, aka harmonic gauge. The
Schwarzschild metric in harmonic gauge reads

ds2 = −ρ− rs/2
ρ+ rs/2

dt2 + ρ+ rs/2
ρ− rs/2

dρ2 + (ρ+ rs/2)2dΩ, ρ = r − rs/2,

and then

h00 = 2M
ρ
, hrr = 2M

ρ
, hAB = 2MρhS2

AB , h = −h00 + haa = 4M
ρ
. [2.44]

So the factor 4 instead of 2 is because we are in traceless gauge, which is not the
usual coordinates in which we write the metric.
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have vanishing second time derivatives. As a consequence, an oscillating spheri-
cal distribution would not emit gravitational waves, in agreement with Birkhoff
theorem in the full theory, nor would a distribution with axial symmetry ro-
tating at constant velocity, in agreement with Kerr’s solution.

Applying the TT projector removes any trace, hence hTT = h̄TT and one
can replace Iab with the irreducible quadrupole moment Qab, and obtain at
lowest order

hTT
ab (t, ~x) = 2G

c4R
Q̈TT
ab (tR). [2.45]

This is the celebrated first quadrupole formula, derived by Einstein in 1918:
The dominant radiation in the slow-motion approximation arises from the ac-
celeration of the quadrupole moment of the mass distribution. From this we
can also obtain the expressions for the two independent polarizations. If ~k = ẑ,
we can use [1.71a] and

h+(t, r) = G

c4R
(Q̈11 − Q̈22)

∣∣
tR
, h× = 2G

c4R
Q̈12

∣∣
tR
. [2.46]

For a general ~k it is obtained replacing hab → (G/c4R)Qab in [1.91]. Notice
also that PTT(Q) = PTT(I) since the projector removes the trace, hence we
can replace Qab with Iab in these expressions.

Let us make some order-of-magnitude estimates. By dimensional analysis,
the mass multipoles scale like Mrl, where r is the typical size of the source. If
the dynamics of the system has a typical velocity scale v, then Q ∼ Mr2 and
Q̈ ∼Mv2. This gives

h ∼ G

c4R
Mv2 = 5× 10−19

(
M

10M�

)(
1Mpc
R

)
v2

c2
. [2.47]

For example, two 10-solar-masses black holes at merger will have a fully rela-
tivistic speed v ∼ c, which gives a 10−18 amplitude at galactic distances, and
10−21 at 100 Mpc where the Virgo cluster is located.

This estimate is the lowest order of various approximations, which is useful
to recap here: (1) weak-field, PM expansion; (2) long-distance, multipolar ex-
pansion; (3) small velocities, PN expansion. To obtain more accurate results,
one has to include higher order corrections. Doing so is actually far from sim-
ple. Not only we have three different expansion parameters with non-trivial
hierarchies among them, we also have to face both technical and conceptual
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challenges. Let us list a few, and tools used to deal with them. The PN ex-
pansion is not a convergent series, but rather what is known as an asymptotic
series. Its accuracy degrades as we increase R. Dealing with this mathemat-
ical problem requires techniques such as the matched asymptotic expansion.
Related to this is also the more conceptual issue that the causal propagation
determined by the Green’s function at lowest order follows the null cones of
the background Minkowski metric. But null cones are bent by the gravitational
interaction, hence higher order corrections have to also modify the retarded
time to the correct one. For instance for the Schwarzschild metric the correct
retarded time is

u = t−R/c− 2GM/c2 ln(R− 2GM/c2)

= tR + 2GM
c2

lnR−
(

2GM
c2

)2 1
R

+O(R−2).

Hence higher orders change the notion of retarded time. Another tricky effect
comes in at higher orders: the waves backscatter and self-interact, causing a
delay in part of the signal, which starts travelling inside the light-cone, similar
to light slowing down in a medium due to interactions with the medium. Then
the total signal includes a ‘tail’ that comes after the main part of the signal.
To take this into account one has to include effects that arise from integration
over time.

Another problem is divergences appear after the first iteration, because
convolution of Poisson integrals diverge even if the initial source has compact
support. To regularize this unphysical divergence one has to split the integrals
into near-zone and far-zone integrations. These and other types of difficulties
plagued the theory throughout most of the seventies, and were addressed thanks
to the work of many brilliant researchers, including pioneers like Thorne, Will,
and Damour. On the phenomenological side, people thought for a while that
the lowest quadrupole order would have been enough to match experiments,
given the weakness of the waves. Later theoretical work, e.g. the seminal paper
(Cutler et al. 1993), clarified the observational sensitivity to the PN corrections
and justified the importance of the endeavour. The task is very challenging, and
researchers have come up with different approaches. We refer to the specialized
literature (Thorne 1980 ; Blanchet 2006 ; Poisson and Will 2014 ; Goldberger
and Rothstein 2006) for reviews of this more advanced topic. In the following
we will content ourselves to stay at lowest order, which is enough to understand
the basics of the physics, if not for a detailed match to observations.

2.3. Flux-balance laws
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2.3.1. Energy of gravitational waves

A consequence of the equivalence principle and diffeomorphism invariance
is that there cannot be any local tensorial quantity that fully describes grav-
itational energy.7 For instance, the Hamiltonian one finds from the Legendre
transform of the Lagrangian is a sum of constraints, and thus identically zero
when evaluated on solutions. Any attempt to work around these facts and
define quasi-local observables representing the gravitational energy unavoid-
ably run into trouble with ambiguities and dependence on coordinates or other
unphysical background structures (Szabados 2009). The clearest well-defined
resolution to this problem is to work with global notions of energy. Such global
notions are useful to describe isolated systems, namely spacetimes that are fully
dynamical in a certain region, but become well approximated by flat spacetime
at large distances from this region. In this case, one can introduce a physically
meaningful notion of boundary to the spacetime, and exploit the fact that
the Hamiltonian picks up a boundary contribution which is non-vanishing on
solutions. The resulting surface charges can be used to characterise the total
energy momentum and angular momentum of the system, and can be derived
as Noether charges as well. Examples of this construction are the ADM charges
at spatial infinity, and the BMS charges at future null infinity, as mentioned in
Sec. 1.2.2.

The difficulties in defining gravitational energy arise already at the lin-
earized level, as we are about to see. Let us look at the gravitational wave per-
turbation simply as a spin-2 field propagating on the Minkowski background.
Thanks to the Poincaré invariance of the background, we can apply Noether’s
theorem and derive a conserved energy-momentum tensor for hµν . An explicit
calculation starting from the linearized Lagrangian gives

tNµν = c4

32πG

(
∂µh

αβ∂νhαβ −
1
2ηµν∂λhρσ∂

λhρσ
)
, [2.48]

where the label N stands for Noether, and we assumed here the De Donder con-
dition to simplify the expression. This tensor is conserved, namely ∂µtNµν =̂ 0,
but has no clear physical meaning, because it is not gauge-invariant: It changes
under a linearized diffeomorphism [1.50], and consequently assigns a non-zero

7. Such quantity will have to be zero in a local free-falling frame where the effects
of gravity are absent, and if it were a tensor, it would then be zero in any frame. A
tensorial quantity capturing some aspects of gravitational energy can be constructed
using the Bel-Robinson tensor, but it is fourth-order in derivatives, therefore does not
have the right physical dimensions, and will capture only higher-order terms of the
gravitational energy.
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value of energy-momentum to pure gauge modes. Furthermore, we can make it
vanish entirely at any point using Riemann normal coordinates, since in these
coordinates the first derivatives of the metric vanish at that point. Maybe one
can exploit the freedom in the Noether construction to find a better quantity?
Noether currents are not unique after all, and defined only up to adding total
derivatives whose conservation is trivial. In the case at hand, the ambiguity is
the freedom to add terms with the structure

tNµν + ∂ρ∂σUµρνσ, [2.49]

where U has the same index symmetries as the Riemann tensor. One may hope
that there exists a representative in the equivalence class [2.49] that would
be gauge invariant, but this is not the case: the lack of gauge-invariance is a
direct consequence of the equivalence principle, and this impacts already the
linearized theory.8

While looking at global quantities such as the surface charges mentioned
at the beginning of the section is the safest way to define energy in the full
theory, the perturbative treatment offers an alternative, ‘quasi-local’ possibil-
ity. It is possible to construct quasi-local gauge-invariant quantities by intro-
ducing a spacetime averaging procedure based on the properties of the back-
ground. We consider a region L whose size is much larger than the typical
wavelength λ of the perturbation, but much smaller than the typical wave-
length λB of the background (which is infinite for a flat background), and we
define 〈F 〉 = 1

