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Scope

 Searching for GW signals, with a focus on 
 Compact binary coalescences
 Ground-based detectors
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From data to catalogs
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First things first: calibration

 Data analysis needs calibrated data
 Interferometer response calibrated against
 Laser wavelength reference
 Known mirror displacements from auxiliary laser radiation pressure, aka photon calibrator (PCal)
 Known mirror displacements from gravitational coupling to nearby rotating masses,                  

aka Newtonian calibrator (NCal)
 Detector is a maze of feedback loops 
 h(t) reconstruction needs to use control signals in addition to output power measurement

 Also need to check that timing is consistent across detectors
 Typical accuracy ∼2-5% on amplitude, ∼2-4 deg on phase
 Has to get better to match the sensitivity progress

 Especially for cosmology applications
 h(t) reconstruction typically includes some noise subtraction, aka data cleaning
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Run online (low-latency)

Pipelines

 cWB

 GstLAL
 MBTA
 PyCBC
 SPIIR
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Generic search

Dedicated searches

Run offline



in practice

Last stable orbit

Dominant frequency

The (inspiral) signal in a nutshell
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Matched filtering

 If we know what we’re 
looking for, and we know 
the properties of detector 
noise

 Correlation of data with 
expected signal, weighted 
by sensitivity curve
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 As a function of the (unknown) arrival time

 Maximize over unknown phase

 Record trigger at       if           exceeds some threshold

Matched filtering (cont.)
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Matched filtering is “optimal”

 Noise SNR distribution:     with 2 degrees of freedom
 Signal SNR distribution: non-central      distribution  
∼ Gaussian distribution if signal strong enough
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 Matched filter optimizes SNR

In Gaussian, stationary noise with known PSD…

 Selecting triggers by setting 
threshold on SNR 
guarantees lowest false 
alarm probability for given 
detection probability

But…



Matched filtering SNR & likelihood ratio

 Likelihood ratio of signal vs noise

 Take 

 Maximize 
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See part II of lecture for why 
the likelihood takes this form



Noise spectrum

 Detector noise spectrum has complex structure
 Broadband noise
 Narrow features
 Large dynamic range

 Noise spectrum is not stationary
 Estimated by averaging consecutive FFTs

 Over time large enough to get smooth estimate, 
short enough to follow medium-term variations
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Waveforms

 Approximate analytical solutions
 Perturbative approaches
 Post-Newtonian expansion
 Effective-one-body approach
 Final black hole ringdown

 Accurate for inspiral and ringdown, 
loses accuracy close to merger
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 Numerical solutions
 Solving Einstein’s equations directly 

with numerical evolution methods
 Computationally expensive
 Cannot be used to model many orbits

 Can model merger

 Hybrid models
 Combining results from analytical and numerical approaches
 Provide full inspiral-merger-ringdown waveforms



Signal model

 Received signal

 Measured signal
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 Searching a reduced parameter space
 Assume that there is no eccentricity
 Assume that there is no precession of the orbital plane
 Assume that both bodies are black holes
 Restrict to the dominant mode of the signal 
 Orientation and location parameters now enter as overall 

scale, time or phase shifts, easily maximized over
 Scan a 4-dimensional space: 

Parameters
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 In general, compact binary is described by up to 19 parameters
 Intrinsic parameters drive system dynamics

 Masses (2)
 Spins (6)
 Deformability for neutron stars (2)
 Eccentricity (2)

 Extrinsic parameters impact measured signal
 Position : luminosity distance, right ascension, declination (3)
 Orientation: inclination, polarization (2)
 Time and phase at coalescence (2)



Template banks

 Overlap (inner product)

 Match

 Fitting factor

 Criterion for template bank

 Historically
 Optimize effectualness vs size
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Few cycles in signal at high masses
 sparse template bank

Many cycles in signal at low masses
 dense template bank



Building template banks
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 Geometric placement
 Quadratic approximation to the match

 Reparametrize to a space where
 e.g.   

 Cover space with optimal grid (e.g. hexagonal in 2D)
 Transform back to parameters that can be used to generate 

waveforms
 Very efficient
 Metric cannot be easily computed for any waveform model

Chirp time at leading order



Building template banks (cont.)

