Part I. Theory and derivations
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GW150914, etc PTA observation

deterministic / transient signal

waveforms & coincidence

single binary black hole merger

stellar mass black holes (1 - 100 solar masses)

audio frequencies (10’s - 1000 Hz)

laser interferometers with km-scale arms

GW wavelength >> arm length

“detection of ...” ( >5 sigma)

stochastic / persistent signal

power spectra & cross-correlations

combined signal from a population of approx
monochromatic inspiraling binaries

supermassive black holes (109 solar masses)

nanohertz frequencies (10-° - 10-7 Hz)
[periods: decades -> months]

galactic-scale detector using msec pulsars, with “arm”
lengths ~100 - few x 1000 light-years

GW wavelength << arm length

“evidence for ...” (3-4 sigma)
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What plays the role of a binary “chirp” waveform for PTAs?

“Hellings and Downs” curve
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2. observed signal agrees with predictions

Why was GW150914 so convincing?

1. observed signal is consistent across detectors

3. observed signal is unlikely due to noise alone (< 1/5 million)
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What is a pulsar timing array (PTA)?

Galactic-scale GW detector

I
S\ AT =—p'P’

2=
i \ *

4 AN one-way

detectors

(100-1000 lyr)
/
/
Y

< [Credit: ). Hazboun; NASA] [Credit: J."Rowe/Swinbourne]

e GWs perturb pulse arrival times -> look for evidence of GWs in the timing residuals
e GW perturbations will be correlated across pulsars -> use this to differentiate GWB from noise
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timing residual

What are the data for PTA analyses?

timing model: pulsar’s spin period, period

: : - derivative, sky location, proper motion, ...
observed arrival — predicted arrival < y Prop

unmodeled deterministic processes + noise sources + GW signals
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How do GWs affect timing residuals?

e Perturbations to pulse arrival times:

1 . . (F
AT(r) = 2—Cﬁ’ﬁfJ ds h(2(s), X(s))
0

t(s)=t—(L—s)c, Xx(s)=(L-s)p

e Doppler shift (“redshift/blueshift”) of pulse frequency :

dAT(r) 1 p'p/ = A
= e ) =L )|
TP L~ 10%=10° Iyr

/(1) =

e Interms of polarizatons A=+,x: A~ 10 lyr
P S S S
el] ({2) - All] lnjl\] l/ C) \
X _ A A R 21 é N 5t 1t U PRSP UUPPRpUpUt) RS p Uy Upup U apupup U upupapupup g upup g upupapapup g upapapap e
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A=+,X

. 1 p'p/ .
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Can we detect GWs using data from a single pulsar?
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Need to correlate data from multiple pulsars

e For expected correlations, can restrict to Earth-term contributions:
hii(1,0) = h*(1) e (Q) + BX(¢) eX()
Z (1) = h+(t)F;(f2) + hx(t)Fj;(fz) Z,(1) = h+(t)Flj(§2) + hx(t)F,f(fz)

1 Py 1 ppp A
FAQ) = ——2970_oA(()) FAQ) = (%)
21+Q-p, 214+Q-p,
e Correlation is time-averaged product:
L [ e
p. =2 (02, (1) = —J dr Z (1)Z,(1) d ~ 10° Iyr
o 0 L~ 10> =10’ lyr
= (WM FHQ)FH(Q) + (W)’ FXQF Q) + WIhx (F;(Q)F;(Q) + F;(Q)F;(fz)) A~ 10 lyr
= FJ(Q)FJ(Q) + Fjj(f))F;(fz) (unpolarized, unit amplitude)y \Pa/ ---------------
e Hellings & Downs 1983: fix pulsars; average over the GW source X hi(t—L,/c,L,p,) / ﬁb
direction and polarizationangle ek N R X
= // ______ }/ ab / hi(t — Ly/c, Lypy)
Cornish & Sesana 2013: fix GW point source; average over all pulsar /;//\{\ """""""""""
pairs separated by angley,,, /”; \\ _____________________________
111 3 /1 1 (1> 0)
— COSY,p — COSYp —COSYub \ o e N
— = —— + — In =1
<:0ab>p <pab>s 9 4 < b > 9 ( ) > < ) ) (}/ab)
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Hellings and Downs curve
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Should we expect to recover the HD curve exactly?
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Cosmic variance for interfering sources
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Correlation calculation for interfering sources

e Two sources, same frequency (ignore polarization):
h(t) = A, cosxft + ¢),

Z (1) = hj()F.(Q,) + hy(H)F ()
Z,(t) = hy(OF,(Q)) + hy()F, ()

e Correlation:

Pab = Zo(DZ(1)

h,(t) = A, cos2rft + ¢,)

= W2 (QF(€) + IF(©)F, (@) + Tuly (FL@)Fy@) + FQ)F,@))

= EAIZFa(Ql)Fb(Ql) + EAZZF o(§20)F3(82)) + EAlAZ cos(¢ — ¢,) (F JQDF(E2) + F (L) F(

1 1
Papdp = > 2 APT( ) + 5
J

Z AjAk COS(ij — DI s ﬂ]k)

U o Bi) = (FHQ)FF(E) + FIUQ)F(E)),

e Cosmic variance:

1
Hap = Tap) + - ), 005y = $u(rap fp) - (unit amplitude)

j#k
2

JFk

Map)s =T W) s 62 V) = (U2 — {hap)?

4 J,

2 (" . 9)
Gcosmic(y) — dﬁ Slnﬂ H (7» IB )
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How does one analyze PTA data to search for GWs?
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arbitrary units

N

o

I
N

Bayesian model comparison

Pulsar 1 Pulsar 2 Pulsar N

Individual power spectra:

Timing Model Timing Model
Measurement noise | 4| Measurement noise

Timing Model
4+ ___ 4+ Measurement noise

2 f ~Va
o | ) =5 — o
Intrinsic pulsar noise 12727 Tops \ fret

Intrinsic pulsar noise

Intrinsic pulsar noise

common process
+ Cross power: /
Common stochastic process (potentially correlated across pulsars) C.(f)=x,20)+6,,0,f)
2 -
2 -
1 -
0 0
—1 - /
— - _5-
2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
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17



Frequentist detection statistic

e Form general linear combination of inter-pulsar correlations:
S = Zpabwab where Pab = Za(t)Zb(t) with </0ab> — Agw Fab9 <pab>0 =0

e Determine weights so they maximize (S)/N, where

N? = (Sz)o — (S)(z) (variance of § in absence of spatial correlations)

e This leads to:

Lo/ 0
W,y = - where Gabo (p%,)o with w,, normalized so N* = 1

a
2 2
\/ zc<d ch/acd,O

e The detections statistic § has the interpretation of a signal-to-noise ratio:

a<b Papl’ ab/ ab.,0

\/ ZC dl—%d/ ngo

= S/N
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Part Il. Plots from NANOGrav 15-yr papers



NANOGrav’s observed common power spectrum

9 10 |11 12 |13 14 y = 13/3 (binary inspiral)

A=24401x107P

best fit (]/ — 32) (strain amplitude at f.; = 1/yr)
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-consistent with predictions from SMBH binaries (and many other
source models)
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NANOGrav’s observed correlations

67(67 — 1)

= 2211 distinct pairs

cosmic variance

2211
15

~ 150 pairs per bin

e weighted averages of measured
correlations p_, in each bin

induced covariances
Cab,cd = <pabpcd> o <pab><pcd>

0 30 60 90 120 150 180
Separation Angle Between Pulsars, &, [degrees]

-correlations follow the pattern expected for a GW backgound

e includes contributions from GW-
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1 —CDF

1 Phase shifts

Simulations

Analytic b ackground .......................... .