L

∫
L
F . If applied to an expression quadratic in the Fourier modes

like [2.48], the procedure suppresses combinations with different frequencies or
different phases, in a way completely similar to how the total energy in a stan-
dard background-dependent theory comes mainly from positive interference su-
perposition of waves. The difference is that in background-dependent theories
averaging the energy is a choice, since the local energy density is theoretically
also well defined. In gravity it is not a choice but mandatory, since there is
no meaningful local energy density, and furthermore care is needed to define
correctly the procedure in a way to make it compatible with general covariance.
Detailed analysis (Isaacson 1968 ; Burnett 1989) shows that the result of the

8. It is instructive to put this problem in perspective with what happens in the electro-
magnetic case. If one computes the canonical energy-momentum tensor of Maxwell’s
theory using the Noether formula, one also finds a meaningless gauge-dependent ex-
pression. However, the Noether construction only defines the tensor up to total di-
vergences, and it is possible to find one that gives a gauge-invariant expression, and
which is furthermore symmetric and coincides with the one derived from the variation
with respect to the metric. In gravity there is an analogue problem, but even adding
total divergences it is not possible to find a local gauge invariant quantity.
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procedure is that expressions under the averaging sign can be freely integrated
by parts in space and, upon going on-shell, also in time derivatives since a wave
propagates on the light-cone. For instance,

〈∂µhαβ∂µhαβ〉 = −〈hαβ�hαβ〉 = 0 [2.50]

outside the sources. Under this procedure, we find

〈tNµν〉 = c4

32πG 〈∂µh
αβ∂νhαβ〉. [2.51]

One can show that the averaging procedure makes the right-hand side gauge-
invariant (Isaacson 1968). This means that it can be expressed in terms of the
TT projection and the gauge invariant potentials. The latter can be neglected
if the sources variation (induced by the partial derivatives in the expression
above) occurs over much longer time scales than the hTT wavelengths.9 This
motivates the definition of

tµν := c4

32πG∂µh
ab
TT∂νh

TT
ab , tµν = 〈tNµν〉. [2.52]

This quantity is actually gauge-invariant at lowest order, since the only non-
invariant terms are the partial derivatives, and these transform linearly in
ξ ∼ O(h). It follows that in so far as lowest order results are needed, we
can forget about the averaging procedure, and use [2.52]. To get fully gauge-
invariant results, we should average, or look at scalar quantities built out of tµν
integrated over the whole spacetime, which automatically include the averaging
and produce gauge-invariant results. An intermediate situation concerns inte-
gration over a whole space-like hypersurface. These are invariant under spatial
diffeomorphisms, but not time diffeomorphisms. Hence one would get a gauge-
invariant result at lowest order, and time averaging is needed to remove the
gauge-dependency in the short time scales.

The expression [2.52] is the one used by Einstein to determine the energy
carried away by gravitational waves. It is conserved (outside the sources) and
gauge independent, hence a valid quantity for the task. It has however a limited
applicability: first, it relies heavily on the special background chosen, and had
we worked with a non-isometric one, then there would be no Noether charge

9. In (Poisson and Will 2014) this step is called short-wave approximation, and it
is performed without the averaging, in the context of the Landau-Lifshitz approach
described in Appendix 2.7.
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to begin with. Second, it is not clear how to extend this construction to treat
higher orders in perturbation theory. These shortcomings can be addressed if we
look at the actual back-reaction on the metric caused by the waves. In fact the
actual “effective" source that determines the second-order metric perturbation
is not [2.48], but rather the second order expansion of the Einstein tensor,
as we saw in [1.36]. The candidate gravitational energy-momentum tensor tGµν
obtained in this way is also conserved. In fact, an explicit calculation shows that
it differs from [2.48] precisely by a term like [2.49], with U a certain quadratic
expression in derivatives of hµν .

The second candidate tGµν for a definition of energy-momentum tensor of
gravitational waves has the better property that it depends on second deriva-
tives of the metric, so it cannot be made to vanish at any given point. However,
it is still not gauge-invariant. Therefore one has to invoke again the averaging
procedure. Upon doing so, one finds that the two prescriptions give a consistent
answer (Isaacson 1968):

〈tGµν〉 = 〈tNµν〉 = 〈tµν〉. [2.53]

This is reassuring that averaging offers a viable way to extract unambiguous and
gauge-independent quantities. The prescription tG overcomes some limitations
of the Einstein-Noether construction. It can be used in perturbation theory
around an arbitrary background, and can be systematically extended to any
order in perturbation theory, by computing higher order corrections G(n)

µν and
evaluating them on the perturbed solution. Notice however that the procedure
of interpreting a piece of the field equations as source on the right-hand side is
by itself ambiguous, because it relies on a choice of dynamical field. For instance,
if we organize the higher order corrections as an expansion in the trace-reversed
perturbation h̄µν as opposed to hµν , we would get different expressions for G(n)

µν .

In this context, a convenient approach to the perturbative expansion around
Minkowski is given by the Landau-Lifshitz reformulation of Einstein’s equa-
tions. This gives a third candidate for energy-momentum, known as Landau-
Lifshitz pseudo-tensor, whose lowest order differs from the previous two options
again by a term like [2.49]. The Landau-Lifshitz pseudo-tensor has the usual
problems, in particular gauge-dependence and vanishing at any point in a local
inertial frame, but once again provides the gauge-invariant result after averag-
ing:

〈tLL
µν〉 = 〈tµν〉. [2.54]

Even if coordinate-dependent, this approach has the merit of being set up in
a way that makes it very natural to develop a systematic perturbative expan-
sion, since the pseudo-tensor is defined already at non-perturbative level, and
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does not need to be calculated order by order as in the previous approach.
Furthermore, it provides a prescription for the energy, momentum and angu-
lar momentum as surface charges that, even though restricted in validity to
Cartesian coordinates in the region far away from the sources, can be evalu-
ated including higher orders, and bypasses the need for the spatial averaging of
volume integrals. For these reasons, the Landau-Lifshitz formulation is widely
used by the community working in the post-Newtonian expansion. We review
it briefly in Appendix 2.7.

We have restricted the discussion to energy and energy-momentum, but sim-
ilar considerations apply also to define the angular momentum of gravitational
waves. In this case, the result of the averaging procedure starting from any
of the three prescriptions described above motivates the following definition
(DeWitt 2011 ; Thorne 1980 ; Poisson and Will 2014)

ja := 1
2ε
a
bcj

bc = − c4

32πGε
abc(ḣTT

de xb∂ch
de
TT + 2ḣTT

bd h
TT
cd ). [2.55]

As before, this gives a gauge-invariant quantity after global integration or av-
eraging.

Averaging provides gauge invariant quasi-local quantities at lowest order in
perturbation theory. This is satisfactorily from a conceptual point of view, and
to gain a first handle on how to describe physical processes involving gravita-
tional waves. However, it is not a very practical tool, especially if one wants
to go beyond the lowest order, and set up a systematic perturbative expan-
sion. In this context, it is again easier to work with gauge-fixed quantities at
all intermediate steps, and then extract only at the end the physical predic-
tions in terms of gauge-invariant observables. For instance, there is no problem
in working with the non-averaged notions of energy-momentum and angular
momentum, as long as one does not attempt to give them a direct physical
interpretation.10 The idea is to use them to perform calculations, and at the
end read off the physical dynamics not from their evolution but from that of
gauge-invariant quantities such as the amplitude and frequency of TT modes,
or the evolution of relative distances such as the periastron of an orbit. We will
see this approach explicitly below.

10. As mentioned at the beginning of the section, a direct physical interpretation is
on the other hand possible in terms of asymptotic global quantities such as ADM and
BMS charges.
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2.3.2. Dissipation equations

The fact that [2.52] is conserved means that we can derive identities between
time and spatial derivatives like those that led to the conservation laws [2.30]
for the matter sources. The key difference however is that the matter sources
had compact support, hence we could neglect boundary contributions when
integrating by parts. This is no longer true for the gravitational contributions,
since the waves have non-compact support. The non-vanishing of the boundary
terms has the effect that the ‘charges’ corresponding to energy, momentum and
angular momentum are no longer conserved. This dissipation is precisely the
statement that gravitational waves carry energy and have a physical impact on
the system.

In practise, we do not even need to use the conservation equation in order
to study the dissipation, because of a special property of the explicit solution
[2.43]. Each metric component has functional dependence on coordinate of the
form f(tR, Na). For such functions, it is easy to check that

∂af = −Na
c
ḟ +O(R−1). [2.56]

The leading order of this approximation plays an important role in simplifying
many formulas in the wave zone, where R� 1.

