Recherches de SUSY et stop au Tevatron

Pedrame Bargassa

Rice University, Houston

CPPM 13 mars 2006

- SUSY (R_p conservée)
- Tevatron : D0 et CDF
- Recherches de chargino & neutralinos
- Recherches de squark & gluino
- Le stop $\sim t_1$:
 - Motivations physiques
 - Recherches de stop dans D0
 - > Canal µµ
 - Canal eµ
- Conclusions, perspectives

SUSY : Brève introduction

SUSY : symétrie brisée... sParticules physiques : mélange de superpartenaires

- Chargino $(\chi^{+}_{1,2})$, Neutralino $(\chi^{0}_{1,2})$: Mélange Wino - Higgs (chargé) Bino - Higgs (neutre)
- Squarks, sleptons : Mélange $\sim f_{L}^{} \sim f_{R}^{}$

mSUGRA : Modèle motivé par brisure spontanée de la super-gravité

- Modèle plus contraint :
- > 5 paramètres (échelle de brisure de SUSY) : m_0 , M_2 , μ , tan β , A -> RGE -> spectre de masses à nos énergies

MSSM :

- Aucune hypothèse sur la brisure : Paramètrise notre ignorance sur la brisure de la SUSY.
- -> Modèle non-contraint -> 124 paramètres

Conservation $N_{B,L}$: "protégée" par $R_p : R_p \equiv (-1)^{3(B-L)+s} = +1 / -1$ pour particules MS / SUSY $\longrightarrow R_p$ conservée : sParticule la plus légère est stable

Tevatron :

Tevatron : machine et performance

- Luminosité intégrée délivrée : 1.4 fb⁻¹
- > 1.2 fb⁻¹ / expérience sur bande
- Pics de luminosité : 10³² cm⁻² s⁻¹
- ~ 25 pb⁻¹ / semaine
- Données utilisées pour résultats :
 ~ 0.4 fb⁻¹

Tevatron : les détecteurs

- Détecteurs de traces silicium
- Détecteurs de traces centrales (chambres à dérive)
- Solénoïde : 1.4 T
- Calorimètre à scintillation $|\eta| < 3$:
 - EM : Plomb
 - Hadronique : Fer
- Détecteur de muons $|\eta| < 1$:
 - Compteur scintillateurs
 - Chambres à dérive
- Protection acier

- Détecteurs de traces :
 - Silicium
 - Fibres scintillantes
- Solénoïde : 2 T
- Calorimètre liquide argon/uranium |η | < 4
- Détecteur de muons $|\eta| < 2$:
 - Scintillateurs
 - Mini-tubes à dérive

Recherche de partícules supersymétriques : Charginos, Neutralinos Squarks, Gluinos

Chargínos et ...

Production de chargino (χ^{+-}_{1}) associée avec neutralino (χ^{0}_{2})

2 scénarios :

- $M(\sim l) >> M(\chi_2^0): \text{échange Z/W domine}:$ Br($\chi_1^+, \chi_2^0 -> lept.$) faible
- M(~l) ~ M(χ_2^0) : échange slepton domine : Br(χ_1^+, χ_2^0 -> lept.) maximale

D0 RunII : eµl, eel, $\mu^{+-}\mu^{-+}l$, $\mu^{+-}\mu^{+-}l$, eτ l, µτ l

Cadre choisi : mSUGRA

Sélection :

- $P_{T}(e) > 12$, 8 GeV/c $P_{T}(\mu) > 11$, 5 GeV/c
- MET > 22 GeV 25 GeV/ c^2 < $M_T^{min}(e\mu)$ < 90 GeV/ c^2
- Jets : veto
- $P_{T}(3^{eme} \text{ trace}) > 7$, 3 GeV/c

 $\tilde{\chi}_1^{\pm}$

 W^*

Charginos et Neutralinos

LEP II : trileptons, à bas P_{T} ...

