

Space-based detectors: LISA

Quentin Baghi (APC) 4th MaNiTou Summer School on Gravitational Waves - July 4th, 2025

Layout

- 1. Mission concept
- 2. Science objectives and related challenges
- 3. Measurement principles
- 4. Towards the future

U

1. Mission concept

1. Mission concept

LISA - LASER INTERFEROMETER SPACE ANTENNA

- Measures mHz gravitational waves at [10⁻⁴, 1] Hz
- It uses a network of laser interferometers connecting 6 free-floating test-masses
- A constellation of 3 satellites separated by 2.5 Mkm
- 10 picometer precision on the optical path difference

Earth

Sun

4

1. Mission concept Instrument's response to GWs 10^{-16} Current Best Estimate Allocation Test Mass Acceleration Noise Strain Amplitude Spectral Density $\left[1/\sqrt{Hz}\right]_{10-10}$ $_{10-10}$ $_{10-10}$ $_{10-10}$ Displacement (Interferometer) Noise Test-mass acceleration noise $\propto f^{-2}$ Interferometer noise Marine Marine 10^{-21} 10^{-3} 10^{-2} 10^{-4} 10^{-1} 10^{0} Frequency [Hz]

4

1. Mission concept

U

2. Science Objectives

• Most numerous sources ~ 10^7 with ~ 10^4 detectable

- Most of them are detached and interactive white dwarfs → stellar remnants
- Unresolved sources form a confusion foreground

- How do binary compact stars interact?
- How do they evolve?

See Astrid Lambert's lecture on Saturday!

-15-

• What is the spatial distribution of ultra-compact binaries?

-10⁻²

• This is a challenge for data analysis: tens of thousands of continuous, overlapping sources

Quentin Baghi

- LISA will detects black hole mergers with $10^5 < M < 10^7$ solar masses
- Up to large redshifts: z = 15 and beyond
- Formidable tool to study the origin and evolution of BHs!

• How did massive black holes form? What are their seeds?

Simulated MBHB resulting from light seeds

Quentin Baghi

Simulated MBHB resulting from heavy seeds

Quasars observed at $z \sim 7$ with EM observations

Current distribution of AGN population

Light seeds = result from gravitational collapse of first metal-free stars in early dark matter haloes Heavy seeds = result from direct collapse of supermassive stars in massive dark matter haloes

- Can we detect EM counterparts before and after the merger? ٠
- What is the role of accretion?

Quentin Baghi

• Source type mixing requires to develop a "global fit" approach

Prototype pipelines results with LISA Data Challenges 2 data

2. Science objectives: Probe the properties and immediate environments of Black Holes using EMRIs

- In which stellar environments do MBHs live?
- What are the spin & mass distributions of MBHs?
- We can use extreme-mass ratio inspirals (EMRIs) with mass ratios $10^{-6} < q < 10^{-4}$

Example: 1 massive black hole with $10^6 M_{\odot}$

1 black hole with 10 M_{\odot} -

ratio inspirals (EMRIs) 10^{-4} le with $10^6 M_{\odot}$ $10 M_{\odot}$

• LISA could detect EMRIs at typical z ~ 3

Starting at 3 mHz, takes 1 year to plunge = 10^5 orbital cycles

- \rightarrow Probe astrophysical environments of **quiescent** massive black holes \rightarrow co-evolution with host galaxies
- Measure cosmological parameters
- Test fundamental physics

2. Science objectives: Probe the properties and immediate environments of Black Holes using EMRIs

- Challenge for data analysis: many harmonics and cycles, complicated waveform
- Challenge for (fast) waveform modelling: disparate time and length scales
- Current fast Kludge models should be enough to detect EMRIs
- Accurate parameter estimation requires better models described by gravitational self-force (BH perturbation theory)
- → Need for extending waveforms models to spinning, eccentric, and inclined systems
- → Need adapted inference strategies

Ongoing developments in the FastEMRIWaveforms package

2. Science objectives: Understand the astrophysics of stellar-mass black holes

- How are they born?
- Complementary to ground-based observations: LISA will observe sBHBs < hundreds of years before they merge.

Ŵ

2. Science objectives: Explore the fundamental nature of gravity and Black Holes

Quentin Baghi

- Test GR in the strong field regime
- Test validity of GR Kerr solution for merger remnants

Quentin Baghi

2. Science objectives: Cosmology

SO6: Probe the rate of expansion of the Universe with standard sirens

- We can probe the expansion of the universe at z > 2 with **bright sirens**: massive black hole binaries with electromagnetic counterparts
- We can probe the expansion of the universe at z < 1 with **dark sirens**: EMRIs

SO7: Understand stochastic GW backgrounds

- It would be a groundbreaking discovery if we detected a stochastic GW background of cosmological origin
- Unique probe of early-universe physics and TeV-scale particle physics)
- But very challenging data analysis task!

2. Science objectives: Understand stochastic GW backgrounds

• Stochastic GW backgrounds could be fabricated before the Universe's first light

Region inaccessible through light

Credit: R. Hurt/Caltech-JPL, NASA, and ESA

4

2. Science objectives: Understand stochastic GW backgrounds

• Stochastic GW backgrounds could also come from binary populations in the universe!