Let us begin our analysis from the flux of gravitational energy, namely the
emitted power. This is given by

dE

dt
=
∫

Σ
ṫ00d3x = −c

∮
∂Σ
t0aNadS = c4

32πG

∮
∂Σ
ḣTT
cdN

a∂ah
cd
TTdS, [2.57]

Stokes theorem choosing as boundary a 2-sphere of radius R in the asymptotic
region (hence the outgoing unit normal is simply Na, and dS = R2d2Ω where
d2Ω = sin θdθdφ) and [2.52] in the last equality. The spatial derivative can be
replaced at lowest order with a time derivative using again [2.56], and we arrive
at

dE

dt
= − c3

32πG

∮
∂Σ
ḣTT
ab ḣ

ab
TTdS = − G

8πc5R2

∮
∂Σ

...
Q

TT
ab

...
Q
ab
TTdS, [2.58]

where in the last step we used the explicit form [2.43] of the solution, in particu-
lar [2.45]. To evaluate the integral, we observe that the only angular dependence
occurs in the TT projector [1.88]. Using the following formula,∮

S2
PTTcd

ab d
2Ω = 8π

5

(
δc(aδ

d
b) −

1
3δabδ

cd

)
, [2.59]
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we find
dE

dt
= − G

5c5
...
Qab

...
Q
ab|tR . [2.60]

This is the second famous quadrupole formula of Einstein (Einstein 1918).
It gives the instantaneous power radiated at a distance R from the source
and a time t, as a function of the quadrupole time variation at the retarded
time t − R. There are two important remarks to make about this equation.
First, after integration the index contraction occurs over all indices of the
(traceless) quadrupole moment, thanks to the right-hand side of [2.59]. Second,
as explained in the previous Section, the instantaneous power so defined is not
observable, because of its gauge-dependence, only its time average over scales
larger than the waves’ wavelength is. To get some numerical estimates from the
formula we just derived, let us consider [1.84] with h× = 0, then

tEff
tt = ω2h+

2κ2 = 1.5mW
m2

(
h+

10−22

)2(
f

1kHz

)2
. [2.61]

For the linear momentum,

dP a

dt
= 1
c

∫
Σ
ṫ0ad3x = −

∫
Σ
∂bt

abd3x

= −
∮
∂Σ
tabNbdS = − c2

32πG

∮
∂Σ
NaḣTT

cd ḣ
cd
TTdS, [2.62]

where we used twice [2.56] in the last equality. Since Na is an odd function
on the sphere, the integral vanishes: there is no loss of momentum at lowest
order, namely at order G/c5. A change in the total momentum of the system
caused by the emission of GWs (‘kick’) occurs only at the next order G/c7,
when mixing of multipoles of different parity occurs.

For the angular momentum flux we obtain

J̇a =
∫

Σ
d3x∂tj

a = −1
c

∮
∂Σ
jadS

c3

16πGε
abc

∮
∂Σ

(ḣTT
de xb∂ch

de
TT + 2ḣTT

bd h
TTd
c )dS.

[2.63]

Using the quadrupole formula [2.45] and performing the integrals using identi-
ties similar to [2.59], one arrives at

J̇a = − 2G
5c5 ε

abcQ̈bd
...
Qc

d|tR . [2.64]

Angular momentum loss occurs at the same order as energy loss, and involves
one lesser time derivative.
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2.4. GWs from binary systems: elliptical, circular and hyperbolic orbits

We now apply the results of the previous section to determine the GW
signal from binary systems. We will first consider the case of a bound system,
with circular or elliptical orbits. These provide a simple yet realistic model
of astrophysical sources that corresponds to the signals observed by LVK. We
will see how one can express the two quadrupole formulas (and more generally
the dissipation equations) in terms of the dynamics of the sources, compute the
backreaction leading to orbital decay and increased wave emission, and produce
analytic waveforms. We will also see explicitly the importance of the averaging
procedure, which in the case of bound binary systems neatly separates the
effects related to the two time-scales involved: the period of each orbit, and
the ‘secular’ effects that cumulate over many orbits. We will then consider the
case of unbounded, hyperbolic orbits, produce their waveforms. These orbits
are interesting because they provide the simplest examples of displacement
memory and gravitational capture.

2.4.1. Newtonian equations

We first recall the Newtonian equations of motion for two non-spinning
point-particles of masses m1,2, with relative position ~r = ~x1 − ~x2 and relative
velocity ~v = ~v1 − ~v2. Coordinates are chosen such that binary is in the (x, y)
plane. The two time-dependent unit vectors ~n and ~λ are defined by

~r = r~n, ~n = (cosψ, sinψ, 0) [2.65]

~v = ṙ~n+ rψ̇~λ, ~λ = (− sinψ, cosψ, 0), [2.66]

where ψ = ψ(t). The observer/detector is at position ~R = R ~N where in spher-
ical polar coordinates the unit vector ~N = (sinϕ cos θ, sinϕ sin θ, cosϕ), see
figure 2.4. Newton’s equations in the centre of mass (CM) frame are

r(ψ) = p

1 + e cos(ψ) , [2.67]

ψ̇ =

√
Gm

p3 (1 + e cos(ψ))2 [2.68]

where m = m1 +m2 the total mass and p is semi-latus rectum. It follows from
Eqs. [2.65]-[2.68] that

~v =

√
Gm

p
(− sinψ, e+ cosψ, 0) . [2.69]
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Figure 2.4: Bound binary system in the centre of mass frame: basic quantities
and angles

and

|~v|2

c2
=
(
Gm

c2p

)(
1 + e2 + 2e cosψ

)
. [2.70]

The Newtonian approximation requires ~v2 � c2, and thus the dimensionless
ratio Gm/c2p� 1. The conserved angular momentum of the orbits, ~L = L~ez,
is given by

L = ν
√
Gmp [2.71]

where ν is the dimensionless mass ratio

ν = m1m2

m2 . [2.72]

The total conserved orbital energy is

E = ν
Gm2

2p (e2 − 1). [2.73]

Bound systems the eccentricity e < 1, while unbound ones have e > 1.
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• Elliptical Orbits have 0 < e < 1 with −π ≤ ψ < π, rmin = p/(1 + e)
and rmax = p/(1− e). The orbital angular frequency ω0 and period T are
given by Keplers laws, namely

ω0 =

√
Gm(1− e2)3

p3 and T = 2π
ω0

[2.74]

• Circular orbits have e = 0 and radius r = p, and orbital frequency and
period given by Eq. [2.74].

• Hyperbolic orbits have e > 1. Now ψ−(e) ≤ ψ < ψ+(e) where

ψ± = ± cos−1(1/e), [2.75]

and correspondingly sinφ± = ±e−1√e2 − 1. These orbits are not peri-
odic, but have a characteristic time-scale (a burst time scale) related to
the characteristic frequency scale

ωc =

√
Gm(e2 − 1)3

p3 . [2.76]

The closest distance of approach rmin = p/(1 + e) at ψ = 0. As ψ → ψ±,
v → v∞ with

v2
∞
c2

= Gm

c2p
(e2 − 1). [2.77]

Of course GR effects modify these Newtonian equations of motion, but
consistently with the approximation scheme discussed in Section 1.3 they are
not included here. Thus for example we ignore precession, namely that over
an orbital period the perihelion of elliptical orbits advances by
∆e = 2π(3Gm/c2p), while for hyperbolic orbits
∆h = (∆e/3)

{
6 arccos(−1/e) + e−2√e2 − 1

[
2(2 + e2) + 5ν(e2 − 1)

]}
, see

e.g. (Damour and Deruelle 1985).

2.4.2. Waveform, energy and angular momentum fluxes

In the quadrupole approximation, the TT component of the waveform is
given by Eq. [2.45], or equivalently rewriting the traceless quadrupole tensor
Qij = Iij − 1

3Iδij in terms of the quadrupole moment Iij ,

hTT
cd (t, ~R) = 2G

c4R
PTTab

cd( ~N)Ïab(tR) [2.78]
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where tR = t − R/c is the retarded time. At large distances R � p relative to
the source, the projection tensor onto the TT components is given by Eq. [1.87].

Substituting Eqs. [2.67] and [2.68] into the definition of the quadrupole
tensor [2.32] gives

Iab = νmrarb. [2.79]

Then using Newtonian’s equations of motion d~v/dt = −Gm~n/r2 it follows that

Ïab = 2νm
(
vavb −

Gm

r
nanb

)
. [2.80]

Thus from Eqs. [2.65] and [2.69] the non-zero components of Ïab are

Ï11 = −2νmc2
(
Gm

c2p

)[
cos(2ψ) + e cos3 ψ

]
, [2.81]

Ï12 = −2νmc2
(
Gm

c2p

)[
sin(2ψ) + e sinψ(1 + cos2 ψ)

]
, [2.82]

Ï22 = 2νmc2
(
Gm

c2p

)[
cos(2ψ) + e cosψ(1 + cos2 ψ) + e2] , [2.83]

with Ïab having the dimensions of energy. The third derivatives of the
quadrupole tensor are straightforwardly obtained from Eq. [2.83] and [2.68]
and read

...
I 11 = 2ν(mc2) c

p

(
Gm

c2p

)3/2
(1 + e cosψ)2 [2 sin(2ψ) + 3e cos2 ψ sinψ

]
[2.84]

...
I 12 = 2ν(mc2) c

p

(
Gm

c2p

)3/2
(1 + e cosψ)2 [−2 cos(2ψ) + e cosψ(1− 3 cos2 ψ)

]
[2.85]

...
I 22 = −2ν(mc2) c

p

(
Gm

c2p

)3/2
(1 + e cosψ)2 [2 sin(2ψ) + e sinψ(1 + 3 cos2 ψ)

]
.

