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Figure 1. Summary of the main Bayesian and optimal-statistic analyses presented in this paper, which establish multiple lines
of evidence for the presence of Hellings–Downs correlations in the 15-year NANOGrav data set. (a): Bayesian “free-spectrum”
analysis, showing posteriors (gray violins) of independent variance parameters for a Hellings–Downs-correlated stochastic process
at frequencies i/T , with T the total data set time span. The blue represents the posterior median and 1/2� posterior bandsa

for a power-law model; the dashed black line corresponds to a � = 13/3 (SMBHB-like) power-law, plotted with the median
posterior amplitude. See §3 for more details. (b): Posterior probability distribution of GWB amplitude and spectral exponent
in a HD power-law model, showing 1/2/3� credible regions. The value �GWB = 13/3 (dashed black line) is included in the 99%
credible region. The amplitude is referenced to fref = 1yr�1 (blue) and 0.1 yr�1 (orange). The dashed blue and orange curves
in the log

10
AGWB subpanel shows its marginal posterior density for a � = 13/3 model, with fref = 1yr�1 and fref = 0.1 yr�1,

respectively. See §3 for more details. (c): Angular-separation–binned inter-pulsar correlations, measured from 2,211 distinct
pairings in our 67-pulsar array using the frequentist optimal statistic, assuming maximum-a-posteriori pulsar noise parameters
and � = 13/3 common-process amplitude from a Bayesian inference analysis. The bin widths are chosen so that each includes
approximately the same number of pulsar pairs, and central bin locations avoiding zeros of the Hellings–Downs curve. This
binned reconstruction accounts for correlations between pulsar pairs (Romano et al. 2021; Allen & Romano 2022). The dashed
black line shows the Hellings–Downs correlation pattern, and the binned points are normalized by the amplitude of the � = 13/3
common process to be on the same scale. Note that we do not employ binning of inter-pulsar correlations in our detection
statistics; this panel serves as a visual consistency check only. See §4 for more frequentist results. (d): Bayesian reconstruction
of normalized inter-pulsar correlations, modeled as a cubic spline within a variable-exponent power-law model. The violins plot
the marginal posterior densities (plus median and 68% credible values) of the correlations at the knots. The knot positions are
fixed, and are chosen on the basis of features of the Hellings–Downs curve (also shown as a dashed black line for reference): they
include the maximum and minimum angular separations, the two zero crossings of the Hellings–Downs curve, and the position
of minimum correlation. See §3 for more details.
a Throughout we refer to the 68.3%, 95.4%, and 99.7% regions of distributions as 1/2/3� regions, even in two dimensions.
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Figure 3. Empirical background distribution of hd�-to-curn� Bayes factor (left, see §3) and noise-marginalized optimal
statistic (right, see §4), as computed by the phase-shift technique (Taylor et al. 2017) to remove inter-pulsar correlations. We
only compute 5,000 Bayesian phase shifts, compared to 400,000 optimal statistic phase shifts, because of the huge computational
resources needed to perform the Bayesian analyses. For the optimal statistic, we also compute the background distribution using
27,000 simulations (orange line) and compare to an analytic calculation (green line). Dotted lines indicate Gaussian-equivalent
2�, 3�, and 4� thresholds. The dashed vertical lines indicate the values of the detection statistics for the unshifted data sets.
For the Bayesian analyses, we find p = 10�3 (approx. 3�); for the optimal statistic analyses, we find p = 5 ⇥ 10�5–1.9 ⇥ 10�4

(approx. 3.5–4�).

ing a way to test the null hypothesis that no inter-pulsar539

correlations are present. The resulting background dis-540

tribution of Bayes factors is shown in the left panel of541

Figure 3—they exceed the observed value in five of the542

5,000 phase shifts (p = 10�3). We also performed sky543

scramble analyses (Cornish & Sampson 2016), which544

remove the dependence of inter-pulsar spatial correla-545

tions on the angular separations between the pulsars by546

attributing random sky positions to the pulsars. Sky547

scrambles generate a background distribution for which548

inter-pulsar correlations are present in the data but they549

are independent of the pulsars’ angular separations: for550

this distribution, we find p = 1.6⇥10�3. A detailed dis-551

cussion of sky scrambles and the results of these analyses552

can be found in App. F.553

As in NG12gwb, we also carried out a minimally mod-554

eled Bayesian reconstruction of the inter-pulsar correla-555

tion pattern, using spline interpolation over seven spline-556

knot positions. The choice of seven spline-knot posi-557

tions is based on features of the Hellings-Downs pattern:558

two correspond to the maximum and minimum angular559

separations (0� and 180�, respectively), two are chosen560

to be at the theoretical zero crossings of the Hellings–561

Downs pattern (49.2� and 121.8�), one is at the theo-562

retical minimum (82.5�), and the final two are between563

the end points and zero crossings (25� and 150�) to al-564

low additional flexibility in the fit. Panel (d) of Fig-565

ure 1 shows the marginal 1-D posterior densities at these566

spline-knot positions for a power-law varied-exponent567

model. The reconstruction is consistent with the over-568

plotted Hellings–Downs pattern; furthermore, the joint569

2-D marginal posterior densities for the knots, not shown570

in panel (d) of Figure 1, at the HD zero-crossings is con-571

sistent with (0, 0) within 1� credibility.572

4. OPTIMAL STATISTIC ANALYSIS573

We complement our Bayesian search with a frequen-574

tist analysis using the optimal statistic (Anholm et al.575

2009; Demorest et al. 2013; Chamberlin et al. 2015), a576

summary statistic designed to measure correlated excess577

power in PTA residuals. (Note that there is no accepted578

definition of “optimal statistic” in modern statistical us-579

age, but the term has become established in the PTA580

literature to refer to this specific method, so we use it581

for this reason.) It is enlightening to describe the op-582

timal statistic as a weighted average of the inter-pulsar583

correlation coe�cients584
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A2�(⇠ab)�̃ab (see Pol et al. 2022), and where elements590
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Figure 3. Empirical background distribution of hd�-to-curn� Bayes factor (left, see §3) and noise-marginalized optimal
statistic (right, see §4), as computed by the phase-shift technique (Taylor et al. 2017) to remove inter-pulsar correlations. We
only compute 5,000 Bayesian phase shifts, compared to 400,000 optimal statistic phase shifts, because of the huge computational
resources needed to perform the Bayesian analyses. For the optimal statistic, we also compute the background distribution using
27,000 simulations (orange line) and compare to an analytic calculation (green line). Dotted lines indicate Gaussian-equivalent
2�, 3�, and 4� thresholds. The dashed vertical lines indicate the values of the detection statistics for the unshifted data sets.
For the Bayesian analyses, we find p = 10�3 (approx. 3�); for the optimal statistic analyses, we find p = 5 ⇥ 10�5–1.9 ⇥ 10�4

(approx. 3.5–4�).
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- p-value of  means a 1/1000 chance that uncorrelated red noise could produce the observed results10−3

- p-values correspond to  or  (“strong evidence” vs LIGO’s  “detecGon”)3σ 3.5 − 4σ ≫ 5σ
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Figure 6. Left: Posteriors of Fourier component variance �i for the curnfree (left) and hdfree (right) models (see §2), plotted
at their corresponding frequencies fi = i/T with T the 16.03-yr extent of the data set. Excess power is observed in bins 1–8
(somewhat marginally in bin 6); Hellings–Downs-correlated power in bins 1–5 and 8. The dashed line plots the best-fit power
law, which has � ' 3.2 (as in panel (d) of Figure 1); the fit is pushed to lower � by bins 1 and 8. The dotted line plots the best-fit
power law when � is fixed to 13/3; it overshots in bin 1 and undershots in bin 8. Right: Posteriors of variance �2 in Fourier
bin 2 (f2 = 3.95 nHz) in a curnfree + hdfree + monopolefree + dipolefree model, showing evidence of a quasi-monochromatic
monopole process (dashed). No monopole or dipole power is observed in all other bins of that joint model, with �CURN,i and
�HD,i posteriors consistent with the left panel.

in the left panel of Figure 6, where bin number i cor-768

responds to fi = i/T , with T = 16.03 yr the extent of769

the data set. For the purpose of illustration, we overlay770

best-fit power laws that thread the posteriors in a way771

similar to the factorized PTA likelihood of Taylor et al.772

(2022) and Lamb et al. (2023).773

We deem excess power, either uncorrelated for774

curnfree or correlated for hdfree, to be observed in a775

bin when the support of the posterior is concentrated776

away from the lowest amplitudes. No power of either777

kind is observed above f8, consistent with the presence778

of a floor of white measurement noise. Furthermore,779

no correlated power is observed in bins 6 and 7, where a780

power-law model would expect a smooth continuation of781

the trend of bins 1–5 (cf. the dashed fit of Figure 6): this782

may explain the drop in the Bayes factor. However, cor-783

related power reappears in bin 8, pushing the fit toward784

shallower slopes. Indeed, repeating the fit by omitting785

subsets of the bins suggests that the low recovered �HD786

is due mostly to bin 8 and to the lower-than-expected787

correlated power found in bin 1. Obviously, excluding788

those bins leads to higher �HD estimates.789

To explore deviations from a pure power law that may790

arise from statistical fluctuations of the astrophysical791

background or from unmodeled systematics (perhaps re-792

lated to the timing model), in App. D we relax the nor-793

mal ck prior (cf. Equation 3) to a multivariate Student’s794

t-distribution that is more accepting of mild outliers.795

The resulting estimate of �CURN peaks at a higher value796

and is broader than in curn� , with posterior medians797

and 5-95% quantiles of �CURN = 3.5+1.0
�1.0.798

Similarly, spectral turnovers due to interactions be-799

tween SMBHBs and their environments can result in800

reduced GWB power at lower frequencies, which might801

explain the slightly lower correlated power in bin 1. We802

investigate this hypothesis in App. E using the turnover803

spectrum of Sampson et al. (2015). For this curnturnover
804

model, the 15-year data favor a spectral bend below 10805

nHz (near f5), but the Bayes factor against the standard806

hd� is inconclusive.807

Future data sets with longer time spans and the com-808

parison of our data set with those of other PTAs should809

help clarify the astrophysical or systematic origin of810

these possible spectral features.811

5.3. Alternative correlation patterns812

Sources other than GWs can produce inter-pulsar813

residual correlations with spatial patterns other than814

HD. For example, errors in the solar-system ephemerides815

create time-dependent Roemer delays with dipolar cor-816

relations (Roebber 2019; Vallisneri et al. 2020), and er-817

rors in the correction of telescope time to an inertial818

timescale (Hobbs et al. 2012, 2020) create an identical819

time-dependent delay for all pulsars (i.e., a delay with820

monopolar correlations).821

Gair et al. (2014) showed that, for a pulsar array dis-822

tributed uniformly across the sky, HD correlations can823

be decomposed as824

�HD,ab =
1X

l=0

gl Pl(cos ⇠ab),825

g0 = 0, g1 = 0, gl =
3

2
(2l + 1)

(l � 2)!

