

Ground Detectors (LIGO/Virgo and ET)

Jerome Degallaix

LMa

1st MaNiTou summer school

Principle of detection
Beating the noise
Selected technologies
Now and future detectors

I. Principle of detection

Effect of gravitational waves Free falling masses Amplitude

Example for one polarisation 5

2 kind of polarisations

polarisation x

Gravitational wave amplitude

Gravitational wave amplitude

Quadrupole formula :

Typical amplitude for the fusion of 2 black holes

$$h = 1,5 \times 10^{-21} \left(\frac{Mass}{30 M_{\odot}}\right) \left(\frac{400 Mpc}{Distance}\right) \left(\frac{Frequency GW}{50 Hz}\right)^{\frac{1}{2}}$$

Freq. GW = 2 × orbital frequency

Order of magnitude $\Delta L = 0.5 h \times L$

If $h \sim 10^{-21}$ so we should measure :

The distance Sun – Proxima Centauri with an accuracy of 0.02 mm

Or 2 km with an accuracy of 10⁻¹⁸ meter !

A more rigorous approach

Starting from the Einstein equation and calculating the round trip time of the light.

Assuming a plane wave monochromatic GW:

 $h(t) = h_0 \cos(\pmb{\omega}_{\rm GW} t)$

Modulation of the round trip time

1. For low frequency, we found the usual formula

- 2. The modulation sign is reversed for the other transverse direction (with + polarisation)
- 3. No effect for certain GW frequencies

4. RT time change could be seen as a length change or light phase shift

II. Michelson interferometer

A brief history

1916 – first calculation

1957 - accepted reality of GW

1960 - first detector

- 1970 idea of laser interferometers
- 2008 data taking with giant interferometers
- 2015 first detection
- 2020 weekly detections of GW sources

A network of detectors

Antenna pattern of the detector

You have some blind spots !

The simplest Michelson interferometer

Propagating the electric field

Starting field : $E_{0} \label{eq:eq:entropy}$

After propagating along a distance L : $E_1=e^{-ikL}E_0$

Dealing with the beam splitter (separating the light 50/50):

Convention name for the electric fields

Field equations

$$\begin{split} E_{\rm Mich}^{\rm BP} &= \left(r_{\rm BS}^2 r_{\rm EM} e^{-i2kL_{\rm N}} - t_{\rm BS}^2 r_{\rm EM} e^{-i2kL_{\rm E}} \right) E_0 \\ E_{\rm Mich}^{\rm DP} &= \left(ir_{\rm BS} t_{\rm BS} r_{\rm EM} e^{-i2kL_{\rm N}} + ir_{\rm BS} t_{\rm BS} r_{\rm EM} e^{-i2kL_{\rm E}} \right) E_0 \end{split}$$

Introducing differential and common lengths for the arms :

$$\begin{array}{rcl} L_{-} & = & \frac{L_{N} - L_{E}}{2} \\ L_{+} & = & \frac{L_{N} + L_{E}}{2} \end{array} \end{array} \xrightarrow{\hspace{1.5cm}} L_{N} & = & L_{+} + L_{-} \\ L_{E} & = & L_{+} - L_{-} \end{array}$$

Finally, we arrived at :

$$\begin{split} E_{\rm Mich}^{\rm BP} &= \left(-ie^{-2kL+}\sin(2kL-)\right)r_{\rm EM}E_0\\ E_{\rm Mich}^{\rm DP} &= \left(-ie^{-2kL+}\cos(2kL-)\right)r_{\rm EM}E_0 \end{split}$$

Field equations

$$E_{\text{Mich}}^{\text{BP}} = \left(-ie^{-2kL+}\sin(2kL-)\right)r_{\text{EM}}E_{0}$$
$$E_{\text{Mich}}^{\text{DP}} = \left(-ie^{-2kL+}\cos(2kL-)\right)r_{\text{EM}}E_{0}$$

From the two above equations :

- 1. Energy is preserved between the 2 ports
- 2. Common motion induces only a phase shift
- 3. Differential motion modulates the powers

The differential phase between the 2 arms due to the GW signal is converted to a variation of power at the dark port. Increase the phase difference to increase the signal !