[2.86]

The GW perturbation is given by substituting these expressions into
Eq. [2.78]. In the direction ~N = ẑ the plus and cross polarisations are given
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h + hx

Figure 2.5: Surfaces of constant h+ and h× polarisations for circular orbits
e = 0. Here have chosen ψ = π.

by (see Eq. [2.46]),

h+(t) = G

c4R
(Ï11 − Ï22) = −h0

[
2 cos(2ψ) + e cosψ + 2e cos3 ψ + e2]∣∣

tR
[2.87]

h×(t) = 2G
c4R

Ï12 = −2h0
[
sin(2ψ) + e sinψ(1 + cos2 ψ)

]∣∣
tR
. [2.88]

where the dimensionless amplitude is

h0 = 2ν
(
Gm

c2R

)(
Gm

c2p

)
. [2.89]

The time-dependence is determined from ψ(t) which is a solution of Eq. [2.68].
In a similar way, h+,×(t, θ, ϕ) for any ~N = (sinϕ cos θ, sinϕ sin θ, cosϕ) can
be deduced from Eq. [1.91]. Figure 2.5 shows surfaces of constant h+,× as a
function of (θ, ϕ), for a fixed value of ψ = π and e = 0. The quadrupolar nature
is clearly visible.

In the limit of circular orbits (e = 0), only the terms in cos(2ψ) and sin(2ψ)
remain, and furthermore ψ = ω0t from Eq. [2.68]. Thus for circular orbits,
the GW frequency is twice the orbital frequency f = 2ω0. Figure 2.6 shows the
waveforms as a function of retarded time, in units of T , for 2.5 orbital periods.
Below we will determine the frequency dependence when e 6= 0.
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In the quadrupole approximation, the energy and angular momentum fluxes
are given by (see Eqs. [2.60] and [2.64])

PGW(ψ) = G

5c5
...
Qab

...
Q
ab = 2G

15c5
[ ...
I

2
11 +

...
I

2
22 + 3

...
I 12

...
I 12 −

...
I 11

...
I 22

]
[2.90]

J̇zGW(ψ) = 2G
5c5 ε

3k`Ïka
...
I `a = 2G

5c5
[
(Ï11 − Ï12)

...
I 12 + Ï12(

...
I 22 −

...
I 11)

]
[2.91]

(only the z-component of angular moment is relevant since the binary is in the
xy-plane ). Substituting Eq. [2.86] gives

PGW(ψ(t)) = P e=0
GW (1 + e cosψ)4

[
1 + 2e cosψ + e2

12(1 + 11 cos2 ψ)
]∣∣∣∣
tR

[2.92]

J̇zGW(ψ(t)) = J̇e=0
GW(1 + e cosψ)3

[
1 + 3

2e cosψ − e2

4 (1− 3 cos2 ψ)
]∣∣∣∣
tR

[2.93]

where for circular orbits the constant rates of emission are given in terms of
the dimensionless coefficient Gm/c2p by

P e=0
GW = 32

5 ν
2
(
c5

G

)(
Gm

c2p

)5
[2.94]

J̇e=0
GW = 32

5 ν
2(mc2)

(
Gm

c2p

)7/2
[2.95]

The above expressions are valid for all e ≥ 0 provided ~v2 � c2. Figure 2.6 shows
the waveforms Eq. [2.87]-[2.88] and power emitted Eq. [2.92] over 2.5 periods
of a circular orbit with e = 0, in unit of tR/T where T is the orbital period.
Figure 2.7 shows the same for an elliptical orbit with e = 0.3. In both cases the
periodic motion is clear. Over a longer time-scales t� T , however, the emission
of energy and angular momentum backreact on the orbital trajectories and
must be considered. For a hyperbolic orbit, the corresponding plots are given
in figure 2.8. The motion is obviously no-longer periodic and simply amounts
to a fly-by: thus backreaction effects do not accumulate over time and will be
less significant (see subsection 2.4.5).

We now evaluate the effect of energy and angular momentum dissipation on
the waveforms (for elliptical, circular and hyperbolic orbits in turn).

2.4.3. Elliptical and circular orbits: backreaction effects

The effect of the emitted GW radiation (energy and angular momentum)
produce a radiation-reaction force, whose backreaction on the Newtonian grav-
itational attraction between the bodies in the binary system perturbs their
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0.0 0.5 1.0 1.5 2.0 2.5
tR/T
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1

0

1

2

h + (t)/h0
h × (t)/h0

PGW(t)/Pe = 0
GW

Figure 2.6: Circular orbits. The plot shows h+ and h× polarisations, and emit-
ted GW power (solid line), as a function of retarded time in units of T for 2.5
orbital periods. The emitted power is constant and given by Eq. [2.94]. The
GW wavelength is cT/2.

dynamics. On time-scales t � T these secular effects can be calculated by
writing the conservation equations in averaged form

dE

dt
= −〈PGW〉

dL

dt
= −〈J̇GW〉 [2.96]

where E and L are the orbital angular energy and angular momentum given
in Eqs. [2.73] and [2.71], and the average is over one orbital period:

〈X〉 = 1
T

∫ T

0
dtX(t) = 1

T

∫ π

−π
dψ

1
ψ̇
X(ψ), [2.97]

where ψ̇ is given in Eq. [2.68]. The aim of this subsection is to solve these
equations to determine the secular evolution of e(t), p(t), and thus h+,×(t)
with backreaction included.
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h + (t)/h0
h × (t)/h0

PGW(t)/Pe = 0
GW

Figure 2.7: Elliptical orbit with e = 0.3. The plot shows that h+ and h×
polarisations, and emitted GW power, as a function of retarded time in units
of T for 2.5 orbital periods. The emitted power is largest at ψ = 0 mod 2π
where the orbital velocity is the largest.

2.4.3.1. Averaged Energy and momentum radiation
The averaged GW energy and angular momentum radiation are straightfor-

ward to calculate. For the GW energy

〈PGW〉 = 1
T

∫ π

−π
dψ

1
ψ̇
PGW(ψ), [2.98]

and substituting [2.92] leads directly to the Peter and Mathews formula (Peters
and Mathews 1963):

〈PGW〉 = P e=0
GW (1− e2)3/2

[
1 + 73

24e
2 + 37

96e
4
]
. [2.99]

(This expression is only valid for e < 1 as we are dealing with elliptical orbits.)
Keeping p constant, the radiation increases from e = 0, to a maximum at e ∼
0.5 before decreasing and vanishing at e = 1. The averaged angular momentum
radiation is similarly determined using [2.93] and gives

〈J̇GW〉 = J̇e=0
GW (1− e2)3/2

[
1 + 7

8e
2
]
. [2.100]
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1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
tR

10

5

0
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h + (t)/h0
h × (t)/h0

PGW(t)/e6 Pe = 0
GW

Figure 2.8: Hyperbolic orbits with e = 2. The h+ and h× polarisations and
emitted GW power as a function of retarded time, for an initial value ψ = ψ−
see Eq. [2.75]. The motion is no-longer periodic and a burst of GW energy
emitted when ψ = 0 at t = 0. Note that the emitted power scales as e6 for
large e, see Eq. [2.92], and for that reason in the plot the power is normalised
by an extra factor of e6. See section 2.4.5

2.4.3.2. Elliptical orbits: frequency content

Before solving [2.96], we discuss the frequency the emitted GWs. For circular
orbits, as mentioned above, the emitted GWs have frequency which is twice
the orbital frequency ω0 =

√
Gm/p3. When e < 1, other harmonics of ω0 =√

Gm(1− e2)3/p3 are excited, as is clear from figure 2.7. The time average
radiated power 〈PGW〉 given in [2.98] is determined by the third time derivative
of the quadrupole tensor which itself can decomposed into a Fourier series

Iij(t) = νmp2

{
Ã

(0)
ij +

∞∑
n=1

[
Ã

(n)
ij cos(nω0t) + B̃

(n)
ij sin(nω0t)

]}
[2.101]

with Ã
(0)
ij = 1

νmp2T

∫ T
0 dtIij(t), Ã(n)

ij = 2
νmp2T

∫ T
0 dtIij(t) cos(ω0nt), B̃(n)

ij =
2

νmp2T

∫ T
0 dtIij(t) sin(ω0nt). The components of Iij(t) are nothing other than
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the x and y coordinates of the particle which are real and given by the compo-
nents of ~r in [2.65], from which one finds see e.g. (Maggiore 2007)