(l + 2)!
for l � 2, (12)826

827

lo
g 1

0(
Δ

T r
m

s/
se
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Figure 1. NANOGrav 15-year GWB free-spectrum posteriors translated into the square root of timing residual power (⇢, left panel) and
characteristic strain (hc, right panel). The HD-correlated free-spectrum measured while simultaneously fitting for monopole-correlated (MP),
dipole-correlated (DP), and uncorrelated red noise noise (CURN) free spectra (HD-w/MP+DP+CURN; gray violins, left-side) is compared
against the HD-DMGP model in which dispersion-measure variations are modeled using Gaussian Processes (green violins, right-side). The
black dotted lines show idealized power-law spectra (⇢2 / f �13/3 and hc / f �2/3) fit to the median posterior value for the amplitude obtained
from the HD-w/MP+DP+CURN model in NG15gwb. Over plotted are the best-fitting, simulated GWB spectra from models of SMBH binary
populations produced in this analysis. Two models are shown, one which includes environmentally driven binary evolution (blue) and another
that assumes GW-only evolution (purple). Both models are able to reproduce the data, while the environmentally driven model produces a
slightly better fit. We conclude that the observed GWB spectrum is consistent with astrophysically motivated expectations from populations of
SMBH binaries.

a semi-analytic modeling approach to SMBH binary popu-
lation synthesis and defer the use of cosmological hydrody-
namics simulations for future work.

SUMMARY & OUTLINE

Figure 1 shows the GWB spectrum recovered from the 15-
year NANOGrav data, along with the best fitting simulated
GWB spectra produced in this work. In § 2 we summarize
the NANOGrav 15-year data set that forms the observational
basis for this analysis, and the GWB spectra derived from it
(grey and green ‘violins’). In § 3, we describe our methods
of modeling populations of SMBH binaries and calculating
the GWB spectra that they would produce. There, we also
detail the approach that we use to compare our simulations
to the 15-year data. Our best-fitting models (colored curves)
are presented in § 4.

We find that astrophysically motivated models of SMBH
binary populations are able to accurate reproduce the ob-
served GWB spectrum (§ 4.1 & 4.2). We focus our analysis
on two population models. One includes a self consistent pre-
scription for environmentally driven binary evolution (blue),
and the other assumes GW-only evolution (purple) which is
still commonly used in the literature. Both models are able to
fit the data, while the environmentally driven case produces
a slightly better match—particularly to the lowest frequency
bin. We present the binary evolution parameters favored by
15-year spectra fits for both models (§ 4.3). While the pos-
terior distributions are broadly consistent with astrophysical

expectations, parameters tend to be shifted towards values
that produce larger GWB amplitudes than was previously
most-favored. Generally higher binary masses or densities,
or highly e�cient binary mergers are required to produce the
observed amplitudes. The characteristics of the implied bi-
nary populations are presented in § 4.4.

Our results are discussed in the context of the field in § 5,
along with highlights for the near future of low-frequency
GW astronomy.

Throughout this paper we assume a WMAP9
cosmology with ⌦m = 0.228, ⌦b = 0.0472, and
H0 = 0.6933 km s�1 Mpc�1.

2. PULSAR TIMING ARRAY DATA

This work is based on the NANOGrav 15-year data set,
which includes 68 pulsars, 67 of which have a baseline of
at least 3 years and are included in the GWB analysis. The
complete description of the data set can be found in Agazie
et al. (2023a, hereafter NG15), while the detector character-
ization and noise modeling of individual pulsars is described
in Agazie et al. (2023c, hereafter NG15detchar). The de-
tailed description of the Bayesian search for the GWB is pre-
sented in NG15gwb. Here, we briefly summarize the mea-
surement of the GWB spectrum from the NANOGrav data,
focusing on the pieces which are necessary for the astrophys-
ical interpretation presented in this paper.

PTA collaborations systematically monitor millisecond
pulsars and record the times of arrival (TOAs) of their radio

6 The NANOGrav Collaboration
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populations produced in this analysis. Two models are shown, one which includes environmentally driven binary evolution (blue) and another
that assumes GW-only evolution (purple). Both models are able to reproduce the data, while the environmentally driven model produces a
slightly better fit. We conclude that the observed GWB spectrum is consistent with astrophysically motivated expectations from populations of
SMBH binaries.

a semi-analytic modeling approach to SMBH binary popu-
lation synthesis and defer the use of cosmological hydrody-
namics simulations for future work.

SUMMARY & OUTLINE

Figure 1 shows the GWB spectrum recovered from the 15-
year NANOGrav data, along with the best fitting simulated
GWB spectra produced in this work. In § 2 we summarize
the NANOGrav 15-year data set that forms the observational
basis for this analysis, and the GWB spectra derived from it
(grey and green ‘violins’). In § 3, we describe our methods
of modeling populations of SMBH binaries and calculating
the GWB spectra that they would produce. There, we also
detail the approach that we use to compare our simulations
to the 15-year data. Our best-fitting models (colored curves)
are presented in § 4.

We find that astrophysically motivated models of SMBH
binary populations are able to accurate reproduce the ob-
served GWB spectrum (§ 4.1 & 4.2). We focus our analysis
on two population models. One includes a self consistent pre-
scription for environmentally driven binary evolution (blue),
and the other assumes GW-only evolution (purple) which is
still commonly used in the literature. Both models are able to
fit the data, while the environmentally driven case produces
a slightly better match—particularly to the lowest frequency
bin. We present the binary evolution parameters favored by
15-year spectra fits for both models (§ 4.3). While the pos-
terior distributions are broadly consistent with astrophysical

expectations, parameters tend to be shifted towards values
that produce larger GWB amplitudes than was previously
most-favored. Generally higher binary masses or densities,
or highly e�cient binary mergers are required to produce the
observed amplitudes. The characteristics of the implied bi-
nary populations are presented in § 4.4.

Our results are discussed in the context of the field in § 5,
along with highlights for the near future of low-frequency
GW astronomy.

Throughout this paper we assume a WMAP9
cosmology with ⌦m = 0.228, ⌦b = 0.0472, and
H0 = 0.6933 km s�1 Mpc�1.

2. PULSAR TIMING ARRAY DATA

This work is based on the NANOGrav 15-year data set,
which includes 68 pulsars, 67 of which have a baseline of
at least 3 years and are included in the GWB analysis. The
complete description of the data set can be found in Agazie
et al. (2023a, hereafter NG15), while the detector character-
ization and noise modeling of individual pulsars is described
in Agazie et al. (2023c, hereafter NG15detchar). The de-
tailed description of the Bayesian search for the GWB is pre-
sented in NG15gwb. Here, we briefly summarize the mea-
surement of the GWB spectrum from the NANOGrav data,
focusing on the pieces which are necessary for the astrophys-
ical interpretation presented in this paper.

PTA collaborations systematically monitor millisecond
pulsars and record the times of arrival (TOAs) of their radio
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GW150914, etc PTA observation

deterministic / transient signal stochastic / persistent signal

waveforms & coincidence power spectra & cross-correlations

single binary black hole merger combined signal from a population of approx 
monochromatic inspiraling binaries

stellar mass black holes (1 - 100 solar masses) supermassive black holes (109 solar masses)

audio frequencies (10’s - 1000 Hz) nanohertz frequencies (10-9 - 10-7 Hz) 
[periods: decades -> months]

laser interferometers with km-scale arms galactic-scale detector using msec pulsars, with “arm” 
lengths ~100 - few x 1000 light-years  

GW wavelength >> arm length GW wavelength << arm length

“detection of …” ( >5 sigma) “evidence for …” (3-4 sigma)



What plays the role of a binary “chirp” waveform for PTAs?

4

OUR LIGO OBSERVATIONS AND WHAT THEY MEAN

On September 14, 2015 at 09:50:45 Greenwich Mean Time the LIGO Hanford and Livingston Observatories both detected a signal from
GW150914. The signal was identified first by what we call low-latency search methods that are designed to analyse the detector data very
promptly, looking for evidence of a gravitational-wavelike pattern but without modeling the precise details of the waveform. These prompt
searches reported the candidate event within only three minutes of the signals arriving at the detectors. The gravitational-wave strain data
acquired by the LIGO interferometers was then compared with an extensive bank of theoretically predicted waveforms – a process known as
matched filtering –with the goal of finding the waveform that best matched the data.