- Beaucoup moins de QCD
- -> Topologies :
 - ▶ ll : N(ch) < 6
 - jjl : N(l) > 0 N(ch) > 5
 - "jets" : N(ch) > 5
- -> plus grand Br
- -> Résultat plus "libre" d'hypothèse

LEP II Production $\chi_1^0 \chi_2^0 \chi_2^0 \to \mathbf{Z}^* \chi_1^0$

2 voies de productions en interférence :

- > $s: e^{-}e^{+} \rightarrow Z^{*} \rightarrow \chi^{0}_{1}\chi^{0}_{2}: dominant à grand m_{0}$
- > $t: e^{-}e^{+} \rightarrow -l \rightarrow \chi^{0}_{1}\chi^{0}_{2}: dominant à petit m_{0}$

- Petit Δm :
 - Etat final : $Z^* \rightarrow l^+l^-$
 - Bruits dominants : $\gamma/Z \rightarrow 2\gamma$, 21
- Grand Δm :
 - > Etat final : $Z^* \rightarrow qq$
 - > Bruits dominants : $\gamma/Z \rightarrow qq$, W⁺W⁻

Grand m_0 : $M(\chi_1^0) > ~ 51 \text{ GeV/c}^2$ Tout m_0 : $M(\chi_1^0) > ~ 46 \text{ GeV/c}^2$

Squarks et gluínos

Cadre choisi : mSUGRA tan β = 3 A = 0 μ < 0 (m₀, m_{1/2}) <-> (M_{~q}, M_{~q})

Squarks : 5 saveurs $\sim q$

- > Petit $m_0 : M_{-g} > M_{-q}$
 - → qq , gg -> ~q ~q
 - Signature : 2 jets acoplanaires
 - Bruits dominants : jjZ -> jj v v , jjW -> jj lept v
- Grand $m_0 : M_{-q} > M_{-g}$
 - > qq , gg -> ~g ~g
 - Signature : N(jets) > 3
 - $\,$ > Bruits dominants : tt -> bb jj lept n , jjZ -> 4j vv , QCD
- m₀ intermédiaire : M_{~q} ~ M_{~q}

 - Signature : N(jets) > 2
 - > Bruits dominants : jjW -> jj lept v , tt -> bb jj lept v

Evénement ~q ~q ?

MET = 350 GeV E_r (j1,j2) = 264, 106 GeV

Le cas du stop...

Lagrangien MSSM avec termes de brisure douce :

Superpartenaires (scalaires) des quarks -gauche & -droit peuvent fortement se mélanger pour former les états propres de masse :

$$M_{\tilde{q}}^{2} = \begin{pmatrix} \tilde{M}_{Q}^{2} + M_{Q}^{2} + M_{Z}^{2}(\frac{1}{2} - \frac{2}{3}\sin^{2}\theta_{W})\cos 2\beta & M_{Q}(A_{T} + \frac{\mu}{\tan\beta}) \\ M_{Q}(A_{T} + \frac{\mu}{\tan\beta}) & \tilde{M}_{U}^{2} + M_{Q}^{2} + \frac{2}{3}M_{Z}^{2}\sin^{2}\theta_{W}\cos 2\beta \end{pmatrix}$$
Squarks "up"

 μ : paramètre de masse Higgs ($\mu H_1 H_2$)

 A_{T} : terme de mélange (stop) tri-linéaire

 $\tan \beta = \langle H_{2}^{0} \rangle / \langle H_{1}^{0} \rangle$

 $\mathbf{M}_{0} = \mathbf{M}_{t}$

Motivations physiques pour le ~t, : *relations spéciales avec le Higgs*

Couplage Yukawa (s)top/Higgs $H_{Q}(A_{T} + \mu/tan\beta)$ Mélange stop très fort $M_{Q}(A_{T} + \mu/tan\beta)$ M(-t) < M(t) $pp -> h \sim t \sim t$ favorisé / -> htt

Régime découplé : h léger, {H, H[±], A} beaucoup plus lourds (dégénérés) h : "de type SM" : h -> γγ

Couplage : $g_{h \sim t \sim t} = ... + [-m_t^2 + m_t \sin 2\theta_{t} (A_T + \mu/tan\beta)/2] / M_Z^2$

 $A_{T} \sim 0: \sigma(\neg t \rightarrow th) = 2 \sigma(\neg t_{1} \rightarrow t_{1}h) > \sigma(tth)$

- \rightarrow A_T intermédiaire : interférence destructive
- A_T (très) grand : σ (\sim t₁ \sim t₁h) > σ (tth) pour M(\sim t₁) < 220 GeV/c²

Grande partie de l'espace de paramètres SUSY : $\sigma(\sim t_1 \sim t_1 h) > \sigma$ (tth)

- Même si σ (\sim t₁ \sim t₁h) \sim σ (tth) : Γ (ll jj $\gamma\gamma$) Γ (tth) -> **couplage** \sim t₁ \sim t₁h :
 - plus grand couplage électrofaible du MSSM
 - test du potentiel scalaire (brisure douce du SUSY)

Motivations physiques pour le ~t, : *arguments de cosmologie...*

Neutralino : LSP) candidat naturel pour la matière noire froide (CDM)

