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Scope

Extracting the science, 
mostly through Bayesian 
analyses of
 Individual events
 Collections of events
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From data to astrophysical parameters

 GW150914
 September 14, 2015 

at 09:50:45 UTC
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Recommended reading:
Parameter Estimation with Gravitational Waves
Christensen & Meyer, arXiv:2204.04449



Parameter estimation via Bayesian inference

 Assume data d are described by model M with parameters
 Use Bayes’ theorem to infer posterior probability distribution 

for parameters    , given data d
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Model for the data
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available data detector noisedetector 
response 
to GWAssumption

 data 
properly 
calibrated

Assumptions
 Gaussian
 Stationary
 Uncorrelated 

across detectors 



Likelihood

 Noise probability distribution 
 How likely is the residual                     assuming it is noise?
 Probability of drawing the residual from the noise distribution
 
 Once we have a signal model, the noise model defines the likelihood
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Frequency domainTime domain
only depends on 

Noise model

 Gaussian noise
 Single data point
 Multiple data points

 Stationary noise 
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Signal model

 In general, compact binary is described by up to 19 parameters
 Intrinsic parameters drive system dynamics

 Masses (2)
 Spins (6)
 Deformability for neutron stars (2)
 Eccentricity (2)

 Extrinsic parameters impact measured signal
 Position : luminosity distance, right ascension, declination (3)
 Orientation: inclination, polarization (2)
 Time and phase at coalescence (2)

 Reliable waveform models exist
 Not all physical effects are accounted for in any given model
 Computing time is an issue for parameter estimation
 Various models used, differing both in the physical effects they 

describe and the methods they use to compute the waveform
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Alternative signal model

 Strain waveform reconstructed with minimal-assumption signal model
 Linear combination of elliptically polarized sine-Gaussian wavelets
 Algorithm varying both model parameters and model dimension
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PRL 116, 241102 (2016)GW150914

parameters for 
each wavelet

common extrinsic 
parameters

model 
dimension

BayesWave – Cornish  & Littenberg Class. Quantum Grav. 32 135012 (2015)



Priors: extrinsic parameters
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Uniform in
volume

Uniform in
the sky

Uniform in
direction

No unique choice of priors!



Priors: intrinsic parameters
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Uniform in
some range

Uniform in direction
Magnitude uniform 

in 

Uniform in
(0, 5000)

No unique choice of priors!



Evidence

 Unimportant normalization factor for parameter estimation
 Evidence = marginal likelihood

 Computation typically difficult
 Sometimes built-in in sampling algorithm, e.g. nested sampling

 Important for model selection
12



 Ratio of posterior to prior odds
 Ratio of the evidences

= signal + Gaussian noise
= Gaussian noise

Evidence and model section

 Posterior odds ratio of model        vs model
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Bayes factor



Sampling the posterior

 Algorithm needed to explore multi-dimensional parameter space
 Cost of brute-force method – compute posterior pdf on fine grid –

not prohibitive only for very low dimensions
 Most general model for CBC source has 19 parameters!

 Efficient stochastic sampling algorithm needed
 Sampling: set of (n-dim) parameter values that together give a fair 

representation of the posterior pdf
 Markov-chain Monte Carlo (MCMC) algorithms generate samples 

iteratively, via biased random walk through parameter space
 Walk based on two rules

 How to draw new position from current position
 How to decide whether to accept new sample or repeat previous one 

– Involves likelihood and prior values

 Possibly using parallel chains
 Need (empirical) ways to check convergence of sample chain

 Many different samplers – LVK use several of them – with 
different efficiency, ability to deal with multi-modality, etc.
 e.g. nested sampling 14

Recommended reading:
Data Analysis Recipes: Using 
Markov Chain Monte Carlo
Hogg & Foreman-Mackey 
ApJS 236 11 (2018)



 Priors on parameters informed by 
calibration uncertainties

 PE results marginalized over calibration 
parameters

Example: L1 calibration 
uncertainties during O2 run

 PE needs to take into account that calibration is not perfect

 Model amplitude and phase errors as cubic splines

Calibration

15

Ca
hi

la
ne

+ 
Ph

ys
. R

ev
. D

 9
6,

 1
02

00
1 

(2
01

7)



Noise model: spectrum

 Detector noise is not stationary on long time scales
 Locally, stationarity assumption is reasonable if using a locally 

representative spectrum

16BayesLine – Littenberg & Cornish Phys. Rev. D 91, 084034 (2015)

Off source estimate
On source estimate



Noise model: glitch removal

 Detector noise is not Gaussian on 
long time scales

 Locally, Gaussian assumption is 
reasonable provided data are free 
of excess noise – aka glitches
 If glitch present, include in model or 

remove from data
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Rapid parameter estimation

 Parameter estimation requires long computing times
 A few hours for short BBH signals
 Weeks for BNS signals
 Driven by evaluating likelihood (inc. computing waveform) at each step

 Various strategies to reduce computational cost 
 Waveform acceleration
 Parallelization

18BAYESTAR – Singer & Price Phys. Rev. D 93, 024013 (2016)

 Low-latency localization of sources for electromagnetic 
follow-up
 Focus is on extrinsic parameters 

 Fix intrinsic parameters to values reported by search pipelines
 Information crucial for localization is encapsulated in 

matched-filter estimates of times, amplitudes, and 
phases on arrival at the detectors

 Compute posterior distribution of extrinsic parameters, 
provide (good!) approximate marginal posterior 
distribution of sky location within minutes

GW170817
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Presenting and quoting results

 Multi-dimensional posterior samples are end result of inference
 Contain all information  
 Not easily digestible
 We want 1D and/or 2D plots and summary statistics
 We need to quote statistical uncertainties
 We need to quote systematic uncertainties

19

Recommended reading for LVK members:
Quoting parameter-estimation results
Berry et al., LIGO-T1500597  (2015)

Release full set of posterior samples



Corner plots

 Choose a pair of parameters, draw 2D 
and 1D posteriors marginalized over 
all other parameters

 Highlights parameter correlations
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The chirp mass                                                     
drives the inspiral and is measured very well

The mass ratio                         enters at 
higher order and is measured less well

The mass ratio is correlated with the spin



Corner plots (cont.)

 For high-mass systems, merger-
ringdown is a significant part of the 
signal, driven by the total mass
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Corner plots (cont.)
 From GW signal, difficult to distinguish distant, well-oriented source 

from nearby, ill-oriented source
 Correlation between luminosity distance and inclination (and direction)
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 Asymmetric system GW190412 (30+8 M)
 Presence of higher-order modes helps lifting 

degeneracy between distance and inclination



Spins: disk plots

 2D posterior probability for 
tilt angle and spin magnitude 
for each object

 Tiles constructed linearly in 
spin magnitude and cosine of 
tilt angle (identical prior 
probability)

 Color indicates posterior 
probability per pixel, 
marginalized over azimuthal 
angle
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 Spins enter at higher order in system dynamics and have subtle effects on GW waveform
 Difficult to measure
 Unless precession changes inclination over time and induces spectacular amplitude and phase modulation
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Best estimates

 Maximum likelihood (ML)
 Point where model best fits data
 Ignores prior information
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 Maximum posterior (maximum a posteriori, MAP)
 Peak of posterior probability distribution – modal value, 

most probable point
 Ambiguous definition: global maximum or maximum of 

each 1D distribution?
 Not invariant under reparametrization
 Not necessarily a typical value, not very useful for 

multimodal distributions Posterior mean
 Expectation value of distribution
 Better traces position of posterior mass than 

MAP (= MAP for Gaussian distribution)
 Not invariant under reparametrization – Not 

sensible to combine means for different 
parameters

 Not necessarily coincides with probable 
posterior value – e.g. for bimodal distribution

 Posterior median
 Position of 50% quantile
 Gives good indication of position of posterior 

probability mass
 Less influenced by tails of distribution than 

posterior mean
 Not necessarily coincides with probable 

posterior value
 Invariant under monotonic reparametrization –

Not sensible to combine medians for different 
parameters



Statistical uncertainties

 Credible intervals
 Interval (or volume in n-D) enclosing a given 

total posterior probability
 e.g. 90% credible interval covers a total posterior 

probability of 0.9
 Can be constructed in multiple ways
 Choose value for total probability

 50% not broad enough
 68.269% credible interval ≡ Gaussian 1σ interval, 

but can be misleading
 90% includes most of the potential range
 95% ∼ Gaussian 2σ interval, but may suffer from 

inaccurate distribution tails 25

 One-sided credible regions
 Start from one edge of parameter space and 

continue until they contain desired probability
 e.g. 90% one-sided interval: from minimum value to 

90% quantile or from maximum value to 10% quantile
 Applicable for parameters with definite bound

 e.g. mass ratio, spin magnitude

 Standard deviation
 Second moment of distribution
 Simple interpretation in terms of enclosed 

probability only for Gaussian distributions
 Not very useful for skewed or multimodal 

distributions

 Symmetric credible intervals
 Centered on median, extend outwards such that 

there is an equal probability in each tail of the 
distribution
 e.g. 90% symmetric credible interval: lower bound     

@ 5% quantile, upper bound @ 95% quantile
 Natural complement to quoting posterior median

 But can exclude highly probable values if these occur 
at edges of parameter space



 Averaging posteriors
 ≡ Marginalize over model uncertainty
 Average can use weights based on model evidence and prior, or use equal weights
 Quote point estimate and uncertainty from averaged posterior

 Systematic uncertainty folded in overall uncertainty 
 Works only for subspace of common parameters if models have different numbers of parameters
 Does not construct an estimate for the typical difference between models

Systematic uncertainties
 Compare between results assuming different waveform approximants

 How to combine posteriors produced with different waveform models?
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 Combining ranges
 Quote maximum and minimum values of all possible statistical uncertainties as overall 

uncertainty range
 Conservative, but no simple statistical interpretation

 Comparing posterior estimates
 Start from best posterior estimate (e.g. approximant-averaged posterior)
 Use scatter across approximants to infer systematic uncertainty



GW150914 example
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Multiple events: violin plots

 Marginal posterior distributions 
for a selection of parameters for 
O3b candidates
 Color  date of observation

28

GWTC3 − arXiv:2111.03606



PE for individual events: Summary
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Posterior
Computing time – sampling algorithms
Presenting and quoting digested results
Parameter correlations

Prior
Potentially 
influential 
choices

Likelihood
Noise model (Gaussian / deglitched – Stationary / PSD)
Waveform model (GR / generic)
Data calibration

Evidence
Important for model selection



Combining multiple observations

 We want to combine information from multiple events in order to
 Infer the properties of the underlying source population
 Test for deviations from general relativity
 Infer the value of the Hubble constant
 …

 Usually done an a subset of events, e.g. those with
 Very low false-alarm rate
 High SNR
 High SNR in the ringdown
 An electromagnetic counterpart, or good sky localization
 …

30



With a pinch of frequentist analysis

 Study empirical distribution of some detection statistic for a frequentist null test of 
the hypothesis that GR is a good description of the data 
 e.g. residuals test: coherent network SNR after subtraction of best-fit GR waveform

 Compare detection statistic against empirical background distribution for each event
 SNR computed on 200 randomly selected time segments around event time
 p-value of residual SNR for each individual event

 probability of obtaining a higher residual SNR from background
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 Yields distribution of p-values
 Under null hypothesis, p-values expected to be uniformly 

distributed in [0, 1]
 Comparison with expectation represented through 

probability–probability (PP) plot 
 Fraction of events with p-values ≤ given number
 PP plot should be diagonal
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PP plot (cont.)

 N background trials around an event
 n give SNR higher than event
 Estimated p-value
 True p-value 
 Likelihood of     is binomial function

 Posterior distribution of 
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Prior hypothesis

Uncertainty from 
finite number of 
background trials

Uncertainty from 
finite number of 
events

PP curve
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Hierarchical Bayesian Inference

 Use set of events to compare GR to beyond-GR model with extra 
parameter        (GR:             )
 e.g. parametrized post-Einstein framework

 Assume value of     is the same for all events
 Reasonable assumption in some cases (e.g. dispersion                               

from massive graviton), too restrictive in most
 Assume value of     is uncorrelated across events

 General case: assume    is drawn from an unknown distribution

 GR:              &                  Previous cases:               &                or 33



 Use set of events to infer e.g. mass distribution of sources
 Also based on hierarchical Bayesian inference, but selection 

effects need to be taken into account
 Observed population has Malmquist bias 
 Loudest sources more likely to be detected

Inferring an astrophysical population
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Population model 
parameters

Fraction of detectable 
events for population 
with parameters 

Distribution of event 
parameters      for 
population with 
parameters 

Likelihood of ith
event data under 
parameters  
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