Figure 3 presents key results of these detailed
analyses – all of which firmly point to
GW150914 being produced by the
coalescence of two black holes. The middle
part of the figure shows our reconstruction of
the gravitational-wave strain, as seen by the
Hanford detector. Note, in particular, the
impressive agreement between this pattern
(shown in grey) and (shown in red) a
waveform for two coalescing black holes
consistent with our data, computed using
general relativity.

Images of the black hole horizons at various
stages of this computation are shown at the
top of the figure: the inspiral, as the two
black holes approach each other; the merger
as the black holes join together and the
subsequent ringdown, as the single black
hole that has newly formed briefly oscillates
before settling down.

Comparing the strain data with theoretical
predictions allows us to test whether general
relativity is able to fully describe the event. It
passes this test with flying colors: all of our
observations are consistent with the
predictions of general relativity.

We can also use the data to estimate the
specific physical characteristics of the system
that produced GW150914, including the
masses of its two black holes before the
merger, the mass of the single post-merger
black hole, and the distance of the event.

Our results indicate that GW150914 was produced by the merger of two black holes with masses of about 36 times and 29 times the mass of
the Sun respectively, and that the post-merger black hole had a mass of about 62 times the Sun’s mass. Moreover, we infer that the final
black hole is spinning – such rotating black holes were first predicted theoretically in 1963 by mathematician Roy Kerr. Finally, our results
indicate that the GW150914 occurred at a distance of more than one billion light years. So the LIGO detectors have observed a truly
remarkable event that happened a long time ago in a galaxy far, far away!

If we compare the masses of the pre- and post-merger black holes, we see that the coalescence converted about three times the mass of the
Sun (or nearly six million trillion trillion kilograms) into gravitational-wave energy, most of it emitted in a fraction of a second. By contrast
the Sun converts a mere two billionths of one trillionth of its mass into electromagnetic radiation every second. In fact, the gravitational-
wave power radiated by GW150914 was more than ten times greater than the combined luminosity (i.e. the light power) of every star and
galaxy in the observable Universe.

HOW DOWE KNOW GW150914WAS A BLACK HOLEMERGER?

Our estimated pre-merger masses of the two components in GW150914 make a very strong argument that they are both black holes –
particularly when we also consider the enormous velocity and tiny separation of the two components, as shown in the lower part of figure 3.
In this figure indicative velocities of the two components are seen to be significant fractions of the speed of light. Similarly their approximate
separation is shown to be just a few times the characteristic size of a black hole, known as its Schwarzschild radius.

These graphs imply that the two components were only a few hundred kilometers apart just before they merged, ie. when the gravitational-
wave frequency was about 150 Hz. Black holes are the only known objects compact enough to get this close together without merging.
Based on our estimated total mass for the two components, a pair of neutron stars would not be massive enough, and a black hole-neutron
star pair would have already merged at a lower frequency than 150 Hz.

Figure 3. Some key results of our analysis of GW150914, comparing the reconstructed
gravitational-wave strain (as seen by H1 at Hanford) with the predictions of the best-
matching waveform computed from general relativity, over the three stages of the event:
inspiral, merger and ringdown. Also shown are the separation and velocity of the black holes,
and how they change as the merger event unfolds.
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Why was GW150914 so convincing?
1. observed signal is consistent across detectors 
2. observed signal agrees with predictions 
3. observed signal is unlikely due to noise alone (< 1/5 million)
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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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multiple classes, this significance is decreased by a trials
factor equal to the number of classes [71].

A. Generic transient search

Designed to operate without a specific waveform model,
this search identifies coincident excess power in time-
frequency representations of the detector strain data
[43,72], for signal frequencies up to 1 kHz and durations
up to a few seconds.
The search reconstructs signal waveforms consistent

with a common gravitational-wave signal in both detectors
using a multidetector maximum likelihood method. Each
event is ranked according to the detection statistic
ηc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ec=ð1þ En=EcÞ

p
, where Ec is the dimensionless

coherent signal energy obtained by cross-correlating the
two reconstructed waveforms, and En is the dimensionless
residual noise energy after the reconstructed signal is
subtracted from the data. The statistic ηc thus quantifies
the SNR of the event and the consistency of the data
between the two detectors.
Based on their time-frequency morphology, the events

are divided into three mutually exclusive search classes, as
described in [41]: events with time-frequency morphology
of known populations of noise transients (class C1), events
with frequency that increases with time (class C3), and all
remaining events (class C2).

Detected with ηc ¼ 20.0, GW150914 is the strongest
event of the entire search. Consistent with its coalescence
signal signature, it is found in the search class C3 of events
with increasing time-frequency evolution. Measured on a
background equivalent to over 67 400 years of data and
including a trials factor of 3 to account for the search
classes, its false alarm rate is lower than 1 in 22 500 years.
This corresponds to a probability < 2 × 10−6 of observing
one or more noise events as strong as GW150914 during
the analysis time, equivalent to 4.6σ. The left panel of
Fig. 4 shows the C3 class results and background.
The selection criteria that define the search class C3

reduce the background by introducing a constraint on the
signal morphology. In order to illustrate the significance of
GW150914 against a background of events with arbitrary
shapes, we also show the results of a search that uses the
same set of events as the one described above but without
this constraint. Specifically, we use only two search classes:
the C1 class and the union of C2 and C3 classes (C2þ C3).
In this two-class search the GW150914 event is found in
the C2þ C3 class. The left panel of Fig. 4 shows the
C2þ C3 class results and background. In the background
of this class there are four events with ηc ≥ 32.1, yielding a
false alarm rate for GW150914 of 1 in 8 400 years. This
corresponds to a false alarm probability of 5 × 10−6

equivalent to 4.4σ.

FIG. 4. Search results from the generic transient search (left) and the binary coalescence search (right). These histograms show the
number of candidate events (orange markers) and the mean number of background events (black lines) in the search class where
GW150914 was found as a function of the search detection statistic and with a bin width of 0.2. The scales on the top give the
significance of an event in Gaussian standard deviations based on the corresponding noise background. The significance of GW150914
is greater than 5.1σ and 4.6σ for the binary coalescence and the generic transient searches, respectively. Left: Along with the primary
search (C3) we also show the results (blue markers) and background (green curve) for an alternative search that treats events
independently of their frequency evolution (C2þ C3). The classes C2 and C3 are defined in the text. Right: The tail in the black-line
background of the binary coalescence search is due to random coincidences of GW150914 in one detector with noise in the other
detector. (This type of event is practically absent in the generic transient search background because they do not pass the time-frequency
consistency requirements used in that search.) The purple curve is the background excluding those coincidences, which is used to assess
the significance of the second strongest event.
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- probability of observing such a large value of  from noise alone is extremely small ̂ρc < 1/5 million

̂ρc = ̂ρ2
1 + ̂ρ2

2

   = (normalized) noise-weighted  
          inner product of the data in  
          detector i with template waveform

̂ρi

̂ρc = ̂ρ2
1 + ̂ρ2

2

   = matched filter S/N 
of data in detector i

̂ρi



What is a pulsar timing array (PTA)?
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[Credit: J. Rowe/Swinbourne]

• GWs perturb pulse arrival times -> look for evidence of GWs in the timing residuals 

[Credit: J. Hazboun; NASA]
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Fig. 1 Gravitational-wave spectrum, together with potential sources and relevant detectors. Image credit
Institute of Gravitational Research/University of Glasgow

limiting2 noise sources below 10 Hz, and photon shot noise above a couple of kHz).
Outside this band there are several other experiments—both currently operating and
planned—that should also be able to detect gravitational waves. An illustration of the
gravitational-wave spectrum, together with potential sources and relevant detectors,
is shown in Fig. 1. We highlight a few of these experiments below.

1.2.1 Cosmic microwave background experiments

At the extreme low-frequency end of the spectrum, corresponding to gravitational-
wave periods of order the age of the Universe, the Planck satellite (ESA 2016c)
and other cosmic microwave background (CMB) experiments, e.g., BICEP and Keck
(BICEP/Keck 2016) are looking for evidence of relic gravitational waves from the
Big Bang in the B-mode component of CMB polarization maps (Kamionkowski et al.
1997; Hu and White 1997; Ade et al. 2015a). In 2014, BICEP2 announced the detec-
tion of relic gravitational waves (Ade et al. 2014), but it was later shown that the
observed B-mode signal was due to contamination by intervening dust in the galaxy
(Flauger et al. 2014; Mortonson and Seljak 2014). So at present, these experiments
have been able to only constrain (i.e., set upper limits on) the amount of gravitational

2 Actually, even if the gravity-gradient and seismic noise were zero, one couldn’t go below ∼1 Hz with the
current generation of ground-based laser interferometers, since the suspended mirrors (i.e., the test masses)
are no longer freely floating when you go below their resonant frequencies: ∼1 Hz.
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What are the data for PTA analyses? 
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Figure 37. Narrowband and wideband timing residuals and DMX timeseries for J1713+0747. See Figure 8 for details.
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rms ≃ 100 ns

h ≃ 10−16

Tobs ≃ 15 yr
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How do GWs affect timing residuals?
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̂p

Not 
to scale!

d ∼ 108 lyr
L ∼ 102 − 103 lyr
λ ∼ 10 lyr

ΔT(t) =
1
2c

̂pi ̂pj ∫
L

0
ds hij(t(s), ⃗x(s))

t(s) = t − (L − s)/c , ⃗x(s) = (L − s) ̂p

•  Perturbations to pulse arrival times:

Z(t) ≡
dΔT(t)

dt
=

1
2

̂pi ̂pj

1 + Ω̂ ⋅ ̂p [hij(t, 0⃗) − hij(t − L/c, L ̂p)]
•  Doppler shift (“redshift/blueshift”) of pulse frequency :