 $0.1 < \Omega_{CDM}h^2 < 1$: "reproduit" dans la plus grande partie de l'espace de paramètres susy... ... **si** annihilations $\chi_1^0 \chi_1^0$ seuls processus changeant le nombre de superparticules

Si : $\delta m = M(\sim P) - M(\chi_1^0)$ petit : co-annihilations domine :

>
$$\chi_{1}^{0} \sim t_{1}^{--->} tg, tH_{i}^{0}, bH^{+}$$

$$\sim -t_1 \sim t_1 - t_1 \rightarrow tt$$

 $\sim \sim t_1 \sim t_1^* \cdots > gg, H_i^0 H_j^0, H^- H^+, bbar, ttbar$

Si $\Omega_{CDM}h^2 \sim 0.1$: analyse sensible aux faibles $\delta m \rightarrow LHC$ "devrait" voir des superparticules

Motivations physiques pour le $\sim t_1 : ...$ arguments de cosmologie

Données de la cosmologie :

WMAP & SDSS : $\Omega_{CDM}h^2 = 0.1126 + 0.0161 - 0.0181$ @ 95% CL

Plan de paramètres MSSM : contraintes intéressantes

Motivations physiques pour le ~t, : *quelles désintégrations* ?

2-corps

- Dominant pour grande partie de l'espace SUSY
 - > grande σ (~t₁~t₁h)

$$\begin{split} M(\sim t_{1}) > M_{b} + M(\chi_{1}^{*}) \\ Chargino : peut-être \\ lourd pour basse M(\sim t_{1}) \end{split}$$

Recherches RunI:

- Dominant pour grande partie de l'espace SUSY
 - $M(\sim t_1) > M_{top} + M(\chi_1^0)$: au-delà limite énergie/luminosité du Tevatron
- Grande contribution de $log(\Lambda_{GUT}^2/M_W^2) \sim 65$ par choix : masses de squark unifiées à très haute énergie. MSSM : unification à basse énergie...
- $|V_{bc}| \sim 0.05$
- Préféré à bas tan β : exclue par recherches Higgs au LEP
 - D0 : Pas étiquetage-b, CDF : étiquetage-b
 - MET > 60 GeV
 - Sensibilité Limitée : E_T(j1 , j2) > 60 , 50 GeV
 - Bruits de fond :
 - W (+jets) ---> l v : lepton non-identifié
 - Z (+jets) ---> vv
 - QCD multi-jet
 - Limites : 95% CL

Motivations physiques pour le ~t, : *quelles désintégrations* ?

Étalonner analyse pour le scénario échange W

$$\begin{split} \tilde{t_1}\overline{\tilde{t_1}} &\to b\bar{b} \ \tilde{\chi}^{\pm} & \tilde{\chi}^{\pm} \\ & \hookrightarrow \mu\tilde{\nu} \to \mu\nu\tilde{\chi}^0_1 \hookrightarrow \mu\tilde{\nu} \to \mu\nu\tilde{\chi}^0_1 \\ & \hookrightarrow e\tilde{\nu} \to e\nu\tilde{\chi}^0_1 \hookrightarrow \mu\tilde{\nu} \to \mu\nu\tilde{\chi}^0_1 \end{split}$$

Recherche du ~t, dans Do : símulation du signal

Cadre choisi : MSSM

- $\mu = 225 \text{ GeV}$
- > M(gluino) = 500 GeV/ c^2 , M(H_A) = 800 GeV/ c^2
- > $M(\sim q_{1,2,3}, L_3) = 250 \text{ GeV/c}^2$
- > $\tan\beta = 20$
- > Désintégrations 3-corps du stop :
 - > A_{T} : varie M(~t_1)
 - > $M_{L1,2}$: varie M(~v)
 - $M_1: \text{varie } M(\chi^0_1) = < M(\sim \nu)$
 - $M_{_2}: garder \chi^+ virtuel: M(\chi^+) > M(\sim t_1) + 30 \text{ GeV/c}^2$

Générateur : CompHEP : désintégrations 3-corps

> Pythia : hadronisation des jets

2 points de repère pour l'analyse :

- → D2 (110,80) : basse ∆m
 - Srand $\sigma = 50 \text{ pb}$
 - Jets, leptons mous
- A7 (145,50) : Haute ∆m
 - Faible $\sigma = 1.8 \text{ pb}$
 - Jets, leptons durs

Recherche du ~t, dans Do : Canaux µµ et eµ

Sélection de muons :