Finding the right operating point

Adding a differential length modulation due to a passing GW

$$\Delta L_{-} = \frac{1}{2} \left(L_{N} \left(1 + \frac{h_{0}}{2} \cos \left(\boldsymbol{\omega}_{GW} t \right) \right) - L_{E} \left(1 - \frac{h_{0}}{2} \cos \left(\boldsymbol{\omega}_{GW} t \right) \right) \right)$$

 $\Delta L_{-} = L_{-} + h_0 L_{+} \cos \left(\omega_{\rm GW} t \right)$

Since the amplitude of the GW is very small : $\frac{\cos(a + x\cos b)}{\sin(a + x\cos b)} \simeq \frac{\cos(a) - x\sin(a)\cos(b)}{\sin(a + x\cos b)} \simeq \frac{\sin(a) - x\cos(a)\cos(b)}{\sin(a + x\cos b)}$

$$\begin{split} \mathrm{E}_{\mathrm{Mich}}^{\mathrm{BP}} &\simeq & \left(-\mathrm{i}\mathrm{e}^{-2\mathrm{k}\mathrm{L}+}\left(\sin(2\mathrm{k}\mathrm{L}-)+2\mathrm{k}\mathrm{h}_{0}\mathrm{L}_{+}\cos(2\mathrm{k}\mathrm{L}_{-})\cos\left(\boldsymbol{\omega}_{\mathrm{GW}}t\right)\right)\right)\mathrm{r}_{\mathrm{EM}}\mathrm{E}_{0}\\ \mathrm{E}_{\mathrm{Mich}}^{\mathrm{DP}} &\simeq & \left(\mathrm{i}\mathrm{e}^{-2\mathrm{k}\mathrm{L}+}\left(\cos(2\mathrm{k}\mathrm{L}-)-2\mathrm{k}\mathrm{h}_{0}\mathrm{L}_{+}\sin(2\mathrm{k}\mathrm{L}_{-})\cos\left(\boldsymbol{\omega}_{\mathrm{GW}}t\right)\right)\right)\mathrm{r}_{\mathrm{EM}}\mathrm{E}_{0} \end{split}$$

Need to be on the dark fringe to maximise the signal on the south port !

Finding the right operating point

But, I do not measure an amplitude but a power with my photodiode...

$$\left|\mathrm{E}_{\mathrm{Mich}}^{\mathrm{DP}}
ight|^{2}~~ \pmb{lpha}~~ \left|\cos(2\mathrm{kL-})-2\mathrm{kh}_{0}\mathrm{L_{+}}\sin(2\mathrm{kL_{-}})\cos\left(\pmb{\omega}_{\mathrm{GW}}\mathrm{t}
ight)
ight|^{2}$$

 $\alpha \quad \cos^2(2kL-) - 4kh_0L_+ \cos(2kL-)\sin(2kL_-)\cos(\omega_{GW}t) + \mathcal{O}(h_0^2)$

If perfectly on the dark fringe, signal proportional to h_0^2 ,

Need to add a slight dark fringe offset to have a signal proportional to \boldsymbol{h}_0

A closer look at the differential phase

Signal proportional to : kh_0L_+

For a simple Michelson, to increase the detectable signal :

- 1. Lower the wavelength
- 2. Increase the length of the arm

Wavelength depends on laser availability and optics, it is fixed at 1064 nm for current interferometers.

Some typical lengths for experiments

Image: C Baker

Type of experiments	Length
Optomechanics	~ 1 mm
Large table top experiments	~ 1m
GW prototypes	~ 10 m
Current GW detectors	~ 1 km
Next generation GW detectors	~ 10 km

III. More than just a Michelson (or how to increase the sensitivity ?)

The Fabry-Perot cavity

Two mirrors facing each other separated by a certain distance.

Presence of light interferences inside the cavity, enhancing or destroying the electric field between the 2 mirrors.

Cavity electric fields

27

Circulating power a function of the detuning

Some key numbers

The cavity gain
$$\mathrm{G} = \frac{\mathrm{T}_{\mathrm{IM}}}{\left(1-\sqrt{\mathrm{R}_{\mathrm{IM}}\mathrm{R}_{\mathrm{EM}}}\right)^2}$$

The finesse
$$\mathfrak{F}=rac{\pi\sqrt[4]{R_{\mathrm{IM}}R_{\mathrm{EM}}}}{1-\sqrt{R_{\mathrm{IM}}R_{\mathrm{EM}}}}$$

The FSR

The FWHM

С

2L

Special case of the arm cavity of GW detectors

The cavity can amplify the light phase shift

33

The signal recycling cavity

For the GW signal sidebands

Possibility to tune the apparent transmission of input mirror for the GW signal \rightarrow could tune the bandwidth of the detector

The power recycling cavity

The power recycling cavity

Possibility to enhance the laser power by a factor 40.

The layout of a GW detector

The layout of a GW detector

A system of coupled cavities...

IV. The fundamental limiting noises

How to quantify the noise?

Use the power spectral density : $S_{\rm V}$

$$S_{V}(\boldsymbol{\omega}) = \lim_{T \to \infty} \frac{1}{2T} \left| \int_{-T}^{+T} V(t) e^{-i\boldsymbol{\omega} t} dt \right|^{2}$$

In unit of $:\frac{[V]^2}{Hz}$, that represents the noise power density in a given bandwidth as a function of the frequency.