0 = B̃
(n)
11 = Ã

(0)
12 = Ã

(n)
12 = B̃

(n)
22 , Ã

(0)
11 = 1 + 4e2

2 , Ã
(0)
22 = 1

2 [2.102]

and

Ã
(n)
11 = 1

(1− e2)2 ·
1
n

[Jn−2(ne)− Jn+2(ne)− 2e(Jn−1(ne)− Jn+1(ne))] ,

[2.103]

B̃
(n)
12 = 1

(1− e2)3/2 ·
1
n

[Jn+2(ne) + Jn−2(ne)− e(Jn+1(ne) + Jn−1(ne))]

[2.104]

Ã
(n)
22 = 1

(1− e2) ·
1
n

[Jn+2(ne)− Jn−2(ne)] [2.105]

Then
...
I ij(t) are obtained directly from Eq. [2.101] with the time derivatives

lead to factors of n3ω3
0 . Substituting into [2.90] and then taking time average

to calculate 〈PGW〉 leads to terms such as 〈sinnω0t sinmω0t〉 ∼ δmn meaning
that the different harmonics do not interfere. In conclusion one finds

〈PGW〉 =
∞∑
n=1
〈Pn〉 [2.106]

where

〈Pn〉 = P e=0
GW ·

n6

96 (1− e2)4
[(
Ã

(n)
11

)2
+
(
B̃

(n)
12

)2
+ 3

(
Ã

(n)
22

)2
− Ã(n)

11 B̃
(n)
12

]
.

[2.107]

where P e=0
GW is given in Eq. [2.94]. The 〈Pn〉 are plotted in figure 2.9 for different

values of e. The quadrupolar nature of the radiation for e = 0 (red) is again
clear since all the GW power is emitted into the n = 2 mode. Power is radiated
into more harmonics as e increases, and the frequency at which maxiumum
power is radiated also increases with e.

2.4.3.3. Waveform with dissipation
We now return to Eqs. [2.96], where on the left hand side the

time-dependence is in e(t) and p(t). By definition, see [2.71], L = ν
√
Gmp

from which

dL

dt
= νc

2

√
Gm

c2p

dp

dt
. [2.108]
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Figure 2.9: Plot of 〈Pn〉/P e=0
GW for different values of e = 0 (red), e = 0.2 (blue),

e = 0.4 (cyan) e = 0.6 (green).

This combined with Eqs. [2.96] and Eq. [2.100] gives

dp

dt
= −64

5 νc
(
Gm

c2p

)3
(1− e2)3/2

[
1 + 7

8e
2
]
. [2.109]

The energy of the orbit is given in Eq. [2.73], from which

ė = 1
νGm2

p

e
Ė − ṗ

2pe (1− e2). [2.110]

Then plugging in [2.99] and [2.109] gives

de

dt
= −304

15 νc
(
e

p

)(
Gm

c2p

)3
(1− e2)3/2

[
1 + 121

304e
2
]
. [2.111]

Notice that an initially circular orbit with e = 0 remains circular for all times.
These coupled equations Eq. [2.109] and [2.111] can be solved together for e(t)
and p(t), or alternatively combined to determine p(e).
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Observe that both p(t) and e(t) decrease with time. An elliptical orbit with
initial eccentricity e 6= 0 will thus become more circular due to GW radiation.
This is the reason why often it is a good approximation to consider circular
orbits, particularly when studying the last moments before the merger of the
binary system. (This is the case of the events observed by LVK.) The time-
scale, τR, of the radiative decay of e and p can be estimated from say [2.111],
which we rewrite as

de

dt
∼ − e

τR
. [2.112]

To lowest order in e this leads to

τR = 1
ν

(
Gm

c2p

)−5/2
T

2π [2.113]

where T is the orbital period [2.74]. From Eq. [2.70],
(
Gm
c2p

)
∼ |~v|2/c2 � 1, and

thus τR ∼ (c/v)−5T � T .

The decrease of p and e also imply that T decreases with time. Indeed from
Eqs. [2.74], [2.111] and [2.109]

dT

dt
= −192

5 π

(
GM
c3

2π
T

)5/3 [1 + 73
24e

2 + 37
96e

4

(1− e2)7/2

]
[2.114]

whereM is the chirp mass [1.6]. Thus the orbital frequency ω0 increases, and
GWs are emitted with increasing frequencies. Furthermore, from e.g. Eq. [2.89],
the GW amplitude increases (since p decreases). In fact, to find the GW wave-
forms h+,×, the solutions of Eqs.[2.111] and [2.109] for e(t) and p(t) must be
substituted into Eq. [2.68] namely

dψ(t)
dt

=

√
Gm

p3(t) [1 + e(t) cos(ψ(t))]2 [2.115]

from which one determines ψ(t). The waveform h+,× are then given by
e.g. [2.87] and [2.88] whens ~N = ~ez. The plus polarisation is plotted in
Fig. 2.10 for 4 different initial values of the eccentricity e = 0, 0.3, 0.5 and 0.7.

The upper waveform in Fig. 2.10 is for circular orbits. The increasing ampli-
tude and frequency of the GWs is clearly visibile and will be quantified in the
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discussion below. The waveform diverges when p reaches zero, though clearly
this is beyond the regime of applicability of the quadrupole approximation
which assumes |~v|/c � 1. Since |~v| ∼ 1/√p this is clearly violated as p → 0.
That is the reason why, in Section 1.1.4.2, we invoked the ISCO as a possible
minimum distance, which then defined a merger frequency through Eq. [1.8].

The lower three curves shows h+ for increasing initial eccentricity. The el-
liptical nature of the orbits is reflected in the waveform which, while periodic is
no longer symmetric with maximum power emitted at the pericenter. Further-
more, as discussed above, a consequence of the Peter Mathews equation is that
the emitted GW power increases with e. This is why the waveform diverges
at earlier and earlier times as e increases. Finally, in figure 2.11 we plot the
orbits of the system for e = 0 and e = 0.3. The decrease in orbital radius and
eccentricity is clear from the figure.

2.4.4. Circular orbits: analytic expressions

It is straightforward to write down analytical solutions for circular orbits of
radius p(t). As discussed above, all GW waves are emitted with frequency f(t)
and angular frequency ω(t) which satisfy

ω(t) = 2πf(t) = 2ω0 = 2

√
Gm

p3(t) [2.116]

from [2.74]. Using Eq. [2.109] with e = 0, the time dependence of ω can then
be straightforwardly determined, giving

ω̇ = 12
5 21/2

(
GM
c3

)5/3
ω11/3 [2.117]

or equivalently in terms of f = ω/2π,

ḟ = 96
5 π

8/3
(
GM
c3

)5/3
f11/3 [2.118]

where M is again the chirp mass Eq. [1.6]. Integration directly gives f(t),
namely

f(τ) = 1
π

(
5

256τ

)3/8(
GM
c3

)−5/8
[2.119]
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Figure 2.10: Four waveforms, in the lowest order PN expansion, with initial
values of eccentricity given by e = 0, 0.3, 0.5 and 0.7. Most GW power is emitted
near the pericenter where the orbital velocity is the largest. Also since more
GW radiation is emitted as e increases, the merger occurs earlier.
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Figure 2.11: Corresponding to Fig. 2.10, the orbits r(t) given by Eq. [2.65] for
e = 0 and e = 0.3

where τ = t − tc and as in section 1.1.4.1, tc is the coalescence time where f
formally diverges. (This corresponds to the time at which the waveform diverges
in figure 2.10.) Thus for a binary inspiral on a circular orbit f−8/3 is linear in
time, with a slope which determines directly the chirp mass.

Now, from [2.87] with e = 0, the GW phase is Φ ≡ 2ψ which from [2.115]
satisfies dΦ/dt = 2ω(t). Thus

Φ(t) = 2
∫ t

ti

dt′ω(t′). [2.120]

Combining these results and using Eq. [1.91], the plus and cross polarisations
in some direction ~N (described by θ and ϕ) are given by

h+(t) = 4
R

(
GM
c2

)5/3(
πf(tR)
c

)2/3
cos[Φ(tR) + φ]

(
1 + cos2 θ

2

)
[2.121]

h×(t) = 4
R

(
GM
c2

)5/3(
πf(tR)
c

)2/3
sin[Φ(tR) + φ] cos θ. [2.122]
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The angle θ can be identified with the inclination of the source relative to the
detector, see Fig. 1.1, while φ can be reabsorbed into a redefinition of time;
indeed from [2.120] and [2.117] using that dτ = −dt,

Φ(τ) = −2
(

5GM
c3

)−5/8
τ5/8 + Φc [2.123]

where Φc is the phase at τ = 0 namely at coalescence. Thus to conclude

h+(t) = 1
R

(
GM
c2

)5/4( 5
cτ

)1/4 [1 + cos2 ι

2

]
cos Φ(τ) [2.124]

h×(t) = 1
R

(
5GM
c2

)5/4( 5
cτ

)1/4
cos ι sin Φ(τ) [2.125]

where θ = ι is the inclination of the binary, see Fig. 1.1. This is the analytic
expression of the curve plotted in blue in figure 2.10.

