
How effectively can Neural Posterior Estimation infer

the Neutron Star Equation of State?
Valéria Carvalho1, Márcio Ferreira1, Constança Providência1, Michał Bejger2,3

1CFisUC, Department of Physics, University of Coimbra,2Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences,3INFN Sezione di Ferrara

Goal: To infer the neutron star equation of state (EoS) from astrophysical observations while rigorously quantifying uncertainties. Challenge: Despite significant observational progress, available measurements of neutron

star properties—such as mass, radius, and tidal deformability—remain limited in both quantity and precision. This hinders reliable EoS inference using traditional methods. Our Approach: We adopt simulation-based

inference, specifically Neural Posterior Estimation (NPE), to overcome these limitations and extract robust EoS constraints from realistic, noisy datasets.

Dataset Generation

We construct synthetic datasets to train a model capable of inferring the neutron star equation of

state (EoS) from observational data. Our approach is inspired by the agnostic EoS prior introduced

in [1], which allows us to generate physically consistent mock data without committing to a specific

microscopic model.

We adapt this prior to define our own simulation-based dataset tailored for training and testing Neural

Posterior Estimation (NPE). This setup enables flexibility: from a single base dataset, we derive multiple

variants with different levels of observational realism (e.g., with/without noise or tidal deformability).

Pressure Sampling:

p = [p(n1), . . . , p(n20)], with n1 = 0.13 fm−3, n20 = 1.28 fm−3.

Mass Sampling Strategy: We sample neutron star masses from three astrophysically motivated ranges:

Ma ∈ U [1.0, 1.4] M�, M b ∈ U [1.4, 1.7] M�, Mc ∈ U [1.7, Mmax(EoS)] M�

Each region contains no = 5 samples to ensure coverage across low, canonical, and high-mass stars.

Observables: We compute radius and tidal deformability for each sample:

M0 = [Ma
1 , . . . , Mc

no
], R0 = [R(Ma

1 ), . . . , R(Mc
no

)]
M∗ = [M∗a

1 , . . . , M∗c
no

], Λ0 = [Λ(M∗a
1 ), . . . , Λ(M∗c

no
)]

Adding Observational Noise: We perturb true values using Gaussian noise:

M ∼ N (M0, σM
2), R ∼ N (R0, σR

2), Λ ∼ N (Λ0, σΛ
2(M∗))

Uncertainty Distributions:

σM ∼ U [0, σM ], σR ∼ U [0, σR], σΛ(M∗) ∼ U [0, σ̂(M∗)]

We use:

σM = 0.1 M�, σR = 0.3 km, σ̂(M) = 121483.4 · e−5M+0.37M2

This setup enables both noise-free and observationally realistic datasets.

Realistic Test Set from Observed Pulsar Masses:

To better reflect astrophysical reality, we constructed a test dataset based on the observed neutron

star mass distribution from [2], which compiles 122 pulsar mass measurements (excluding gravitational

wave events). The dataset highlights clustering in three characteristic mass intervals: low-mass, canon-

ical, and high-mass.

We maintained the same mass intervals used during training:

[1.0, 1.4], [1.4, 1.7], [1.7, Mmax(EoS)] M�,

but adjusted the number of samples to reflect the empirical distribution, assigning 6, 4, and 5 samples

per interval, respectively.

This ensures the test set remains alignedwith the training distributionwhile incorporating astrophysical

realism based on current observations.
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Neural Posterior Estimation

Neural Posterior Estimation (NPE) is a simulation-based inference method designed for amortized

Bayesian inference. Instead of sampling from the posterior for each new observation—as in traditional

approaches like MCMC—NPE trains a density estimator model, based on neural networks, to approx-

imate the posterior distribution for any observation.

Given observed data d and parameters of interest θ, the goal is to learn a flexible approximation qφ(θ|d)
to the true posterior p(θ|d). Here, φ denotes the trainable parameters of the neural network.

The training objective is to minimize the expected Kullback–Leibler divergence between the true pos-

terior and the learned approximation:

LNPE = Ed∼p(d)DKL

[
p(θ|d) ‖ qφ(θ|d)

]
(1)

We implement qφ using conditional normalizing flows —a class of invertible neural networks that map a

simple base distribution (e.g., Gaussian) into a complex target posterior. The transformation is defined

via a sequence of invertible and differentiable functions:

qφ(θ|d) = pz

(
f−1

φ (θ; d)
) ∣∣∣∣∣∣det

∂f−1
φ

∂θ

∣∣∣∣∣∣ (2)

The total loss function used to train the flow-based model combines a likelihood-based term with a

physics-informed regularization. It is defined as:

L = −Eθ∼p(θ) Ed∼p(d|θ)

log pz(f−1
φ (θ; d)) + log

∣∣∣∣∣∣det
∂f−1

φ

∂θ

∣∣∣∣∣∣
 + λ ·

19∑
i=1

max (0, p(ni) − p(ni+1)) . (3)

Output predictions

We illustrate predictions for two representative EoS from the test set in the left plot, the shaded band

represents the 90% confidence interval (CI), and the dashed line shows the predicted median. The

solid curve represent the true value and the dot denotes the maximum central baryonic density of

the most massive neutron star for each EoS. In the right plot we are showing the coverage probability

across the 20 pressure values. Both datasets are for dataset R2.
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To better understand the uncertainty in predictions, we compute the normalized dispersion across the

four datasets we created, represented in the table. This quantity is defined as the ratio of the 90% CI

width to the median:
p90%CI

p as a function of the normalized baryon density n/nc,max, where nc,max is

the maximum central density of the most massive stable star. The shaded region represents the 90% CI

across all test models, and the dots with black edges are the mean. As expected, uncertainty increases

with higher density (approaching n/nc,max = 1), especially in models trained without observational

noise, where the slope of the dispersion visibly steepens.

Dataset Configurations

Property / Set X R1 R2 RΛ1 RΛ2
Observational noise 7 4 7 4

Tidal deformability (Λ) 7 7 4 4

A check mark (4) indicates presence, and a

cross (7) indicates absence.

Future work

Apply the method to real observations from NICER and LIGO-Virgo-KAGRA.

Extend the model to infer additional EoS-related quantities beyond pressure.

Investigate more expressive normalizing flow architectures and hierarchical priors to better capture

multimodal posteriors.

Leverage HPC resources for large model ensembles and improved uncertainty quantification.
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