More frequently, we use the noise Amplitude Spectral Density (ASD): $\sqrt{S_V(\omega)}$

Ok, that definition does not really help!

The intrinsic shot noise

Measuring an optical power is counting the number of photon for a given time.

Due to the discrete nature of light, arrival time of photons follows a Poisson statistics :

 $S_{SN}(\boldsymbol{\omega}) = 2Ph_p \frac{c}{\lambda}$

Formula will determine the minimum possible differential displacement to measure 43

Shot noise limited (simple) Michelson

 $\Delta L = (1/2) h \times L$

ASD output power of my signal proportional to h and laser input power.

From the minimum displacement we can measure (SNR = 1), we can calculate the minimum h observable (GW amplitude)

$$S_{\mathrm{h}}^{\mathrm{min}}(\boldsymbol{\omega}) = rac{1}{(2\pi L_{+})^{2}} rac{\mathrm{h_{p}\lambda c}}{\mathrm{P}_{0}}$$

 $\left/ S_{h}^{min}(\boldsymbol{\omega}) = \frac{2 \times 10^{-20}}{\sqrt{P_{0}}} [1/\sqrt{Hz}] \right.$ 44

Radiation pressure noise

Measuring the mirror position with light, induced a back action : the radiation pressure noise.

Noise PSD for a simple Michelson : $S_{RP}(\omega) = \frac{1}{mL\omega^2} \sqrt{\frac{4hP}{c\lambda}}$

Quantum noise limited (simple) Michelson

Quantum noise limited (simple) Michelson

Quantum noise with FP arm cavities

V. The technial limiting noises

The Advanced Virgo noise budget

Done in 2012 for the expected final configuration of AVirgo

Similar noise budget for Advanced LIGO

https://doi.org/10.1088/0264-9381/32/2/024001 50

The Advanced Virgo noise budget

Not limiting : the seismic noise

The ground is never still!

Gravitational radiation detection with laser interferometry – R. Adhikari - Rev. Mod. Phys. 86, 121

Isolate the mirror from the seismic motion

- Must isolate all degrees of freedom
- Suspension based on pendula :

https://doi.org/10.1063/1.1150645

53

Possibility to tune the isolation

How to get more isolation?

In practice: employ combination of these measures

Taken from: Noises in Gravitational Wave Detectors, K. Arai, LIGO Document G1401145-v2

The Virgo supper attenuator

https://doi.org/10.1088/0264-9381/19/7/353

Virgo supper attenuator

Isolation transfert function 55

The last stage of the suspension

Where the mirror is attached

Not only for the main mirrors

But also for the benches with critical optics !

Compact suspension for mini tower

External bench

The Advanced Virgo noise budget

At low frequency : gravity gradient noise

Gravity gradient (or Newtonian) noise

Due to local density variation in the surrounding of the mirror (from Earth or atmosphere). Can not be shielded.

Figure 7: Time-lapsed schematic illustrating the fluctuating gravitational force on a suspended mass by the propagation of a surface wave through the ground.

Illusatration from: Gravitational Wave Detection by Interferometry - *Living Review*

The Advanced Virgo noise budget

Middle frequencies : coating thermal noise

Thermal noise(s)

Not only one thermal noise but several responsible for displacement noises:

- Suspension thermal noise
- Thermo-optic noise
- Substrate Brownian noise
- Coating Brownian noise

Currently the worst offender

A closer look at it:

https://doi.org/10.1364/CLEO_AT.2017.JF1D.2

Depend on:

- The temperature
- The mechanical loss (prop to 1/Q)
- Use very high Q material, interfaces are critical

Monolithic suspension

Mirror, attachment, fiber: all made of glass.

Coating thermal noise

Intensive worlwide research to reduce this noise :

Phase noise from imperfect vacuum

Turbulences in gas, creates variation of the refractive index

The critical path of light is under vaccum. Limit of the facility

The Virgo chambers

Pressure < 10⁻⁹ mbar

Advanced Virgo measured (real) noise budget

VI. Selected technologies

- mirrors
- thermal compensation
- diffused light mitigation
- control

The arm cavity mirrors

- arm cavity where the optical losses are the most critical
- optical cavity round trip loss < 0.01%
- give tight constraints on the mirror quality surface:

High frequency error $(f > 50 \text{ m}^{-1})$

bad contrast (could be corrected) bad contrast distorted beam light lost

The arm cavity mirrors

- arm cavity where the optical losses are the most critical
- optical cavity round trip loss < 0.01%
- give tight constraints on the mirror quality surface:

Very stringent requirement on the polishing and coating
The mirrors for the 3 km long cavities

- mirrors weighting 40 kg made of the purest fused silica
- state of the art polishing (flatness RMS ~ 0.3 nm)
- coated using Ion Beam Sputerring (IBS) technology

Polished substrate

Mirror surface height

Effect of the optical absorption

even if very good substrate / coating, still residual absorption (< ppm)
part of the laser beam will be absorbed

and converted to heat

Coating absorption

Substrate absorption

Effect of the optical absorption

even if very good substrate / coating, still residual absorption (< ppm)
part of the laser beam will be absorbed

and converted to heat

Coating absorption

Substrate absorption

The thermal compensation system

The thermal compensation system

Thermal compensation system in photos

CO₂ laser bench

Steering mirror for Hartman sensors

Installation on the site

The diffused light

Diffused light: an extra phase noise

A complex problem with different path for the scattered light.

Could add extra phase noise if recombined with the main beam

Dumping the diffused light

Light baffles around the mirrors and in the vacuum tubes

All the critical optics are suspended and under vacuum

Must keep everything under control!

• A complex machine with a lot of subsystems...

- ... all interconnected
- needs to developed home made systems (hardware and software) for real time control, data monitoring and storage.

Example: control of the suspension

Example: control of the suspension

85

Example: the arm cavities

Not always obvious to have a proper error signal

VII. The next upgrades (with a Virgo focus)

More and more sensitive instruments

The '+ upgrades' (Advanced Virgo+, Advanced LIGO+)

Advanced Virgo+

Phase I before O4
25-40W input power
signal recycling mirror
Newtonian noise cancellation
frequency depend squeezing preparatory work for phase II

Advanced Virgo noise budget

Advanced Virgo+

Advanced Virgo noise budget

before O4 Phase I ● 25-40W input power signal recycling mirror Newtonian noise cancellation 2 frequency depend squeezing preparatory work for phase II before O5 Phase II

60-80W input power
 lower optical loss
 larger mirror with better coating

Advanced Virgo+

⁽similar improvement for LIGO)

Phase I before O4
25-40W input power
signal recycling mirror
Newtonian noise cancellation
frequency depend squeezing preparatory work for phase II

Phase II before O5
60-80W input power
lower optical loss
larger mirror with better coating

Phase I: installation highlights

Seismometers array for Newtonian noise subtraction

Phase I: installation highlights

Auxiliary green lasers for lock acquisition with signal recycling

Suspended signal recycling mirror

Phase I: installation highlights

The filtering cavity

The AdV+ phase II (installation after O4)

And after 05?

• Virgo nEXT: the ultimate upgrade

- doubling the sensitivity
- more laser power, less optical losses, better mirrors, more squeezing
- closing the gap with the next generation

(similar plan/timeline for LIGO)

VIII. The next generation

The Virgo successor: the Einstein Telescope

Goal: to be 10 times more sensitive, new infrastructure

The Virgo successor: the Einstein Telescope

Goal: to be 10 times more sensitive

100

The challenge of increasing the bandwidth

- conflicting requirement at low and high frequencies
 - high optical power required at high frequency to lower the shot noise
 - but high power also degrades the low frequency due to radiation pressure noise
- the sensitivity could be achieved by 2 interferometers dedicated to low frequency (ET-LF) and high frequency (ET-HF)

The xylophone strategy

102

The xylophone strategy

103

1 detector = 2 interferometers

Not one but 3 detectors

The key parameters

Design Report Update 2020 for the Einstein Telescope ET Steering Committee Editorial

https://apps.et-gw.eu/tds/ql/?c=15418

Parameter	ET-HF	ET-LF
Arm length	10 km	10 km
Input power (after IMC)	500 W	3 W
Arm power	3 MW	18 kW
Temperature	290 K	10-20 K
Mirror material	fused silica	silicon
Mirror diameter / thickness	62 cm / 30 cm	45 cm/ 57 cm
Mirror masses	200 kg	211 kg
Laser wavelength	1064 nm	1550 nm
SR-phase (rad)	tuned (0.0)	detuned (0.6)
SR transmittance	10 %	20 %
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.
Filter cavities	1×300 m	$2 \times 1.0 \mathrm{km}$
Squeezing level	10 dB (effective)	10 dB (effective)
Beam shape	TEM_{00}	TEM_{00}
Beam radius	12.0 cm	9 cm
Scatter loss per surface	37 ppm	37 ppm
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall
Seismic (for $f > 1$ Hz)	$5 \cdot 10^{-10} \mathrm{m}/f^2$	$5 \cdot 10^{-10} \mathrm{m}/f^2$
Gravity gradient subtraction	none	factor of a few

7

The American cousin: Cosmic Explorer

40 km and 20 km L-shaped surface observatories 10x sensitivity of today's observatories (Advanced LIGO+) Global network together with Einstein Telescope