2.4.5. Hyperbolic orbits

While all GW detections to date are from bound elliptical/circular CBCs
with e < 1, many other potential GW sources exist for instance non-spherical
spinning NSs and asymmetric core collapse Supernovae. In this brief subsec-
tion we discuss another possible source, namely unbound binary systems on
hyperbolic orbits. That is, we consider cases in which the eccentricity e > 1 see
Eq. [2.73] and Fig. 2.12.

Hyperbolic orbits are interesting not only because unbound orbits are ex-
pected to exist in nature (and hence the waveform for such events is and will
be searched for by GW detectors (Agazie et al. 2024 ; Gasparotto et al. 2023 ;
Goncharov et al. 2024 ; Inchauspé et al. 2024)), but also because this simple
system provides a first example of a gravitational wave memory effect. There
are many different kinds of memory effects (see e.g. (Favata 2010)), the simplest
of which is the linear memory effect which occurs already at the lowest order in
the PN expansion and which is illustrated by hyperbolic orbits. Memory effects
occur when there is a permanent change ∆hTT

ab in the gravitational waveform,
and thus leads to permanent displacement ∆L of the arms of GW detector for
example, see Eq. [2.4].

2.4.5.1. Linear memory effect and low-frequency GWs

The two GW polarisations for hyperbolic orbits are shown in Fig. 2.8 for
~N = (0, 0, 1). The waveform is not periodic but rather burst-like, and h× has
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a non-zero variation between t = ±∞: this is the linear memory effect. More
generally, the variation of the metric perturbation between t = ±∞ is given by

∆hTT
cd =

∫ ∞
−∞

dt ḣTT
cd (t), [2.126]

thus it follows from [2.45] that there will be a linear memory effect ∆hTT
ij 6= 0

when there is a net change in the second time derivatives of quadrupole moments
of the system. This is precisely the case for hyperbolic orbits. Indeed, it is

y

x
ψ(t)

r(t)

ψ−ψ+ = −

Figure 2.12: Sketch of a hyperbolic orbit in the CM, showing the angles ψ± =
± arccos(−1/e).

straightforward to show that

∆hTT
cd = hTT,+

cd − hTT,−
cd = 2G

c4R
PTTab

cd( ~N)(Ï+
ab − Ï

−
ab)

= −4Gν
c4R

v2
∞

√
e2 − 1
e2 PTTab

cd( ~N)(δa,xδb,y + δb,xδa,y). [2.127]

where v∞ is given in Eq. [2.77].
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The time-scale over which the GW signal varies in Fig 2.8 varies, namely the
burst time-scale, is determined by the inverse of the characteristic frequency
ω−1
c given in Eq. [2.76]. Up to factors of eccentricity, this also determines the

characteristic frequency scale of the emitted GWs on hyperbolic orbits. Indeed,
contrary to the case of periodic elliptical orbits discussed in section 2.4.3.2, now
GWs of all continous frequencies are emitted, and one can determine the GW
power as a function of frequency by now Fourier transforming the power emit-
ted. Using the convention Ĩab(ω) =

∫
dtIab(t)e−iωt, as well as the quadrupole

approximation, the total energy emitted in GWs is

EGW = G

5c5

∫ ∞
−∞

dt(
...
I ab)2 = G

5πc5

∫ ∞
0

dω ω6|Iab(ω)|2 ≡
∫ ∞

0
dωPGW(ω).

Thus the emitted power in GWs is thus

PGW(ω) = G

5πc5
[
ω3Ĩab(ω)

] [
ω3Ĩ∗ab(ω)

]
. [2.128]

Direct calculation analogous to that of section 2.4.3.1 (see e.g. (Brax and Steer
2024)) shows that PGW(ω) is peaked at a value fixed by ωc but which increases
with e, see figure 2.13. Notice that PGW(0) 6= 0. This is due to the linear
memory effect: indeed Eq. [2.126], written in Fourier space reads

∆hTT
cd = −i 2G

c4R
PTTab

cd( ~N)
[
ω3Ĩab(ω)

]∣∣
ω=0 , [2.129]

thus a non-vanishing linear memory effect implies PGW(0) 6= 0.

2.4.5.2. Capture due to GW emission

One can estimate the energy emitted in GWs between ψ− < ψ < 0 by
calculating

∆EGW =
∫ 0

ψ−

dψ
1
ψ̇
PGW(ψ) [2.130]

where PGW(ψ) is given in Eq. [2.92]. Let us consider an orbit which is only
slightly unbound, thus e = 1 + ε with 0 < ε � 1 so that the orbital energy is
E ' νGm2ε/p, see Eq. [2.73]. Then it is straightforward to determine ∆EGW
to lowest order in ε, leading to

∆EGW = 85
3 mc

2ν2
(
Gm

c2p

)7/2
π +O(1). [2.131]
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!(
ω̃

)/!
(0)

Figure 2.13: The energy spectrum PGW(ω̃)/PGW(0) where ω̃ = ω/ωc for dif-
ferent eccentricities. Figure from (Brax and Steer 2024).

Note that here we assumed p constant, that is we have neglected the back-
reaction of the emitted GR on p: this is a reasonable approximation for this
individual burst process since p changes on a time-scale ∼ (c/v)−5ω−1

c as dis-
cussed previously. The orbital energy E ∼ νGm2ε/p will thus be reduced by
∆EGW, and if

E −∆EGW < 0 [2.132]

then the GW energy loss will convert the hyperbolic orbit into a bound orbit
before the pericenter. This can be rewritten as the condition

ε <
85ν
3

(
Gm

c2p

)5/2
π. [2.133]

Instead of parametrising the orbit in terms of (p, ε), for such scattering
trajectories it is more convenient to work with (b, v∞) where b is the impact
parameter and v∞ is the orbital velocity at infinite separation. From Eq. [2.77],
v2
∞ ' 2(Gm/p)ε and substituting ε from Eq. [2.133] gives

(
Gm

c2p

)7/2
>

3
170πν

(v∞
c

)2
. [2.134]
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Furthermore, basic trigonometry gives

b = p

sinψ−
= pe√

e2 − 1
' p√

2ε
=
√
Gmp

v∞
. [2.135]

Saturating the bound in [2.134] identifies the impact parameter bcapture for
which capture occurs. The corresponding capture cross-section
σGW := πb2capture is thus given by

σGW = π

(
170πν

3

)2/7(
Gm

c2

)2(
c

v∞

)18/7
. [2.136]

Such a process could play an important role for instance in dense star clusters
and galactic nuclei, see e.g. (Capozziello et al. 2008 ; O’Leary et al. 2009 ;
Hoang et al. 2020).

2.5. GWs in curved space-time, cosmology

In the previous sections we discussed GWs in Minkowski space; our aim
is now to generalise the results presented there to a cosmological space-time.
There is now a further scale of interest other than the characteristic size d
of the source and the GW wavelength λGW, namely the cosmological horizon.
The results of the previous sections are valid in the so-called the local wavezone
of the source, namely at distances scales R which are large compared to the
GW wavelength but small compared to the cosmological horizon, d� λGW �
R � horizon. We now aim to extend them to cosmological scales: we will see
that the expansion of the universe dampen the GW amplitude, and redshift
frequencies and masses.

2.5.1. General background metric

2.5.1.1. Linearised equations
The linearized equations around an arbitrary background [1.34] are given

explicitly in Appendix 1.4. We can simplify them again using the de Donder
gauge [1.74], generalised to curved space-time as11

∇̄µh̄µν = 0, h̄µν := hµν −
1
2 ḡµνh. [2.137]

11. We are using a bar to indicate both the background metric, and the trace-reversed
perturbation. We believe that no confusion should arise, because of the different places
where these quantities enter.
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In this gauge, the equations of motion become in empty space (see Eq. [1.139])

�̄h̄αβ + 2R̄µανβh̄
ν
µ + Sµανβh̄

µν = 0 [2.138]

where, see Eq. [1.140],

Sµανβ = 2Ḡµ(αgβ)ν − R̄µνgαβ . [2.139]

Here R̄µανβ is the Riemann curvature tensor of the background space-time, and
R̄µν the Ricci-tensor. The two last terms depend on the ratio of λGW relative to
the scale of variation of the background metric. In the following we will assume
that they are negligible. (For a homogeneous and isotropic FRLW metric12,
considered below, the scale of variation of the background is the cosmological
horizon, which is much greater than λGW.). Thus Eq. 2.138 reduces to

ḡµν∇̄µ∇̄ν h̄αβ ' 0. [2.140]