- Coups dans détecteurs de muon interne & externe
- Pas de muons cosmiques : coupure en temps
- Isolé / activité jet :
 - > chargée : $\Sigma_{i=Tracks \ dR=0.5} P_{T}(i) < 2.5, 4 \text{ GeV/c}$
 - > neutre : $E_T^{(R=0.4)} E_T^{(R=0.1)} < 2.5, 4 \text{ GeV}$
- > Qualité de trace :
 - Associé à une trace
 - N(Silicon Module Tracker) > 0

Sensibilité / signal petit ∆m :

- $(\mu\mu): P_{_{\rm T}}(\mu 1,2) > 8$, 6 GeV/c
- (eµ) : $P_{T}(e,\mu) > 12$, 8 GeV/c

Sélection d' électrons :

- Vraissemblance (EM) > 0.5 :
 - profil de gerbes
 - ► E/p
 - Association à une trace

Recherche du $\sim t_1$ dans Do : Canaux $\mu\mu$ et $\Theta\mu$

Energie Transverse Manquante (MET) : signature du $\chi^0_{\ 1}$ Différence d'énergie calorimètrique, corrigée de $P_{_{T}}(\mu)$

Recherche du ~t, dans Do : Canal $\mu\mu$: sélection de signal

Variables topologiques :

 $\Delta \phi$ (µ1,MET) vs MET : muons mal reconstruits correlés avec MET :

Met [GeV]

μ1

Recherche du $\sim t_1$ dans Do : Canal $\mu\mu$: les jets

N(jet) > 0

Facteurs de réduction : Z / 6.1

D2 / 1.7 A7 / 1.1

Etiquetage de quarks b :

Probabilite pour traces(jet) de provenir de VP Prob.(jet1) < 1% : Coupure assez "lâche"

Facteurs de réduction : Z / 24

D2 / 3.8 A7 / 2.2

Recherche du $\sim t_1$ dans Do : Canal $\mu\mu$: sélection de signal

$\mathcal{L} = 339 \ pb^{-1}$

Cut	$\Upsilon_{1,2s}$	QCD	$Z^0 ightarrow 2\mu$	$Z^0 ightarrow 2 au$	WW	tī	Background	Data	A7	D2
Quality	-	8 3.2		3.8.3		5.3	et man see the			1 N 34
cuts	973	4525	23549	233	9.6	5.1	29295 ± 348	28733	9.8	41.1
N(jet) > 0	81	856	3836	59	1.5	5.1	$4838 \pm 97^{+452}_{-553}$	4337	$8.81\substack{+0.11 \\ -0.10}$	$24.14^{+1.46}_{-1.90}$
$\Delta \phi(\mu_1, \not\!\! E_T)$	22.3		2.3.2		199				3.A 25 2 2	
$vs \not \! E_T$	0.4	53	136	20	1.1	4.7	$214\pm8^{+52}_{-22}$	213	$7.49^{+0.17}_{-0.12}$	$12.92^{+1.21}_{-1.28}$
b tagging	0	0	5.7	0.44	0.03	2.6	$8.7 \pm 1.6^{+1.3}_{-0.1}$	4	3.49+0.21	$3.37^{+0.37}_{-0.27}$
$M(\mu\mu) \notin [75, 120]$	5.00				1					
for $\not\!\!\! E_T < 50$	0	0	0.10	0.44	0.03	2.3	$2.88 \pm 0.43 ^{+0.10}_{-0.04}$	1	$3.06^{+0.15}$	$3.30^{+0.39}_{-0.27}$

Bruit de fond dominant : ttbar

Variable discriminante : $H_T = \sum_{j=Jets} E_T(j)$...mais différents signaux (Δm) : différents H_T

Considérer bins H_{T} de 40 GeV :

- N(data), N(bruit), N(signal)
- Analyse statistique : combinaison de tous les bins, utilisant tout le spectre H_T (mieux que coupures "glissantes")

= 3

4.5 %

0.1 %

Recherche du ~t, dans Do : Canal µµ : résultats

Obtenir 95% CL σ_{III} et comparer avec σ_{Ih} (prospino)

LEP II (675pb⁻¹) :

- Signature : Jets acoplanaires, MET. N(ch) > 10
- Sensibilité à très faible $\Delta m...$
- ... moins de QCD

- Petit Δm :
- Bruit dominant : $\gamma \gamma \rightarrow qq$
- Sélection : $\Sigma P_{T} > 1 \text{ GeV/c}, \Phi \text{ (acop), M(miss)}$
- Grand Δm :
 - Bruit dominant : γ^* Z, WW, Wev
 - Sélection : $\Sigma P_{T} > 10 \text{ GeV/c}$, Φ (acop), M(miss) >