Å

2. Science objectives: Understand stochastic GW backgrounds

• Extracting them is a challenge: they must be distinguished from instrumental noise and Galactic foreground

U

3. Measurement principles

٠

3. Measurement principles

- Measures mHz gravitational waves [10-4, 1] Hz
- 3 spacecraft (S/C) forming a triangle with 2.5 x 10⁶ km arms
- Housing 6 test masses
- Network of laser interferometers
 - 4.5 years of science observations with 82% duty cycle

50 Mkm - tradeoff

communication / Earth disturbance

3. Measurement principles: components

- How do we do in space?
- In a classic Michelson interferometer, we detect the differential phase of two light rays with a phasemeter
- The position noise due to the arm length mismatch is

$$\sqrt{S}_x = |L_2 - L_1| \frac{\sqrt{S_\nu}}{\nu_0}$$

- LISA long arm lengths makes it infeasible to have a classic Michelson configuration!
- Instead, each link has its own laser source
- Interferometric measurement between the outgoing beam and light coming from distant spacecraft

- But in LISA, each science interferometer length mismatch is of the order of millions of kms.
- Each link has its own laser source.
- This induces a huge noise due to laser frequency random fluctuations, even with the best lasers.

Quentin Baghi 🛛 😿 33

3. Measurement principles: time-delay interferometry

- The interferometry is done as a **post-processing step**.
- A linear combination of delayed phasemeter measurements tailored to cancel laser noise
- This algorithm is called time-delay interferometry (TDI) [Tinto & Armstrong 1999]
- Some of these combinations are equivalent to synthetically reproducing a photon path inside a Michelson interferometer

Ŵ

3. Measurement principles: data analysis

• The challenge of data analysis

3. Measurement principles: data analysis

• The favored strategy to analyse the TDI data is based on Bayesian statistics

• Where one must define a likelihood function: for example, Gaussian

$$p\left(\boldsymbol{d} \mid \boldsymbol{\theta}, k\right) = \frac{1}{\sqrt{(2\pi)^{N} \mid \boldsymbol{\Sigma}(\boldsymbol{\theta}) \mid}} \exp\left\{\left(\boldsymbol{d} - \boldsymbol{h}(\boldsymbol{\theta}, q)\right)^{\dagger} \boldsymbol{\Sigma}(\boldsymbol{\theta}, p)^{-1} \left(\boldsymbol{d} - \boldsymbol{h}(\boldsymbol{\theta}, q)\right)\right\}$$

GW signals: $\boldsymbol{h}(\boldsymbol{\theta}, q) = \sum_{j=1}^{q} \boldsymbol{h}_{j}(\boldsymbol{\theta}_{j})$ Stochastic processes: $\boldsymbol{\Sigma}(\boldsymbol{\theta}) = \sum_{i=1}^{p} \boldsymbol{\Sigma}_{i}(\boldsymbol{\theta}_{i})$
 $k = p + q$

Stochastic

EMRI

3. Measurement principles: data analysis Sample for $p\left(oldsymbol{ heta}_{ ext{MBHB}} | oldsymbol{y}, oldsymbol{ heta}_{ ext{others}} ight)$ Galaxy Residuals are passed around the circle SMBH Sample for $p(\boldsymbol{\theta}_{\text{GB}}|\boldsymbol{y}, \boldsymbol{\theta}_{\text{others}})$ 2 Noise model. PSD estimate SOBH Sample for $p(\boldsymbol{\theta}_{\text{EMRI}}|\boldsymbol{y}, \boldsymbol{\theta}_{\text{others}})$ UGW Blocked Gibbs scheme: iterative sampling over subset of parameters Sample for $p(\boldsymbol{\theta}_{\text{noise}}|\boldsymbol{y}, \boldsymbol{\theta}_{\text{others}})$

3. Measurement principles: operations

LISA's operational concept: perform a *time-resolved*, *all-sky* survey of gravitational waves sources in the millihertz band.

- L0: raw telemetry
- L0.5: processed and reformatted
- L1: noise-reduced TDI data
- L2: probability density functions for identified GW sources
- L3: Catalogue of GW source candidates

U

4. Conclusion

39

	Con	clusic	on: bright future a	and ma	any challenges Science Program Committee (SPC)			
Decision milestones		Phase A			Decision Mission Adop Phase B1		tion Phase B2/C/D Phase	
Mission phase								
Main actors during this mission phase		Feasibilit Two compo Developing	y Phase ting prime contractors first designs of the mission		Refinement Phase Refine Mission Definition Get ready for Implementation Choose final Design Write the big mission document - the Red Book	Implementation One Prime Contractor chosen Now we build the mission! I Book		
Reviews	Mission Definition Review (MDR)		Mission Consolidation Review (MCR)	Mission Formulation Review (MFR)		Mission Adaptio Review (MAR)	n	Launch 2035
Final Documents	CDF Report		Industrial & Inst Data Packs: (Technical & Programmatic)	Industrial & Inst Data Packs: (Tech & Programmatic)		Data Pack: (Tech & Programma & Red Bopk		
Date	DEC	2017	17 DEC 2019		June 2025: ESA signs	2024 Science		

Thank you for you attention!