 Hybrid banks
 Searches 

typically use 
banks built 
upon a mix of 
geometric and 
stochastic 
placement
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 Stochastic placement
 Pick a random point in the search space
 Calculate the fitting factor with the previous points
 If fitting factor smaller than 0.97, keep the new point
 Iterate

 Straightforward and applicable with any waveform 
model

 Slow & does not guarantee complete coverage



Template banks: example

 PyCBC O2 bank
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Aligned spins extend the inspiral
Anti-aligned spins shorten the inspiral

arXiv:1705.01845



Search parameter space
 Detected masses are redshifted

 For given (source-frame) parameter space, 
search parameter space needs to extend to 
higher masses as detector reach increases

 Number of observed cycles impacts density of 
template banks
 For given parameter space, number of templates 

increases as low-frequency detector sensitivity 
improves and lower frequency cutoff decreases
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 Main CBC search


 Template bank size ∼ 4 105 (O2), ∼ 8 105 (O3)
 Sub-solar mass search



 Template bank size ∼ 1.9 106

 Intermediate-mass BH search


 Template bank size ∼ 103



Noise is not Gaussian

 Environmental or instrumental artefacts 
are common in the data
 Aka glitches
 Responsible for long tails in SNR distributions

 Coping strategies
 Use data quality tools to diagnose and flag 

issues where possible
 Go beyond SNR by considering additional 

observables to distinguish between 
astrophysical signals and glitches

 Estimate the background from the data
 Requiring coincidence between detectors both 

reduces the background and provides ways to 
estimate it 20
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Strategies to improve data quality

 Veto data or triggers 
based on data-quality 
flags
 Using environmental and 

instrumental safe 
auxiliary channels
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 iDQ
 Supervised learning 

framework using safe 
auxiliary channels to 
predict glitch probability 
as a function of time

 Gating
 Excise short stretches of 

data based on drops in 
instantaneous BNS range
 Potentially unsafe but 

useful to use surrounding 
data and avoid biasing PSD

 MBTA: Excess rate
 Monitor rate of triggers 

produced by search, 
penalize times with 
excess rate



Signal consistency tests

 Is signal distributed over frequency band as expected?

22Instrumental artefactAstrophysical event
Allen PRD 71 062001 (2005) 



Signal consistency tests (cont.)

 Is SNR time series consistent 
with expected autocorrelation 
of template? 
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Signal consistency across detectors

 Phase and time differences between 
detectors determined by source sky 
location and orientation with respect 
to detectors
 Pattern expected for isotropic source 

population
 Uniform distributions for noise

 Pattern also expected for SNR ratio 
between detectors, depending on 
detector sensitivities
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Ranking statistics

 Combine SNR with outcome 
of signal consistency tests to 
rank triggers
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 PyCBC

 GstLAL



 Coincidences
 Triggers appearing in ≥ 2 detectors within 

coincidence time window, for the same template
 Construct a background from the data
 Using some combination of single-detector 

triggers
 FAR: rate of noise events with same or higher 

ranking statistic value
 False alarm probability

 Equivalent number of single-sided Gaussian 
standard deviations

Significance
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 Assigning a significance 
to single-detector 
triggers requires
 Some extrapolation of 

FAR vs RS distribution
 Being more aggressive at 

vetoing likely noise events
 Being more conservative



Estimating the background

 With time slides

 Without time slides
 Use all pairs of single-detector triggers
 Account for probability that they could form a coincidence 27

Coincidences between single 
detector triggers from GW150914 
and noise in other detector

Background excluding contribution from GW150914 
to gauge significance of other triggers

Hierarchical removal of 
confirmed signals from 
background to assess 
significance of other events



IFAR plots
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On average

IFAR plots (cont.)