- Erreurs systématiques dominantes : Jets :
 - σ_s: [5,12] %
 - résolution : [4,15] %
 - étiquetage de b : 10 %
- Région haute $\Delta m \sim aussi bien$ qu'au RunI...
- Région basse Δm : mieux, avec :
 - x3 Luminosité
 - ¹/₂ Br(signal)
 - x15 bruits de fond non-QCD
 - $P_{T}(\mu 1, 2) > 8$, 6 GeV/c
 - Triggers muon $\sim 100\%$ pour $P_{_{T}} > 5 \text{ GeV/c}$
 - Sensibilité limitée :
 - > E_{T} (jet) > 15 GeV
 - MET > 20 GeV
 - ... dominée par le Z

Recherche du $\sim t_{,}$ dans Do : Canal $e\mu$: sélection de signal

Variable topologique/cinématique : $M_T(l,MET)$ $M_T(\tau \rightarrow l met) < M_T("W" \rightarrow l met)$

A7 / 1.2

 $\begin{array}{l} \mathrm{MET} > 15 \ \mathrm{GeV/c^2} \\ \mathrm{M_{_{T}}} \ (\mathrm{e},\mathrm{MET}) > 15 \ \mathrm{GeV/c^2} \end{array}$

Facteurs de réduction : Z-> $\tau \tau / 4.3$ QCD / 6.8

D2 / 1.6 A7 / 1.1

Variable topologique : Centralité des leptons = $|\eta(e)| + |\eta(\mu)|$ Evénements signal (ttbar) : plus "central" (petit η)

 $|\eta (e)| + |\eta (\mu)| < 1.9$

Facteurs de réduction : Z-> $\tau \tau / 1.6$ QCD / 1.8 D2 / 1.2

Recherche du $\sim t_{,}$ dans Do : Canal $e\mu$: sélection de signal

Variables topologiques : $\Delta \phi$ (e,MET) vs $\Delta \phi$ (μ ,MET) :

e

Utiliser différence de corrélation $\Delta \phi$ (lepton, MET) pour Z-> $\tau \tau$ et signal

Recherche du $\sim t_{1}$ dans Do : Canal $e\mu$: sélection de signal

$\mathcal{L} = 350 \text{ pb}^{-1}$

	QCD	$Z \rightarrow \tau^+ \tau^-$	Diboson	tī	Background	Data	A7	D2
$\Delta m \le 40 \text{ GeV}$	9	2.1	7.6	4.3	23.0 ± 3.1	21	11.5	16.4
$50 \text{ GeV} \le \Delta m \le 60 \text{ GeV}$	14.8	3.0	11.1	5.7	34.6 ± 4.0	34	15.2	18.5
$70 \text{ GeV} \leq \Delta m$	18.2	3.3	12.8	6.5	40.7 ± 4.4	42	16.7	20.4

> $S_{T} = P_{T}(e) + P_{T}(\mu) + MET$:

- $P_{T}(\mu) + MET: \qquad \epsilon =$
- séparation QCD / Signal grand Δm
- Bruits de fond dominants : QCD, WW
- > séparation WW / Signal petit ∆m
 Nombre de traces non-isolées (NIT) :
 - avantage : "signer" un jet sans systématiques(jets)
 - \succ séparation WW / Signal haute Δm
- Combiner l'information statistique de 9 bins [S_T,NIT]

12.2 % 2.7 %

Recherche du $\sim t_1$ dans Do : Canal $e\mu$: résultats

- Erreurs systématiques < 5% pour signal</p>
- Région grand $\Delta m : +20 \text{ GeV/c}^2 / \text{RunI}$

: Limites du RunI

Région petit Δm : +[5,15] GeV/c² / RunI :

10-1

80

100

120

140

Scalar top Mass [GeV]

160

Recherche du $\sim t_{\mu}$ dans Do : Combinaison des canaux $\mu\mu$ et $e\mu$

- Combinaison :
 - vérifier événements communs
 - corrélations prises en compte
- (eμ): domine largement la performance
- (μμ): améliore [9,15] GeV/c² pour M(~ν)

Conclusions

Recherches SUSY (R_p conservée) au Tevatron :

- > D0 :
 - $M(\chi^{+-}_{1}) > 117 \text{ GeV/c}^{2}$ dans scénario échange ~l
 - $M(\sim g) > 230 \text{ GeV/c}^2$. Analyse "générique" $\sim q/\sim g$ en place. