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GravitationalWaves and H0 measurement

The standard siren method enables an independent measurement of the Hubble constant (H0) using the luminosity

distance (dL) inferred from gravitational wave (GW) signals emitted by compact binary coalescences (CBCs) combined

with redshift measurement. When no electromagnetic counterpart is observed, the source’s redshift must be inferred

through alternative methods. One possibility is a Bayesian approach that uses redshift information from all potential

host galaxies — this is the statistical dark siren approach.

As the number of GW detections increases, the precision of H0 measurement improves, making it crucial to understand

and control systematic uncertainties in the dark siren method. One source of systematics may arise from incorrect

assumptions about the true source population, which leads to an incorrect computation of the selection function —

that describes the probability of a source at a certain position and with a given set of parameters being detected. This

function depends on the detector conditions and our prior assumptions about the underlying population of compact

binaries (e.g., mass and redshift distributions).

In this work, we use LIGO Skympap’s Bayestar package [1] to simulate GW events and construct selection functions

based on different population models. We then evaluate howmuch the detection probability estimated under different

mass distributions deviates from each other by computing the L1 norm between the respective results. This comparison

helps to identify how incorrect population assumptions lead to discrepancies in detectability, providing insight into the

potential impact of population mismodeling in the selection functions for a dark siren measurement of H0.

Bayesian Model and Selection Function

To infer the Hubble constant H0 using dark sirens, we adopt a Bayesian framework. According to Bayes’ theorem, the

posterior for a given event is written as p(H0 | dGW) ∝ p(H0)L(dGW | H0), where p(H0) is the prior (assumed uniform in

the range [20, 140] km s−1 Mpc−1), and the likelihood is:

L(dGW | H0) ∝

∫
dz LGW

(
d̂L | dL(z, H0)

)
pCBC(z)∫

dz P GW
det (z, H0)pCBC(z)

(1)

The denominator defines the selection function β(H0), which accounts for detection probability. Here P GW
det (z, H0)

models the detectability of events, which depends on the detector sensitivity and the source’s population model. It is

estimated by averaging over a population of NGW simulated sources that satisfy the detection conditions: DL < 1500
Mpc, A90% < 10 deg2, and SNR > 12, with xi

GW representing the GW events data (eq. 2).

P GW
det (z, H0) = 1

NGW

NGW∑
i=1

P GW
det (xi

GW, z, H0) (2)

The other component of β(H0), pCBC(z), describes the CBC probability at redshift z, depending on both prate(z, xgal),
which represents the merger rate — here assumed to be proportional to the stellar mass (eq.3) — and pcat(z, xgal), which
describes the probability of a galaxy being located at redshift z (eq. 4). The only galaxy data considered was stellar mass,

so xgal = M∗, gal, and we assume a complete galaxy catalog with precise redshift and stellar mass measurements.

prate(zi
gal, M i

∗, gal) ∝ M i
∗, gal (3) pcat(z) ≈ 1

Ngal

Ngal∑
i=1

δ(z − zi
gal)δ(M∗, gal − M i

∗, gal) (4)

Under these assumptions, pCBC(z) simplifies to eq. 5.

pCBC(z) ∝ 1
Ngal

Ngal∑
i=1

prate(z, M i
∗, gal)δ(z − zi

gal) (5)

Finally, we assume there is no dependence with sky position from the detection probability and approximate the GW

likelihood LGW as a Gaussian. With this simplifications, the likelihood becomes:

L(dGW | H0) ∝

∑Ngal
i=1 LGW(d̂L | dL(zi

gal, H0), Ω̂i)
β(H0)

, with β(H0) =
Ngal∑
i=1

P GW
det (zi

gal, H0) prate(zi
gal, xi

gal) (6)

where Ω̂i represents the solid angle of the HEALPIX pixel for the galaxy.

Mass Distributions

The binary black hole (BBH) mass distribution is modeled using the GWTC-3 population fits from Abbott et al. (2023)

[2], considering three models: Power Law + Peak (PP) — a power law with a Gaussian peak; Power Law + Spline (PS) —

a power law modified by a cubic spline; Power Law + Dip + Break (PDB) — a broken power law with suppression and

tapering.

Our goal is to quantify how much the detection probability estimated using PS and PDB deviates from PP, wich is our

current best fit. These discrepancies directly affect the selection function and can propagate to the H0 inference.

Probability of GWdetection: P GW
det (z, H0)

For each mass distribution model, the function P GW
det (z, H0) was computed by comparing injected and detected events,

enabling the computation of β(H0), as described by eq. 2.

Model comparison - Preliminary results

Event 1

• z = 0.08 • SNR = 51 • dL = 384.17Mpc • σdL
= 13.61Mpc • A90% = 1.1deg2

Event 2

• z = 0.07 • SNR = 67 • dL = 454.47Mpc • σdL
= 53.60Mpc • A90% = 1.0deg2

Conclusions and Perspectives

We applied three different mass distributionmodels (PP, PS, and PDB) to two simulated

GW events and evaluated the deviation in detection probability, obtaining the cumula-

tive absolute difference between PP distribution and PS and PDB distributions, kown

as the L1 norm. Only a slight variation was observed, with the cumulative L1 under 2%.

For Event 1, there is no significative shif from the distribution, the only noticeable differ-

ence around the peak being 14% difference in height. The cumulative L1 norm shows

differences around 0.6% (PP vs. PS) and 1.5% (PP vs. PDB).

Event 2 show a slight shif for both PS and PDB peaks, in compatison to PP, but no

notable height difference. The cumulative L1 norm shows a total difference around

0.3% (PP vs. PS) and 0.4% (PP vs. PDB).

While Event 1 shows a slightly more pronounced mismodeling effect, the impact re-

mains moderate. That said, this underscores the importance of accurate source popula-

tion modeling. Further simulations are needed, including delayed merger rate scenarios

to test alternative astrophysical assumptions.
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