Z(t) = ∑
A=+,×

[hA(t) − hA(t − L(1 + Ω̂ ⋅ ̂p)/c)]FA(Ω̂)

FA(Ω̂) =
1
2

̂pi ̂pj

1 + Ω̂ ⋅ ̂p
eA

ij (Ω̂) (antenna pattern)

•  In terms of polarizations  :A = + , ×

e+
ij (Ω̂) = ̂li

̂lj − m̂im̂j

e×
ij (Ω̂) = ̂lim̂j + m̂i

̂lj
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Figure 63: Graphical representation of the six di↵erent polarization modes. The circle
with a cross or arrow represents the direction of propagation of the gravitational wave.
The solid and dotted circles and ellipses denote deformations to a ring of particles 180�

out of phase with one another. Adapted from Figure 1 in [144].
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x

�l� 

�l

�m
�m� 

�k

�

FIG. 4. Left panel: Coordinate system and unit vectors used in the plane wave expansion. Right panel (top): two orthogonal
polarizations of a GW. A circular ring of test particles in the plane orthogonal to the propagation direction k̂ of the wave are
alternately deformed into ellipses, as space is “squeezed” and “stretched” by the passing of the wave. Right panel (bottom): an
alternative choice of two orthogonal polarizations may be obtained by rotating l̂ and m̂ through angle  to obtain new vectors
l̂0 and m̂0.

where l̂, m̂ are any two orthogonal unit vectors in the plane orthogonal to k̂. Conventionally, for stochastic background
analyses, we take

k̂ ⌘ �x̂ sin ✓ cos� � ŷ sin ✓ sin� � ẑ cos ✓ ,

l̂ ⌘ x̂ sin� � ŷ cos� ,

m̂ ⌘ �x̂ cos ✓ cos�� ŷ cos ✓ sin�+ ẑ sin ✓ .

(2.4)

The reader should verify that these three vectors are orthonormal, meaning that each has unit length and is perpen-
dicular to the other two. In fact, k̂ = �r̂, l̂ = ��̂, m̂ = �✓̂, where r̂, ✓̂, �̂ are the standard spherical polar coordinate
unit vectors.

For a given GW propagation direction k̂, one can form another (equivalent) orthonormal set by rotating the vectors
l̂ and m̂ by an angle  (called the polarization angle) in the plane orthogonal to k̂, as shown in the bottom right panel
of Figure 4. We leave it as an exercise for the reader to show that such a rotation of l̂ and m̂ leads to a new set of
polarization tensors


e
0+
ij

e
0⇥
ij

�
=


cos 2 sin 2 

� sin 2 cos 2 

� 
e
+
ij

e
⇥
ij

�
. (2.5)

This change of polarization basis is a spin-two gauge transformation. It leads to di↵erent values of the expansion
coe�cients hA(f, k̂), but does not change the metric perturbations hij(t, ~x).

Another useful exercise is to define a complex polarization tensor eij ⌘ e
+
ij � ie

⇥
ij , and to show that under (2.5) it

transforms to e
0
ij = exp(2i )eij . In fact, the “2” that appears in this transformation is the reason why the field is

said to have “spin two”. As an alternative to the linear polarization basis, the polarization tensor eij and its complex
conjugate e

⇤
ij form a right- and left-circular polarization basis. (See also Problem 9 from Chapter 16 of [9].)

Returning to (2.1), we first need to substitute ⌧(s) and ~x(s) for t and ~x in the plane wave expansion (2.2) for
hij(t, ~x). The s dependence shows up only in the exponential, so the integration is easy. Again, we leave it as an
exercise for the reader to show that doing the integration and grouping terms accordingly gives

�T (t) =

Z 1

�1
df

Z
dk̂

X

A=+,⇥
hA(f, k̂)RA(f, k̂)ei2⇡f(t�k̂·~r2/c) , (2.6)

+ ×Ω̂ ̂l

m̂′￼ m̂
̂l′￼

ψ⊙



Can we detect GWs using data from a single pulsar?
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🌎

Ω̂

Need to correlate data from multiple pulsars

11

̂pa

Not 
to scale!

̂pb

γab

hij(t, 0⃗)

Cornish & Sesana 2013: fix GW point source; average over all pulsar 
pairs separated by angle γab

• Hellings & Downs 1983: fix pulsars; average over the GW source 
direction and polarization angle

≡

hij(t − La/c, La ̂pa)

hij(t − Lb/c, Lb ̂pb)

⟨ρab⟩p = ⟨ρab⟩s =
1
2

−
1
4 ( 1 − cos γab

2 ) +
3
2 ( 1 − cos γab

2 ) ln ( 1 − cos γab

2 ) ≡ Γ(γab)

FA
a (Ω̂) =

1
2

̂pi
a ̂pj

a

1 + Ω̂ ⋅ ̂pa
eA

ij (Ω̂) FA
b (Ω̂) =

1
2

̂pi
b ̂pj

b

1 + Ω̂ ⋅ ̂pb
eA

ij (Ω̂)

Za(t) = h+(t)F+
a (Ω̂) + h×(t)F×

a (Ω̂) Zb(t) = h+(t)F+
b (Ω̂) + h×(t)F×

b (Ω̂)

hij(t, 0⃗) = h+(t) e+
ij (Ω̂) + h×(t) e×

ij (Ω̂)
• For expected correlations, can restrict to Earth-term contributions:

• Correlation is time-averaged product:

ρab ≡ Za(t)Zb(t) ≡
1
T ∫

T

0
dt Za(t)Zb(t)

= (h+)2F+
a (Ω̂)F+

b (Ω̂) + (h×)2F×
a (Ω̂)F×

b (Ω̂) + h+h× (F+
a (Ω̂)F×

b (Ω̂) + F×
a (Ω̂)F+

b (Ω̂))
= F+

a (Ω̂)F+
b (Ω̂) + F×

a (Ω̂)F×
b (Ω̂) (unpolarized, unit amplitude)

0
d ∼ 108 lyr
L ∼ 102 − 103 lyr
λ ∼ 10 lyr
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Hellings and Downs curve
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Should we expect to recover the HD curve exactly?
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Cosmic variance for interfering sources
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cosmic variance



🌎

Ω̂1

Correlation calculation for interfering sources

15

̂pa

Not 
to scale!

̂pb

β12

Ω̂2

γab

Za(t) = h1(t)Fa(Ω̂1) + h2(t)Fa(Ω̂2)

Zb(t) = h1(t)Fb(Ω̂1) + h2(t)Fb(Ω̂2)

h1(t) = A1 cos(2πft + ϕ1), h2(t) = A2 cos(2πft + ϕ2)
• Two sources, same frequency (ignore polarization):

Here, the two-point function µ(�,�) is shown in Fig. 5, hj is the GW amplitude

of the j’th source, �j 2 [0, 2⇡) is the GW phase of that source, and �jk is the

angle on the sky between sources j and k. (From here on, hj is just a positive

real number, whereas in Sec. 4, h1 and h2 denoted functions of time.)

Figure 5: The two-point function µ(�,�). The cross-section at � = 0 is the
Hellings-Downs curve: µu(�) = µ(�, 0). An explicit formula for µ(�,�) is

derived in 1).

Look carefully at Eq. (6). The first sum is the “diagonal” terms, where

source j interferes with itself. The pulsar average of these gives exactly the

Hellings and Downs curve. Then there are the “o↵-diagonal” terms, meaning

the sum over j 6= k. These come from di↵erent sources interfering with each

other. The product of the amplitudes of those two sources is multiplied by the

cosine of the phase di↵erence between the sources. These phases are indepen-

75

Two-point  
function

⟨ρab⟩p =
1
2 ∑

j

A2
j Γ(γab) +

1
2 ∑

j≠k

AjAk cos(ϕj − ϕk)μ(γab, βjk)

μ(γab, βjk) ≡ ⟨F+
a (Ω̂j)F+

b (Ω̂k) + F×
a (Ω̂j)F×

b (Ω̂k)⟩p

ρab = Za(t)Zb(t)

= h2
1 Fa(Ω̂1)Fb(Ω̂1) + h2

2 Fa(Ω̂2)Fb(Ω̂2) + h1h2 (Fa(Ω̂1)Fb(Ω̂2) + Fa(Ω̂2)Fb(Ω̂1))
=

1
2

A2
1 Fa(Ω̂1)Fb(Ω̂1) +

1
2

A2
2 Fa(Ω̂2)Fb(Ω̂2) +

1
2

A1A2 cos(ϕ1 − ϕ2)(Fa(Ω̂1)Fb(Ω̂2) + Fa(Ω̂2)Fb(Ω̂1))

• Correlation:

d ∼ 108 lyr
L ∼ 102 − 103 lyr
λ ∼ 10 lyr

μab ≡ Γ(γab) +
1
N ∑

j≠k

cos(ϕj − ϕk)μ(γab, βjk) (unit amplitude)

σ2
cosmic(γ) =

1
4 ∫

π

0
dβ sin β μ2(γ, β)

• Cosmic variance:

⟨μab⟩s = Γ(γab) , σ2
cosmic(γab) = ⟨μ2

ab⟩s − ⟨μab⟩2
s



How does one analyze PTA data to search for GWs?
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Bayesian model comparison
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Pulsar 1 Pulsar 2 Pulsar N

+ + … +

+
Common stochastic process (potentially correlated across pulsars)

Timing Model

Intrinsic pulsar noise
 Measurement noise

Timing Model

Intrinsic pulsar noise
 Measurement noise

Timing Model

Intrinsic pulsar noise
 Measurement noise φa( f ) =

A2
a

12π2

1
Tobs ( f

fref )
−γa

f −3
ref

Individual power spectra:

Cab( f ) = χabΦ( f ) + δabφb( f )

Cross power:
common process



Frequentist detection statistic
• Form general linear combination of inter-pulsar correlations: 

 

• Determine weights so they maximize , where                                                          

    (variance of  in absence of spatial correlations)                                                                                                                                                    

• This leads to:                                                                                                                                                                                      

 

• The detections statistic  has the interpretation of a signal-to-noise ratio:                                            

S ≡ ∑
a<b

ρabwab where ρab = Za(t)Zb(t) with ⟨ρab⟩ = A2
gw Γab, ⟨ρab⟩0 = 0

⟨S⟩/N
N2 ≡ ⟨S2⟩0 − ⟨S⟩2

0 S

wab =
Γab/σ2

ab,0

∑c<d Γ2
cd /σ2

cd,0

where σ2
ab,0 = ⟨ρ2

ab⟩0 with wab normalized so N2 = 1

S

S =
∑a<b ρabΓab/σ2

ab,0

∑c<d Γ2
cd /σ2

cd,0

≡ S/N

18



Part II. Plots from NANOGrav 15-yr papers
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NANOGrav’s observed common power spectrum

20

-consistent with predictions from SMBH binaries (and many other 
source models)

γ = 13/3 (binary inspiral)

(strain amplitude at fref = 1/yr)

A = 2.4+0.7
−0.6 × 10−15

ΩGW = 8.4 × 10−9

12 The NANOGrav Collaboration
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Figure 6. Left: Posteriors of Fourier component variance �i for the curnfree (left) and hdfree (right) models (see §2), plotted
at their corresponding frequencies fi = i/T with T the 16.03-yr extent of the data set. Excess power is observed in bins 1–8
(somewhat marginally in bin 6); Hellings–Downs-correlated power in bins 1–5 and 8. The dashed line plots the best-fit power
law, which has � ' 3.2 (as in panel (d) of Figure 1); the fit is pushed to lower � by bins 1 and 8. The dotted line plots the best-fit
power law when � is fixed to 13/3; it overshots in bin 1 and undershots in bin 8. Right: Posteriors of variance �2 in Fourier
bin 2 (f2 = 3.95 nHz) in a curnfree + hdfree + monopolefree + dipolefree model, showing evidence of a quasi-monochromatic
monopole process (dashed). No monopole or dipole power is observed in all other bins of that joint model, with �CURN,i and
�HD,i posteriors consistent with the left panel.

in the left panel of Figure 6, where bin number i cor-768

responds to fi = i/T , with T = 16.03 yr the extent of769

the data set. For the purpose of illustration, we overlay770

best-fit power laws that thread the posteriors in a way771

similar to the factorized PTA likelihood of Taylor et al.772

(2022) and Lamb et al. (2023).773

We deem excess power, either uncorrelated for774

curnfree or correlated for hdfree, to be observed in a775

bin when the support of the posterior is concentrated776

away from the lowest amplitudes. No power of either777

kind is observed above f8, consistent with the presence778

of a floor of white measurement noise. Furthermore,779

no correlated power is observed in bins 6 and 7, where a780

power-law model would expect a smooth continuation of781

the trend of bins 1–5 (cf. the dashed fit of Figure 6): this782

may explain the drop in the Bayes factor. However, cor-783

related power reappears in bin 8, pushing the fit toward784

shallower slopes. Indeed, repeating the fit by omitting785

subsets of the bins suggests that the low recovered �HD786

is due mostly to bin 8 and to the lower-than-expected787

correlated power found in bin 1. Obviously, excluding788

those bins leads to higher �HD estimates.789

To explore deviations from a pure power law that may790

arise from statistical fluctuations of the astrophysical791

background or from unmodeled systematics (perhaps re-792

lated to the timing model), in App. D we relax the nor-793

mal ck prior (cf. Equation 3) to a multivariate Student’s794

t-distribution that is more accepting of mild outliers.795

The resulting estimate of �CURN peaks at a higher value796

and is broader than in curn� , with posterior medians797

and 5-95% quantiles of �CURN = 3.5+1.0
�1.0.798

Similarly, spectral turnovers due to interactions be-799

tween SMBHBs and their environments can result in800

reduced GWB power at lower frequencies, which might801

explain the slightly lower correlated power in bin 1. We802

investigate this hypothesis in App. E using the turnover803

spectrum of Sampson et al. (2015). For this curnturnover
804

model, the 15-year data favor a spectral bend below 10805

nHz (near f5), but the Bayes factor against the standard806

hd� is inconclusive.807

Future data sets with longer time spans and the com-808

parison of our data set with those of other PTAs should809

help clarify the astrophysical or systematic origin of810

these possible spectral features.811

5.3. Alternative correlation patterns812

Sources other than GWs can produce inter-pulsar813

residual correlations with spatial patterns other than814

HD. For example, errors in the solar-system ephemerides815

create time-dependent Roemer delays with dipolar cor-816

relations (Roebber 2019; Vallisneri et al. 2020), and er-817

rors in the correction of telescope time to an inertial818

timescale (Hobbs et al. 2012, 2020) create an identical819

time-dependent delay for all pulsars (i.e., a delay with820

monopolar correlations).821

Gair et al. (2014) showed that, for a pulsar array dis-822

tributed uniformly across the sky, HD correlations can823

be decomposed as824

�HD,ab =
1X

l=0

gl Pl(cos ⇠ab),825

g0 = 0, g1 = 0, gl =
3

2
(2l + 1)

(l � 2)!

(l + 2)!
for l � 2, (12)826

827

lo
g 1

0(
Δ

T r
m

s/
se

c)

1
Tobs

2
Tobs

Tobs = 16.03 yr

ΩGW( f ) ≡
1
ρc

dρGW

d ln f

= 7.4 × 10−9 ( f
fref )

2/3



NANOGrav’s observed correlations

21

-correlations follow the pattern expected for a GW backgound 

67(67 − 1)
2

= 2211 distinct pairs

2211
15

≈ 150 pairs per bin

•weighted averages of measured 
correlations  in each binρab

• includes contributions from GW-
induced covariances 
Cab,cd ≡ ⟨ρabρcd⟩ − ⟨ρab⟩⟨ρcd⟩

4 The NANOGrav Collaboration
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Figure 1. Summary of the main Bayesian and optimal-statistic analyses presented in this paper, which establish multiple lines
of evidence for the presence of Hellings–Downs correlations in the 15-year NANOGrav data set. (a): Bayesian “free-spectrum”
analysis, showing posteriors (gray violins) of independent variance parameters for a Hellings–Downs-correlated stochastic process
at frequencies i/T , with T the total data set time span. The blue represents the posterior median and 1/2� posterior bandsa

for a power-law model; the dashed black line corresponds to a � = 13/3 (SMBHB-like) power-law, plotted with the median
posterior amplitude. See §3 for more details. (b): Posterior probability distribution of GWB amplitude and spectral exponent
in a HD power-law model, showing 1/2/3� credible regions. The value �GWB = 13/3 (dashed black line) is included in the 99%
credible region. The amplitude is referenced to fref = 1yr�1 (blue) and 0.1 yr�1 (orange). The dashed blue and orange curves
in the log

10
AGWB subpanel shows its marginal posterior density for a � = 13/3 model, with fref = 1yr�1 and fref = 0.1 yr�1,

respectively. See §3 for more details. (c): Angular-separation–binned inter-pulsar correlations, measured from 2,211 distinct
pairings in our 67-pulsar array using the frequentist optimal statistic, assuming maximum-a-posteriori pulsar noise parameters
and � = 13/3 common-process amplitude from a Bayesian inference analysis. The bin widths are chosen so that each includes
approximately the same number of pulsar pairs, and central bin locations avoiding zeros of the Hellings–Downs curve. This
binned reconstruction accounts for correlations between pulsar pairs (Romano et al. 2021; Allen & Romano 2022). The dashed
black line shows the Hellings–Downs correlation pattern, and the binned points are normalized by the amplitude of the � = 13/3
common process to be on the same scale. Note that we do not employ binning of inter-pulsar correlations in our detection
statistics; this panel serves as a visual consistency check only. See §4 for more frequentist results. (d): Bayesian reconstruction
of normalized inter-pulsar correlations, modeled as a cubic spline within a variable-exponent power-law model. The violins plot
the marginal posterior densities (plus median and 68% credible values) of the correlations at the knots. The knot positions are
fixed, and are chosen on the basis of features of the Hellings–Downs curve (also shown as a dashed black line for reference): they
include the maximum and minimum angular separations, the two zero crossings of the Hellings–Downs curve, and the position
of minimum correlation. See §3 for more details.
a Throughout we refer to the 68.3%, 95.4%, and 99.7% regions of distributions as 1/2/3� regions, even in two dimensions.

cosmic variance



NANOGrav’s detection confidence
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NANOGrav 15-year Gravitational-Wave Background 9
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Figure 3. Empirical background distribution of hd�-to-curn� Bayes factor (left, see §3) and noise-marginalized optimal
statistic (right, see §4), as computed by the phase-shift technique (Taylor et al. 2017) to remove inter-pulsar correlations. We
only compute 5,000 Bayesian phase shifts, compared to 400,000 optimal statistic phase shifts, because of the huge computational
resources needed to perform the Bayesian analyses. For the optimal statistic, we also compute the background distribution using
27,000 simulations (orange line) and compare to an analytic calculation (green line). Dotted lines indicate Gaussian-equivalent
2�, 3�, and 4� thresholds. The dashed vertical lines indicate the values of the detection statistics for the unshifted data sets.
For the Bayesian analyses, we find p = 10�3 (approx. 3�); for the optimal statistic analyses, we find p = 5 ⇥ 10�5–1.9 ⇥ 10�4

(approx. 3.5–4�).

ing a way to test the null hypothesis that no inter-pulsar539

correlations are present. The resulting background dis-540

tribution of Bayes factors is shown in the left panel of541

Figure 3—they exceed the observed value in five of the542

5,000 phase shifts (p = 10�3). We also performed sky543

scramble analyses (Cornish & Sampson 2016), which544

remove the dependence of inter-pulsar spatial correla-545

tions on the angular separations between the pulsars by546

attributing random sky positions to the pulsars. Sky547

scrambles generate a background distribution for which548

inter-pulsar correlations are present in the data but they549

are independent of the pulsars’ angular separations: for550

this distribution, we find p = 1.6⇥10�3. A detailed dis-551

cussion of sky scrambles and the results of these analyses552

can be found in App. F.553

As in NG12gwb, we also carried out a minimally mod-554

eled Bayesian reconstruction of the inter-pulsar correla-555

tion pattern, using spline interpolation over seven spline-556

knot positions. The choice of seven spline-knot posi-557

tions is based on features of the Hellings-Downs pattern:558

two correspond to the maximum and minimum angular559

separations (0� and 180�, respectively), two are chosen560

to be at the theoretical zero crossings of the Hellings–561

Downs pattern (49.2� and 121.8�), one is at the theo-562

retical minimum (82.5�), and the final two are between563

the end points and zero crossings (25� and 150�) to al-564

low additional flexibility in the fit. Panel (d) of Fig-565

ure 1 shows the marginal 1-D posterior densities at these566

spline-knot positions for a power-law varied-exponent567

model. The reconstruction is consistent with the over-568

plotted Hellings–Downs pattern; furthermore, the joint569

2-D marginal posterior densities for the knots, not shown570

in panel (d) of Figure 1, at the HD zero-crossings is con-571

sistent with (0, 0) within 1� credibility.572

4. OPTIMAL STATISTIC ANALYSIS573

We complement our Bayesian search with a frequen-574

tist analysis using the optimal statistic (Anholm et al.575

2009; Demorest et al. 2013; Chamberlin et al. 2015), a576

summary statistic designed to measure correlated excess577

power in PTA residuals. (Note that there is no accepted578

definition of “optimal statistic” in modern statistical us-579

age, but the term has become established in the PTA580

literature to refer to this specific method, so we use it581

for this reason.) It is enlightening to describe the op-582

timal statistic as a weighted average of the inter-pulsar583

correlation coe�cients584

⇢ab =
�tTaP

�1
a �̃abP

�1
b �tb

TrP�1
a �̃abP

�1
b �̃ba

, (9)585

where �tTa are the residuals of pulsar a, and Pa =586 ⌦
�ta�tTa

↵
is their total auto-covariance matrix. The587

cross-covariance matrix �̃ab encodes the spectrum of588

the HD-correlated signal, normalized so that �ab =589

A2�(⇠ab)�̃ab (see Pol et al. 2022), and where elements590

of �ab are given by Equation 3. Indeed, the ⇢ab have591

expectation value A2�(⇠ab), but their variance �2
ab =592

(TrP�1
a �̃abP

�1
b �̃ba)�1+O(A4) is too large to use them593

directly as estimators. Thus we assemble the optimal594

statistic as the variance-weighted, �-template-matched595

average of the ⇢ab,596

Â2 =

P
a>b ⇢ab�(⇠ab)/�2

abP
a>b �2(⇠ab)/�2

ab
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Figure 3. Empirical background distribution of hd�-to-curn� Bayes factor (left, see §3) and noise-marginalized optimal
statistic (right, see §4), as computed by the phase-shift technique (Taylor et al. 2017) to remove inter-pulsar correlations. We
only compute 5,000 Bayesian phase shifts, compared to 400,000 optimal statistic phase shifts, because of the huge computational
resources needed to perform the Bayesian analyses. For the optimal statistic, we also compute the background distribution using
27,000 simulations (orange line) and compare to an analytic calculation (green line). Dotted lines indicate Gaussian-equivalent
2�, 3�, and 4� thresholds. The dashed vertical lines indicate the values of the detection statistics for the unshifted data sets.
For the Bayesian analyses, we find p = 10�3 (approx. 3�); for the optimal statistic analyses, we find p = 5 ⇥ 10�5–1.9 ⇥ 10�4

(approx. 3.5–4�).

ing a way to test the null hypothesis that no inter-pulsar539

correlations are present. The resulting background dis-540

tribution of Bayes factors is shown in the left panel of541

Figure 3—they exceed the observed value in five of the542

5,000 phase shifts (p = 10�3). We also performed sky543

scramble analyses (Cornish & Sampson 2016), which544

remove the dependence of inter-pulsar spatial correla-545

tions on the angular separations between the pulsars by546

attributing random sky positions to the pulsars. Sky547

scrambles generate a background distribution for which548

inter-pulsar correlations are present in the data but they549

are independent of the pulsars’ angular separations: for550

this distribution, we find p = 1.6⇥10�3. A detailed dis-551

cussion of sky scrambles and the results of these analyses552

can be found in App. F.553

As in NG12gwb, we also carried out a minimally mod-554

eled Bayesian reconstruction of the inter-pulsar correla-555

tion pattern, using spline interpolation over seven spline-556

knot positions. The choice of seven spline-knot posi-557

tions is based on features of the Hellings-Downs pattern:558

two correspond to the maximum and minimum angular559

separations (0� and 180�, respectively), two are chosen560

to be at the theoretical zero crossings of the Hellings–561

Downs pattern (49.2� and 121.8�), one is at the theo-562

retical minimum (82.5�), and the final two are between563

the end points and zero crossings (25� and 150�) to al-564

low additional flexibility in the fit. Panel (d) of Fig-565

ure 1 shows the marginal 1-D posterior densities at these566

spline-knot positions for a power-law varied-exponent567

model. The reconstruction is consistent with the over-568

plotted Hellings–Downs pattern; furthermore, the joint569

2-D marginal posterior densities for the knots, not shown570

in panel (d) of Figure 1, at the HD zero-crossings is con-571

sistent with (0, 0) within 1� credibility.572

4. OPTIMAL STATISTIC ANALYSIS573

We complement our Bayesian search with a frequen-574

tist analysis using the optimal statistic (Anholm et al.575

2009; Demorest et al. 2013; Chamberlin et al. 2015), a576

summary statistic designed to measure correlated excess577

power in PTA residuals. (Note that there is no accepted578

definition of “optimal statistic” in modern statistical us-579

age, but the term has become established in the PTA580

literature to refer to this specific method, so we use it581

for this reason.) It is enlightening to describe the op-582

timal statistic as a weighted average of the inter-pulsar583

correlation coe�cients584

⇢ab =
�tTaP

�1
a �̃abP

�1
b �tb

TrP�1
a �̃abP

�1
b �̃ba
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where �tTa are the residuals of pulsar a, and Pa =586 ⌦
�ta�tTa

↵
is their total auto-covariance matrix. The587

cross-covariance matrix �̃ab encodes the spectrum of588

the HD-correlated signal, normalized so that �ab =589

A2�(⇠ab)�̃ab (see Pol et al. 2022), and where elements590

of �ab are given by Equation 3. Indeed, the ⇢ab have591

expectation value A2�(⇠ab), but their variance �2
ab =592

(TrP�1
a �̃abP
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b �̃ba)�1+O(A4) is too large to use them593

directly as estimators. Thus we assemble the optimal594
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- p-value of  means a 1/1000 chance that uncorrelated red noise could produce the observed results10−3

- p-values correspond to  or  (“strong evidence” vs LIGO’s  “detecGon”)3σ 3.5 − 4σ ≫ 5σ

-unlikely due to noise alone (prob  ) —> “evidence for”≈ 1/10,000
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∑a<b ρabΓab/σ2

ab,0

∑c<d Γ2
cd /σ2

cd,0

• inner product of measured 
and expected correlations 
(“matched filter” statistic)

•null distribution has zero mean, 
unit variance; but is not Gaussian
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-environmental interactions remove GW power at low freqs, better fitting data

pairs of inspiraling supermassive black holes  
(masses ;  millions of such binaries)∼109M⊙
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Figure 1. NANOGrav 15-year GWB free-spectrum posteriors translated into the square root of timing residual power (⇢, left panel) and
characteristic strain (hc, right panel). The HD-correlated free-spectrum measured while simultaneously fitting for monopole-correlated (MP),
dipole-correlated (DP), and uncorrelated red noise noise (CURN) free spectra (HD-w/MP+DP+CURN; gray violins, left-side) is compared
against the HD-DMGP model in which dispersion-measure variations are modeled using Gaussian Processes (green violins, right-side). The
black dotted lines show idealized power-law spectra (⇢2 / f �13/3 and hc / f �2/3) fit to the median posterior value for the amplitude obtained
from the HD-w/MP+DP+CURN model in NG15gwb. Over plotted are the best-fitting, simulated GWB spectra from models of SMBH binary
populations produced in this analysis. Two models are shown, one which includes environmentally driven binary evolution (blue) and another
that assumes GW-only evolution (purple). Both models are able to reproduce the data, while the environmentally driven model produces a
slightly better fit. We conclude that the observed GWB spectrum is consistent with astrophysically motivated expectations from populations of
SMBH binaries.

a semi-analytic modeling approach to SMBH binary popu-
lation synthesis and defer the use of cosmological hydrody-
namics simulations for future work.

SUMMARY & OUTLINE

Figure 1 shows the GWB spectrum recovered from the 15-
year NANOGrav data, along with the best fitting simulated
GWB spectra produced in this work. In § 2 we summarize
the NANOGrav 15-year data set that forms the observational
basis for this analysis, and the GWB spectra derived from it
(grey and green ‘violins’). In § 3, we describe our methods
of modeling populations of SMBH binaries and calculating
the GWB spectra that they would produce. There, we also
detail the approach that we use to compare our simulations
to the 15-year data. Our best-fitting models (colored curves)
are presented in § 4.

We find that astrophysically motivated models of SMBH
binary populations are able to accurate reproduce the ob-
served GWB spectrum (§ 4.1 & 4.2). We focus our analysis
on two population models. One includes a self consistent pre-
scription for environmentally driven binary evolution (blue),
and the other assumes GW-only evolution (purple) which is
still commonly used in the literature. Both models are able to
fit the data, while the environmentally driven case produces
a slightly better match—particularly to the lowest frequency
bin. We present the binary evolution parameters favored by
15-year spectra fits for both models (§ 4.3). While the pos-
terior distributions are broadly consistent with astrophysical

expectations, parameters tend to be shifted towards values
that produce larger GWB amplitudes than was previously
most-favored. Generally higher binary masses or densities,
or highly e�cient binary mergers are required to produce the
observed amplitudes. The characteristics of the implied bi-
nary populations are presented in § 4.4.

Our results are discussed in the context of the field in § 5,
along with highlights for the near future of low-frequency
GW astronomy.

Throughout this paper we assume a WMAP9
cosmology with ⌦m = 0.228, ⌦b = 0.0472, and
H0 = 0.6933 km s�1 Mpc�1.

2. PULSAR TIMING ARRAY DATA

This work is based on the NANOGrav 15-year data set,
which includes 68 pulsars, 67 of which have a baseline of
at least 3 years and are included in the GWB analysis. The
complete description of the data set can be found in Agazie
et al. (2023a, hereafter NG15), while the detector character-
ization and noise modeling of individual pulsars is described
in Agazie et al. (2023c, hereafter NG15detchar). The de-
tailed description of the Bayesian search for the GWB is pre-
sented in NG15gwb. Here, we briefly summarize the mea-
surement of the GWB spectrum from the NANOGrav data,
focusing on the pieces which are necessary for the astrophys-
ical interpretation presented in this paper.

PTA collaborations systematically monitor millisecond
pulsars and record the times of arrival (TOAs) of their radio

6 The NANOGrav Collaboration
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ABSTRACT97

We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars98

from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for99

Gravitational Waves. The correlations follow the Hellings–Downs pattern expected for a stochastic100

gravitational-wave background. The presence of such a gravitational-wave background with a power-101

law–spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess102

of 1014, and this same model is favored over an uncorrelated common power-law–spectrum model with103

Bayes factors of 200–1000, depending on spectral modeling choices. We have built a statistical back-104
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ground distribution for these latter Bayes factors using a method that removes inter-pulsar correlations105

from our data set, finding p = 10�3 (approx. 3�) for the observed Bayes factors in the null no-correlation106

scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields107

p = 5 ⇥ 10�5–1.9 ⇥ 10�4 (approx. 3.5–4�). Assuming a fiducial f�2/3 characteristic-strain spectrum,108

as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is109

2.4+0.7
�0.6 ⇥ 10�15 (median + 90% credible interval) at a reference frequency of 1 yr�1. The inferred110

gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations111

for a signal from a population of supermassive black-hole binaries, although more exotic cosmological112

and astrophysical sources cannot be excluded. The observation of Hellings–Downs correlations points113

to the gravitational-wave origin of this signal.114

Keywords: Gravitational waves – Black holes – Pulsars115

1. INTRODUCTION116

Almost a century had to elapse between Einstein’s pre-117

diction of gravitational waves (GWs, Einstein 1916) and118

their measurement from a coalescing binary of stellar-119

mass black holes (Abbott et al. 2016). However, their120

existence had been confirmed in the late 1970s through121

measurements of the orbital decay of the Hulse–Taylor122

binary pulsar (Hulse & Taylor 1975; Taylor et al. 1979).123

Today, pulsars are again at the forefront of the quest to124

detect GWs, this time from binary systems of central125

galactic black holes.126

Black holes with masses of 105–1010 M� exist at the127

center of most galaxies and are closely correlated with128

the global properties of the host, suggesting a sym-129

biotic evolution (Magorrian et al. 1998; McConnell &130

Ma 2013). Galaxy mergers are the main drivers of hi-131

erarchical structure formation over cosmic time (Blu-132

menthal et al. 1984) and lead to the formation of133

close massive–black-hole binaries long after the mergers134

(Begelman et al. 1980; Milosavljević & Merritt 2003).135

The most massive of these (supermassive black-hole bi-136

naries, SMBHBs, with masses 108–1010 M�) emit GWs137

with slowly evolving frequencies, contributing to a noise-138

like broadband signal in the nHz range (the GW back-139

ground, GWB; Rajagopal & Romani 1995; Ja↵e &140

Backer 2003; Wyithe & Loeb 2003; Sesana et al. 2004;141

McWilliams et al. 2014; Burke-Spolaor et al. 2019). If142

all contributing SMBHBs evolve purely by loss of cir-143

cular orbital energy to gravitational radiation, the re-144

sultant GWB spectrum is well described by a simple145

f�2/3 characteristic-strain power law (Phinney 2001).146

However, GWB signals that are not produced by popu-147
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lations of inspiraling black holes may also lie within the148

nHz band; these include primordial GWs from inflation,149

scalar-induced GWs, and GW signals from multiple pro-150

cesses arising due to cosmological phase transitions, such151

as collisions of bubbles of the post-transition vacuum152

state, sound waves, turbulence, and the decay of any153

defects such as cosmic strings or domain walls that may154

have formed (see, e.g., Guzzetti et al. 2016; Caprini &155

Figueroa 2018; Domènech 2021, and references therein).156

The detection of nHz GWs follows the template out-157

lined by Pirani (1956, 2009), whereby we time the prop-158

agation of light to measure modulations in the distance159

between freely falling reference masses. Estabrook &160

Wahlquist (1975) derived the GW response of electro-161

magnetic signals traveling between Earth and distant162

spacecraft, sparking interest in low-frequency GW de-163

tection. Sazhin (1978) and Detweiler (1979) described164

nHz GW detection using Galactic pulsars and (e↵ec-165

tively) the solar system barycenter as references, relying166

on the regularity of pulsar emission and planetary mo-167

tions to highlight GW e↵ects. The fact that pulsars168

are such accurate clocks enables precise measurements169

of their rotational, astrometric, and binary parameters170

(and more) from the times-of-arrival of their pulses,171

which are used to develop ever-refining end-to-end tim-172

ing models. Hellings & Downs (1983) made the cru-173

cial suggestion that the correlations between the time-174

of-arrival perturbations of multiple pulsars could reveal175

a GW signal buried in pulsar noise; Romani (1989) and176

Foster & Backer (1990) proposed that a pulsar timing177

array (PTA) of highly stable millisecond pulsars (Backer178

et al. 1982) could be used to search for a GWB. Nev-179

ertheless, the first multi-pulsar, long-term GWB limits180

were obtained by analyzing millisecond-pulsar residuals181

independently, rather than as an array (Stinebring et al.182

1990; Kaspi et al. 1994).183

From a statistical-inference standpoint, the problem184

of detecting nHz GWs in PTA data is analogous to185

GW searches with terrestrial and future space-borne186
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[AJP: Lam et al, 2018]
https://github.com/josephromano/pta-demo
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close, not exact.) Finally, you should calculate the corre-
lation coefficient, which should have a value very close
to 1 for this case, since the two microphones are at the
same angular location.

(3) Repeat the above two steps but with metronome 2 at dif-
ferent angular locations (e.g., 45!, 90!, 135!, 180!) with
respect to metronome 1 (which should always remain at
0!). The motion of the microphone should be as similar as
possible to that for Step 1. Change the name of the file
prefix in the Data file text entry box to m208a184bXX,
where XX is 45, 90, 135, 180, to reflect the change in
the angular location of metronome 2. You should find
that the correlation coefficient q12 is approximately
equal to cos f, where f¼ 45!, 90!, 135!, 180! is the
angular separation of the two metronomes, in accord
with Eq. (13).

This analysis produces metronome-pulse data files
m208a184bXX.txt and values of the correlation coeffi-
cient q12 for different angular separations between the two
microphone-metronome baselines—e.g., f¼ 0!, 45!, 90!,
135!, 180! (corresponding to XX in the data file names). For
example, the values of q12 obtained when running the corre-
lation analysis on the data files m208a184bXX.txt located
at https://github.com/nanograv/tabletop_pta/
tree/master/tabletop_pta/demo_data are q12

¼ 0.983, 0.776, #0.274, #0.724, #0.993. These values are
plotted in Fig. 11, compared to the expected values given by
q12 ’ cos f (the solid line).

One can perform the experiment many times in order to
build up statistics on the uncertainty of q12. For this work,
instead we take the best-fit sinusoid parameters (e.g., see
the sine-wave fits in Fig. 10 for the f¼ 0 trial) with their
uncertainties and then simulate many (10,000) realizations
of new sinusoids for each value of f. We draw new parame-
ters for the sinusoids centered around the original best-fit
values and assuming Gaussian errors with standard devia-
tions equal to each of the parameter uncertainties. For each
realization, we then calculate q12 as before. In Fig. 11, we
show the values as listed above but include the 634.1%
(around the median) confidence intervals from the many tri-
als as “realization errors” to quantify our uncertainty on our
estimates of q12.

V. DISCUSSION

We have described a demonstration using two metro-
nomes and a microphone that serves as an acoustical ana-
logue of a Galactic-scale gravitational-wave detector, i.e., a
pulsar timing array. This demonstration also serves as an
educational tool, illustrating several techniques used in real
pulsar timing analyses, but in the simplified context of met-
ronome pulses recorded by a microphone. From our experi-
ence, we have found that the demonstration is best suited for
undergraduates or senior-level high-school students who
already have some familiarity with basic physics and astron-
omy. For less mathematically inclined audiences, the mathe-
matical discussion of the underlying data analysis techniques
needs to be reduced accordingly. But the main idea that a
common disturbance (in this case, the microphone motion)
can induce correlations in the pulse arrival times, and a
graphical display showing the timing residuals from the two
metronomes being shifted by an amount equal to their angu-
lar separation is accessible to nearly all audiences.

A. Some caveats

The tricky technical aspect of the double-metronome anal-
ysis is to properly extract the pulse arrival times when the
two metronomes are running simultaneously, producing
pulses that can significantly overlap with one another (unless
the pulse periods are sufficiently large and similar enough
that the pulses can be spaced separately one after another).
The fact that the pulse profiles pI(t) for the two metronomes
(I¼ 1, 2) are different for different tempo modes a and b is
crucial for distinguishing the pulses from the two metro-
nomes. Still, the correlation functions CI(Dt) have several
local maxima, and we need to find the largest local maxima
in the vicinity of the expected pulse arrival times to deter-
mine the measured TOAs smeasured

I ½i%. If the search window is
not properly centered on the expected arrival time or if it
includes a local maximum of the correlation function that
doesn’t correspond to the true arrival time of the pulse, then
the returned measured TOA will deviate from its true value,
thus causing errors in the corresponding timing residual and
the subsequent fit to the residuals. To help mitigate such
problems, the routine that calculates the measured TOAs cur-
rently uses an adaptive width for the search window, which
increases in size if it originally does not include a peak in the
correlation function. (This is usually a sign that the window
was not large enough to include the true pulse arrival time.)

Even with this adaptive-search-window technique, we
sometimes do not get good agreement between the measured
and theoretical correlation coefficients for intermediate sepa-
ration angles between the two metronomes, i.e., f close to
90!. A possible alternative reason for this might be reflec-
tions of the sound waves off of the table top or parts of the
laptop, when using the laptop’s internal microphone to do
the recordings. Recovery of the expected correlation is usu-
ally better if we use a USB microphone, which does not have
many intervening parts to interfere with the sound waves.

B. Possible use as an instructional laboratory
investigation

Although we have not tried to use this demonstration in
its full form as an instructional laboratory, we suspect that
some variant of this demonstration might be useful for an

Fig. 11. Measured correlation coefficient values q12 as a function of the
angular separation f between a pair of microphone-metronome baselines, for
a particular set of demonstration pulse data files. (The error bars on the data
points are determined by the method described in the text.) The solid line
shows the expected dependence q12 ’ cos f.
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sky map of 88 IPTA millisecond pulsars

Rapidly rotating 
neutron star; strong 

magnetic field; 
narrow beam of 

radiation

Nature’s most

precise clocks!
(ΔTp/Tp < 10−14)

1557 V. VARIANCE OF THE OPTIMAL BINNED
1558 ESTIMATOR

1559 A. Beating the cosmic variance

1560 One interesting consequence of doing the binned
1561 estimation is that for some ranges of angular separation
1562 γ, the reduction in angular resolution allows one to “beat”
1563 the cosmic variance for a sufficiently large number of
1564 pulsar pairs in the bin. This is illustrated numerically in
1565 Fig. 7 for the case of a simulation involving 400 pulsars
1566 distributed uniformly over the sky and 6-degree angular-
1567 separation bins. For this calculation, we used normaliza-
1568 tion condition (b) in Sec. III A, which corresponds to
1569 μbin ≡ μ⊤1=npairs. An analytic demonstration of this result,
1570 for a simple “two-component” angular-separation bin is
1571 given in Appendix E.

1572 B. Examples

1573 Here, we apply the results of Sec. III A to make plots
1574 showing the total variance σ2totðγÞ, cosmic variance
1575 σ2cosðγÞ, and variance σ2optðγÞ of the optimal estimator
1576 for a finite number of pulsars distributed nonuniformly
1577 over the sky, with 6° angular-separation bins. We use the
1578 current sky locations of the pulsars monitored by three
1579 active PTA collaborations: European Pulsar Timing
1580 Array (EPTA), North American Nanohertz Observatory

1581for Gravitational Waves (NANOGrav), and Parkes Pulsar
1582Timing Array (PPTA). We also construct an International
1583Pulsar Timing Array (IPTA) by forming the union of the
1584pulsars monitored by the individual PTAs. See Table IV
1585in Appendix H for the names and angular coordinates of
1586the pulsars.
1587The individual PTA collaborations are currently mon-
1588itoring 42, 66, and 26 pulsars respectively, with a total of 88
1589distinct pulsars for the IPTA. A skymap of the pulsars is
1590shown in Fig. 8, which is a Mollweide projection in
1591equatorial coordinates. Note that the pulsars are clustered
1592in the direction of the galactic center, which has equatorial
1593coordinates ðra; decÞ ¼ ð17h46m;−29°Þ; this is indicated
1594by a black dot in Fig. 8. For reference, the center of the sky
1595maps is ðra; decÞ ¼ ð12h; 0°Þ.
1596Plots showing the expected Hellings and Downs corre-
1597lation plus/minus the uncertainties associated with the total
1598variance, cosmic variance, and variance of the optimal
1599binned estimator are given in Fig. 9.
1600For these plots, we use thirty 6°-wide angular-separation
1601bins, equally spaced between 0 and 180 degrees. To model
1602the relative amplitude of the expected correlations and
1603their uncertainties, we set h2 ¼ 0.5622h2 and h2 ¼ 1.
1604This corresponds to timing-residual measurements for a
1605Gaussian ensemble of binary-inspiral sources, as described
1606in Appendix B. Finally, for the optimal binning, we have
1607chosen to normalize the weights according to condition

F7:1 FIG. 7. Left panel: the variance of the optimal estimator for a simulation with 400 pulsars distributed uniformly over the sky, with
F7:2 6-degree angular bins. This is compared to the (narrow-bin) cosmic variance. The variance of the optimal estimator dips below the
F7:3 cosmic variance for sufficiently large numbers of pulsar pairs per bin. This is possible because angular resolution has been sacrificed,
F7:4 see Appendix E. (For this plot we have set h4 ¼ 1=2.) Right panel: the number of pulsar pairs in each angular-separation bin for the
F7:5 left-hand-panel case. The expected number is proportional to sin γ.

F8:1 FIG. 8. Sky locations of the pulsars employed by the EPTA, NANOGrav, PPTA, and IPTA collaborations. The black dot indicates the
F8:2 direction to the Galactic center. Table IV in Appendix H lists the pulsar names and sky locations.
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NANOGrav uses world-class radio telescopes to observe a suite of pulsars using precise 
timing. Three major observatories have provided data for NANOGrav’s 15-year data set.

About NANOGrav: The Telescopes

Very Large Array Website

The Very Large Array (VLA) - New Mexico
make radio images via interferometry, but 
the combined collecting area of its dishes, 
its broad radio frequency coverage, and 
its ability to see far into the Southern sky, 
make it a key instrument for NANOGrav 
pulsar timing, as 15 pulsars need those 
capabilities. The 15-year data release is 
the first to include VLA measurements, 
but it will not be the last. In combination 
with the CHIME telescope in Canada, the 
VLA is helping to offset the loss of the 
Arecibo telescope in our regular 
observations.

Photo Credit: NRAO/AUI/NSF

The NSF also funds the iconic Y-shaped 
array of 27 25-meter diameter dishes in 
New Mexico. The VLA is usually used to 

Very Large Array Website

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) -  
British Columbia

pulsars, and, along with the VLA, is 
helping to offset the loss of the Arecibo 
telescope in our regular observations.  
CHIME/Pulsar data will be included in 
future NANOGrav data releases.

Photo: Courtesy of CHIME

CHIME, a set of 4 fixed cylindrical reflectors 
that operates as a transit telescope, is run 
by a consortium of universities led by the 
University of British Columbia, McGill 
University, and the University of Toronto.  
CHIME operates at low radio frequencies 
and was originally designed to map the 
distribution of Hydrogen gas in the early 
Universe.  Software manipulation of the 
incoming data stream can allow the 
telescope to “point” anywhere within its 
large field of view; this feature is used to 
detect the still-mysterious Fast Radio 
Bursts and also to time up to 10 pulsars 
simultaneously.  CHIME provides daily 
observations of all the Northern NANOGrav 

CHIME Website
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Sky map of IPTA millisecond pulsars
(galactic coordinates)

sky map of ~50 IPTA millisecond pulsars
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Optimal binned HD estimator 
• Form general linear combination of pulsar pairs within each angular bin (labeled by ) with  in the bin:

                                                        

• Determine weights such that: 
1.     (unbiased) 

2.  is minimized 

• These lead to                                                                                                              

  

• Optimal binned estimator to the binned HD correlation:                                                  

 

• Optimal binned estimator is used to test for consistency with GWB model and includes GW-induced covariances 
between pulsar pairs; it is not a detection statistic 

j γj = avg(γab)

Γ̂j ≡ ∑
ab∈j

ρabwab where ρab = Za(t)Zb(t) with ⟨ρab⟩ = A2
gw Γab

⟨Γ̂j⟩ = Γ(γj)

σ2
j ≡ ⟨Γ̂2

j ⟩ − ⟨Γ̂j⟩2

wab =
Γ(γj)
A2

gw

∑cd∈j C−1
ab,cdΓcd

∑ef∈j ∑gh∈j ΓefC−1
ef,ghΓgh

where Cab,cd ≡ ⟨ρabρcd⟩ − ⟨ρab⟩⟨ρcd⟩
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Γ(γj)
A2

gw
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