2.5.1.2. WKB approximation
For a general space-time, the solution of Eq. [2.140] can be obtained in the

WKB approximation. The underlying physical assumption is that the ampli-
tude of the wave is slowly varying with respect to the frequency of the wave,
and hence we write

h̄µν(x) =
∑
p

<
[
Ap(x)εpµν(x)eiS(x)/δ

]
[2.141]

where the sum is over polarisations p with polarisation tensor εµν satisfying
εµνε

µν = 1 (recall that to this leading order in h, indices are raised and low-
ered with the background metric) and A is the corresponding amplitude. The
parameter δ → 0, and we define

kµ = ∂µS

δ
. [2.142]

Now substituting [2.141] the de Donder condition Eq. 2.137 becomes (dropping
the p sum for simplicity)

∇̄µh̄µν =
[
∇̄µ(Aεµν) + iAεµν

∂µS

δ

]
eiS(x)/δ = 0, [2.143]

12. In a perturbed FRLW metric, there could be local bumps in the curvature of scale
similar to λGW: we do not consider this case here.
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which to leading order in δ implies

kµεµν = 0 [2.144]

and hence that εµν is the transverse polarisation tensor. Substitution into the
equation of motion Eq. [2.140] leads to terms in δ−2, δ−1 which are, respectively

ḡµνkνkµ = 0, [2.145]

2∇̄µ(Aεαβ)kµ + (Aεαβ)∇̄µkµ = 0. [2.146]

The first equation, the Eikonal equation (geometric optics limit), implies that
GWs are massless with dispersion relation ω2 = ~k2 and propagate on null
geodesics. Contracting the second equation [2.146] with εαβ , and using that
εµνε

µν = 1 so that (∇̄αεµν)εµν = 0, leads to

2(∇̄µA)kµ +A∇̄µkµ = 0 ⇒ ∇̄µ(A2kµ) = 0. [2.147]

This gives the decay of the GW amplitude A along the null geodesics. Finally,
substituted back Eq. [2.147] into Eq. [2.146] gives

kµ(∇̄µεαβ) = 0 [2.148]

which implies that the polarization tensor εαβ of the GW is parallel propagated
along the null geodesics.

To summarise, in the Lorenz gauge, the solution of

ḡµν∇̄µ∇̄ν h̄αβ ' 0 [2.149]

in the WBK approximation is h̄µν(x) = <
[
A(x)εµν(x)eikµxµ

]
with

ḡµνkνkµ = 0 [2.150]

kµεµν = 0 [2.151]

∇̄µ(A2kµ) = 0 [2.152]

kµ(∇̄µεαβ) = 0 [2.153]

We now consider these equations in a FRLW metric.
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2.5.2. FRLW metric: background

The flat Friedmann-Robertson-Lemaitre-Walker (FRLW) metric is

ds̄2 = −dt2 + a2(t)d~x2 = −dt2 + a2(t)(dr2 + r2dΩ2) [2.154]

where ~x are comoving coordinates and a(t) is the scale factor (normalised such
that today, at t = t0, a(t0) ≡ a0 = 1). For a perfect fluid source, Einsteins
equations Eq. [1.16] reduce to the Friedmann equations

H2 = 8πG
3 ρ+ Λ

3 [2.155]

ä

a
= −8πG

6 (ρ+ 3P ) + Λ
3 [2.156]

where ρ and P are respectively the energy density and pressure of the perfect
fluid, and H = ȧ

a is the Hubble parameter, whose value today is the Hubble
constant H0. These two equations imply the conservation equation ρ̇+ 3H(ρ+
P ) = 0 = ∇νTµν . In terms of conformal time η defined by dη = dt/a(t), the
metric in Eq. [2.154] is conformally related to the Minkowski metric

ds̄2 ≡ ḡµνdxµdxν = a2(η)[−dη2 + dr2 + r2dΩ2]. [2.157]

Consider now a source (of photons or GWs) at fixed radial position r = 0, and
an observer at ro. On a (η, r) space-time diagram null radial geodesics propagate
at 45 degrees. If two null geodescis are emitted at a conformal time interval δηs
by the source, then they arrive at the observer with the same conformal time
interval δηo = δηs. This implies the standard time-dilation relation

dto = a(to)
a(ts)

dts ≡ (1 + z)dts [2.158]

where z is the redshift of the source (the observer is at to = t0), and equivalently
that the emitted (or ‘source’) frequency fs is related to the observed frequency
fo by

fo = fs
1 + z

. [2.159]

The radial comoving distance R to an event with redshift z is given by solving
ds2 = 0, thus dr = dt/a(t), leading to

R =
∫
dr =

∫
dt

a(t) =
∫ 1
a

dt

da

da

dz
dz =

∫ z

0
dz

1
H(z) [2.160]
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where H(z) = H0E(z) is the Hubble parameter expressed in terms of redshift,
and from the Friedmann equation

E(z) =
√

Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ [2.161]

where Ωr,m = 8πGρr,m
3H2

0
, ΩΛ = Λ

3H2
0
and Ωr + Ωm + ΩΛ = 1.

A crucial quantity is the luminosity distance dL(z). This relates the EM
luminosity of the source and the luminosity measured by the observer. In the
flat FRWL metric [2.154] it is given by

dL(z) = a(to)(1 + z)R = (1 + z)
∫ z

0
dz

1
H(z) [2.162]

As we will see, this same distance scale determines the GW amplitude in an
expanding universe.

2.5.3. FRLW metric: gravitational waveforms

Consider a GW propagating radially outwards from the source at r = 0 and
redshift zs with kµ = ω(1,−1, 0, 0). From Eq. [2.147] it is possible to determine
how the GW amplitude decreases along the null GW geodesic. In a FRLW
metric (in conformal time) Eq. [2.147] becomes

∂ν(
√
−ḡA2kν) = 0 = ∂ν(a(η)2A2r2kν). [2.163]

Thus A(η, r)a(η)r remains conserved during the propagation, and

A(η, r) = const
a(η)r

∣∣∣∣
η−r=const

[2.164]

The constant is fixed by the known amplitude of the wave in the wave-zone
approximation, close to the source, where the Minkowski results are valid.
Then the remainder of the solution h̄µν is obtained by parallel transporting
this solution from the source to the observer. We now carry out these steps.

Before doing so we note that in a flat FRLW universe and focusing on the
spatial TT components only, then in fact [2.138] reduces to identically to

ḡµν∇̄µ∇̄ν h̄TT
ij = 0 = hTT′′

ij + 2HhTT′
ij + ∂k∂

khTT
ij [2.165]
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since the spatial components of the Riemann and Ricci tensors vanish identi-
cally. From here the scaling of the amplitude of GWs as 1/a(η) is also immedi-
ate.

We now consider a compact binary system on circular orbits, as discussed
in section 2.4.4 in Minkowski space. In the wavezone approximation and at a
physical distance R = a(ts)r from the source as measured by time ts of the
source clock, the plus and cross polarisations of the GW are given in [2.121]
and [2.122]. Focusing on the cross polarisation,

h×(ts, ι) = 4
R

(
GM
c2

)5/3(
πfs(tret

s )
c

)2/3

cos ι sin(2Φs(tret
s )) [2.166]

where tret
s = ts − tc is the time to coalescence at tc and M is the chirp mass

[1.6]. The time dependence of the frequency is given in Eq. [2.118] namely

dfs
dts

= 96
5 π

8/3
(
GM
c3

)5/3
f11/3
s [2.167]

leading to

fs(tret
s ) = 1

π

(
5

256tret
s

)3/8(
GM
c3

)−5/8
, [2.168]

so that the phase dependence is

Φs(ts) = Φc + 2π
∫ ts

tc

dt′sfs(t′s) = −2
(
tret
s c3

5GM

)5/8

+ Φc. [2.169]

We now parallel transport this solution [2.166] along a null geodesic to the
observer. Along the geodesic the GW phase remains constant because the time
dilation effects cancel the redshifting of the frequency. Thus at the observer
whose clock measures dt = dts(1+z), the observed GW frequency f = fs/(1+z)
leading to Φ(t) = Φs(ts). However, at the observer, the GW amplitude is
changed. From Eq. [2.164], and using [2.166]

h×(t, ι) = 4
a(t)R

(
GM
c2

)5/3 [π
c
f(tret)(1 + z)

]2/3
cos ι sin(2Φ(tret))[2.170]
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where we have included the redshifting of frequency. Let us now define the
redshifted chirp mass

Mz = (1 + z)M [2.171]

Then [2.170] becomes

h×(t, ι) = 4
a(t)R(1 + z)

(
GMz

c2

)5/3(
πf(tret)

c

)2/3

cos ι sin(2Φ(tret))

= 4
dL(z)

(
GMz

c2

)5/3(
πf(tret)

c

)2/3

cos ι sin(2Φ(tret
o ))

where in the second line we have used Eq. [2.162] defining the luminosity dis-
tance to the source (today a(to) = 1). The dependence of the observed fre-
quency on time t is obtained by fs = (1 + z)f into Eq. [2.167]:

(1 + z)d[f(1 + z)]
dt

= 96
5 π

8/3
(
GM
c3

)5/3
f11/3(1 + z)11/3. [2.172]

Assuming that changes in z are negligible during the observation time, then z
can be taken as constant13 leading to

df

dt
= 96

5 π
8/3
(
GMz

c3

)5/3
f11/3, [2.173]

namely the GW phase depends on the redshifted chirp mass,

Φ(tret) = −2
(
tretc3

5GMz

)5/8

+ Φc. [2.174]

To summarize, the GW frequency depends on the redshifted chirp mass
Mz which is therefore determined by measurements of the phase of an inspiral
signal. The GW amplitude depends on both Mz and dL(z). Given that the
former is determined from the phase, measurements of the amplitude of the
signal determine dL(z). Generally speaking therefore, GW observations from

13. See (Bonvin et al. 2017) for a discussion of where this assumption may lead to
biases
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individual CBC events determine the luminosity distance dL(z) and the so-
called ‘redshifted’ masses,

mdetected
1,2 = (1 + z)m1,2 [2.175]

which are related to the ‘source’ masses m1,2 by the same factor of 1 + z as in
Eq. [2.171].14

Notice that while redshift does change the waveform it occurs in such a way
that can be exactly compensated by a shift of the masses from their ‘source’ to
‘detected’ values and by replacing the comoving distance with the luminosity
distance. In other words, it is not possible to determine the redshift z of the
source from GW observations: there is a perfect degeneracy between source
masses, redshift, as well as spins. This is true to all orders in the PN expansion
and is a consequence of the fact that GR is scale-free. (For NS binaries or
NS-BH binaries, due to the non-zero NS radius RNS and tidal effects this
degeneracy is broken see e.g. (Del Pozzo et al. 2017 ; Messenger and Read
2012) and references within.)

If a cosmological model is assumed like Λ CDM, with given values of H0,
Ωm etc (say from the Planck observations), then of course from the measure-
ment of the luminosity distance of an event, it is possible to determine z using
Eq. [2.162]. Then, from the detected masses mdetected

1,2 one can determine the
value of the source masses m1,2 via Eq. [2.175]. This for example was done
in (Abbott et al. 2016) which gives the source-frame values of the two black
hole masses. However, in fact the values of the cosmological parameters H0
etc are not precisely known, and a source of tension in cosmology today, see
e.g. (Di Valentino et al. 2021). For these reasons, it can be interesting to use
GW observations in a different way, namely as a new observable with which to
measure cosmological parameters.

2.5.4. Measuring cosmological parameters with GWs

By definition, see [2.162], the luminosity distance dL(z) is a function of
cosmological parameters such as H0, Ωm. At small redshifts z � 1, the domain
of the current O3 measurements of the LVK collaboration (Abbott et al. 2023),
Eq. [2.162] reduces to

cdL ∼
z

H0
[2.176]

14. To determine each mass individually, rather than in the combination of the chirp
mass, requires the waveform beyond the lowest order quadrupolar form discussed here
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meaning that only H0 enters. Clearly, in order to measure H0 not only is
dL required (and obtained from GW observations, as mentioned above), but
the redshift z of the source. However, this cannot be determined from GW
observations: extra non-gravitational information is necessary to determine z.
Such information could be for example electro-magnetic.

The most straightforward way to determine z is to uniquely identify the
“host galaxy” of the GW signal, namely the galaxy in which GW event oc-
curred. This was possible for event GW170817 corresponding to the the merger
of 2 NS, which occurred on August 17th 2017. Indeed, 1.7s following the merger
of the GWs observed by the two LIGOs and Virgo, EM observers around the
globe observed a subsequent gamma-ray burst as well as multiple EM signals
in different frequency bands. This EM data located the host galaxy down to
NGC 4993, a galaxy in the Hydra constellation which is receding from us with
a velocity cz = 3327± 72 km/s, due to the expansion of the universe. Combin-
ing this with the distance dL = 43.8+2.9

−6.9 Mpc inferred from the GW signal led
to an estimated value for H0 = 70+12

−8 km/s/Mpc (Abbott et al. 2017). This
result, using one GW event only, is consistent with other measurements but of
course less accurate because of its larger error bars. Its interest is that it shows
that the idea works. The errors would be reduced (with a 1/

√
N scaling) if N

other measurements of this kind existed, but unfortunately, GW170817 was an
extremely rare event as since then no further GW events with associated with
EM counterparts (known as standard sirens) have been detected,

However, LVK has detected GWs from hundreds of BBHs and a few NS-BH,
for each of which there is a measured dL and mdetected

1,2 — but no EM counter-
part. Even for these dark sirens, it is possible to obtain redshift information,
and therefore measure H0. Today, two pieces of information are used together
to get a statistical redshift for GW events: (i) galaxy catalogues and (ii) astro-
physical modelling of the formation channels of BBHs. We refer the reader to
(Mastrogiovanni et al. 2023) for a review of these methods and results.
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2.7. Appendix: Landau-Lifshitz approach

The Landau-Lifshitz formulation of Einstein’s equations is a convenient ap-
proach to perturbative theory around Minkowski, and it is widely used by the
community working on the PN and PM expansions. We provide here a brief
description of the approach from the perspective of the main text, and refer
the reader to (Blanchet 2006 ; Poisson and Will 2014) for more details. In
the Landau-Lifshitz approach one uses a density-weighted inverse metric as
fundamental variable,

gµν :=
√
−ggµν = ḡµν − h̄µν +O(h2). [2.177]

The interest in doing so is that the quantity

Hαµβν := gαβgµν − gανgβµ [2.178]

is related to the Einstein tensor via ordinary derivatives. More precisely,

∂µ∂νH
αµβν = 2(−g)(Gαβ + 8πG

c4
tαβLL ) =̂ 16πG

c4
(−g)(Tαβ + tαβLL ), [2.179]

where tαβLL is a density-weight two pseudo-tensor, given explicitly by some
lengthy expression in terms of first derivatives of the metric. Crucially, it is
conserved on-shell ∂α(−gtαβLL ) =̂ 0. The dimension-full numerical factor in front
of it is included in its definition for convenience when going on-shell in the last
equality above.

This arrangement of Einstein’s equations manifestly breaks covariance.15

Not only we have partial derivatives as opposed to covariant derivatives, but
also tensor densities, aka pseudo-tensors, appearing. Its usefulness is limited to
situations in which there are regions of spacetimes that are approximately flat,
and where one can choose a Cartesian coordinate system, so that partial deriva-
tives can be interpreted. This is precisely the case when studying a perturbative
approximation around Minkowski. Within that context, the reformulation has
two useful advantages.

The first is that it provides a prescription for a gravitational
energy-momentum pseudo-tensor valid to all orders, given by tαβLL . By analogy

15. It is like rearranging the covariant geodesic equation [2.1] as in [2.2], where neither
side of the equation is covariant by itself.
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with the matter counterpart, one has a prescription to further split this
quantity into contributions to energy, momentum and angular momentum.
All these expression are gauge-dependent; in particular, we have the usual
problem that the pseudo-tensor can be made to vanish at any given point,
using a local inertial frame. But the logic in this approach is that we assume
to have a preferred coordinate system, the Cartesian ones of the fiducial flat
metric, and that is the gauge we stick to. Furthermore, since the left-hand
side is a total derivative, the total energy, momentum and angular momentum
can be expressed as surface integrals. This provides a prescription for these
quantities that can be evaluated in a region far from the sources, where one
can safely assume that spacetime is approximately flat and use Cartesian
coordinates, and computed to all order in perturbation theory.

The second advantage of the formulation is that one can change variables
to ĥµν := ηµν − gµν , where ηµν is a fiducial background metric for which the
coordinates are Cartesian, and then [2.179] are equivalent to

�hµν =̂ − 16πG
c4

τµν , τµν := (−g)(Tµν + tµνLL + tµνH + tµνNH), [2.180]

where tµνH satisfies ∂µ(−gtµνH ) ≡ 0, and tµνNH does not but contains only terms
that vanish in harmonic gauge. It follows that in the harmonic gauge,

∂µτ
µν =̂ 0. [2.181]

By means of introducing a fiducial flat background and a fixed choice of Carte-
sian coordinates on it, one can rewrite the exact Einstein’s equations in the form
of a fiducial flat spacetime wave equation with a (very) complicated source. This
set-up offers itself to a practical iteration scheme for the perturbation theory.
The idea is the to solve the ‘relaxed field equations’ [2.180] alone, in harmonic
gauge, and afterwards impose the gauge consistency condition [2.181]. What
makes this particularly practical is that [2.181] can be imposed on the matter
dynamics. See (Blanchet 2006 ; Poisson and Will 2014) for further details.
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