—2 0 2 4
Noise-Marginalized Mean S/N

NANOGrav’s detection confidence

a<b pabr b/

\/ Zc<d 2,/ ngo

e inner product of measured
and expected correlations
(“matched filter” statistic)

e null distribution has zero mean,
unit variance; but is not Gaussian

-unlikely due to noise alone (prob ~ 1/10,000 ) —> “evidence for”



Possible astrophysical interpretation
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pairs of inspiraling supermassive black holes

(masses ~109M®; millions of such binaries)

- environmental interactions remove GW power at low freqs, better fitting data
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Summary

stochastic signal, correlated among 67 pulsars

follows Hellings and Downs pattern expected for
The NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background a Stoch a S'tic gravitaﬁo n a I_Wave ba Ckg ro u n d

THE NANOGRAV COLLABORATION

ABSTRACT

We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars
from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for
Gravitational Waves. The correlations follow the Hellings—Downs pattern expected for a stochastic
gravitational-wave background. The presence of such a gravitational-wave background with a power-
law—spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess
of 10'4, and this same model is favored over an uncorrelated common power-law-spectrum model with
Bayes factors of 2001000, depending on spectral modeling choices. We have built a statistical back-
ground distribution for these latter Bayes factors using a method that removes inter-puls
from our data set, finding p = 1073 (approx. 3c) for the observed Ba
scenario. A frequentist test statistic built dire ohted sum of inter-pulsar correlations yields
p=>5x10"°-1.9 x 10~* (approx. 3.5-40). Assuming a fiducial f~2/3 characteristic-strain spectrum, 2
as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is — / 3 . . .

24707 % 10-15 (median 4+ 90% credible interval) at a reference frequency of 1 yr=!. The inferred ) f C h a ra Cte rl Stl C-St ra I n S peCt ru m’
gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations
for a signal from a population of supermassive black-hole binaries, although more exotic cosmological
and astrophysical sources cannot be excluded. The observation of Hellings—Downs correlations points

e pmittinsiwsoe g of e ) strain amplitude 2.4 x 1071 at Jeog = 1/yr

approx 3.5 -4 o

e null no-correlation

population of supermassive black-hole binaries, ...
more exotic cosmological cannot be excluded
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Metronome timing array fap = 135

metronomes 1 and 2

[AJP: Lam et al, 2018] g 100-
https://github.com/josephromano/pta-demo :g !
8 —100-

Y 0 2 4 6 8
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2 100-
g —100-

i/t)(t) 0 2 4 6 8
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https://github.com/josephromano/pta-demo
https://github.com/josephromano/pta-demo
https://github.com/nanograv/tabletop_pta/

extra slides
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PPTA + ¢ InPTA -

Indian Pulsar Timing Array

- —

i
.......

~ CSIRO Parkes

Rapidly rotating Observatory
neutron star; strong y
magnetic field;
narrow beam of

radiation

Nature’s most
precise clocks!

—14
(AT,/T, < 107'4)

Jodrell Bank el
Observatory ==
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Optimal binned HD estimator

o Form general linear combination of pulsar pairs within each angular bin (labeled by j) with Vi = avg(y,,) in the bin:

f1j = Z PabWab where Pab = Za(t)Zb(t) with <pab> — Agw Fab

e Determine weights such that:
1. (I';) =1(y) (unbiased)
2. 0].2 = sz) — <fj>2 is minimized

e These lead to
—1
F(}/]) chej Cab cdrcd

S

ab — where Cab,cd = </0abpcd> o <pab><pcd>

e Optimal binned estimator to the binned HD correlation:
f F(}’]) Zabej chej pabC D, cdrcd Fz(}/j) 1

J
zefE] ZghE] ef efghrgh

with 6]-2

Zefej zghEJ ef efghrgh

e Optimal binned estimator is used to test for consistency with GWB model and includes GW-induced covariances
between pulsar pairs; it is not a detection statistic
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