 Cumulative number of triggers with IFAR ≥ x-axis value
 The expected background distribution is universal 

(modulo the analysis time)
 O1+O2 analysis time T = 0.46 y
 Expect on average 1 noise trigger with IFAR ≥ T, 2 with 

IFAR ≥ T/2, 3 with IFAR ≥ T/3, etc. 
 The expected background distribution says nothing 

about the sensitivity of the search
 The IFAR vs ranking statistic relationship does
 If FARs reported by the search are self-consistent, noise 

triggers will follow the expected background distribution 
within statistical uncertainties
 Number of noise triggers follows Poisson statistics
 Error bars mark rates that can fluctuate up or down to n observed 

triggers at the 1, 2, 3 σ level, i.e. with probability 

 Some systematic uncertainties too (non-stationarities)
 Foreground candidate events appear as outliers 29

One trigger per 
analysis time



Trials factor: templates

 When assessing significance of candidate 
event coming from a template, wee need 
to take into account that:
 We collect candidates from other templates

 Look-elsewhere effect, aka trials factor
 Search backgrounds are not uniform across 

templates
 [Signal rate is not uniform across templates]

 Divide search space into classes (aka bins)
 Background and local significance estimated 

within a given class
 Global significance = local significance / 

number of classes
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 GstLAL
 1 template = 1 bin

 MBTA
 3 broad bins: BNS, NSBH, BBH

 PyCBC
 1 bin
 Ranking statistic modified to account for 

actual background distribution in each 
template  ranking statistic distribution 
more uniform across templates


ApJ 849:118 (7pp), 2017



Trials factor: coincidence types

 In 3-detector coincident 
search, 4 different 
coincidence types
 HL, HV, LV, HLV
 Flat trials factor of 4 sub-

optimal as coincidence 
types not as likely for 
astrophysical signals, due 
to differences in detector 
sensitivities

31

Relative sensitive  volume 
for given coincidence type

(ln of) network sensitive 
volume for given template 
and coincidence type

 MBTA

 PyCBC
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Burst generic search method

 Robust search paradigm
 Require coherent signals in multiple detectors, using direction-dependent antenna response
 Look for excess power in time-frequency space
 Using wavelet decomposition
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 Detection statistic
 dimensionless coherent signal energy obtained by 

cross-correlating the two reconstructed waveforms
 dimensionless residual noise energy after 

reconstructed signal is subtracted from data

 Getting the background under control is a challenge
 No waveform assumed

 But class for signal morphologies consistent with chirp
 Noise artifacts have greater impact than for CBC searches, 

especially at lower frequencies
 Data quality and vetoes



Injections and search sensitivity

 Simulated signals added to data 
in software, aka injections
 Used to design and tune signal 

consistency tests
 Used to validate analysis
 Used to estimate search sensitivity 

33
Expected number 
of detections

Merger rate per unit volume 
and unit observing time

Detection efficiencySource population 
characteristics

arXiv:2111.03606



Probability of astrophysical origin

34

Background density
Estimated from data

Astrophysical foreground density
Estimated by projecting 
population model onto dataExpected number of 

background events

Expected number of 
foreground events

Farr et al. PRD 91 023005 (2015)

Kapadia et al. CQG 37 045007 (2020)
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Offline vs online analyses

 Offline analyses
 Use data with final calibration 

and cleaning
 Have access to final data quality 

information
 Analyze data in chunks

representing ∼ 1 week of 
coincident data

 Assess significance with respect 
to background in chunk / full run

 Use p_astro threshold for 
inclusion in catalogs
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 Online analyses
 Are configured to minimize 

latency
 Use online calibrated data
 Have access to limited data 

quality information
 Can only assess data based on 

past information
 Have a limited set of 

background events
 Use FAR threshold to send alerts



Early warning

 At design sensitivity of 
advanced detectors
 ∼ 49% of detectable BNS 

detected 10 s before merger
 ∼ 7% 60 s before merger
 ∼ 2% detected before merger 

with localization ≤ 100 deg2
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GRB triggered searches

 GRB & GW
 Long GRBs are extreme cases of stellar collapse
 BNS or NSBH mergers progenitors or short, hard GRBs

 Search data around times of GRBs observed by γ - Xray satellite based 
instruments
 O1-O2-O3: > 300 GRBs with enough data to be analyzed

 1 coincident detection GW170817
 Short GRBs analyzed with BNS and NSBH search, short & long GRBs analyzed with burst 

search
 Triggered searches
 Small amount of data searched leads to lower background and better sensitivity
 Known sky position makes coherent search across detectors possible also for CBC search

37
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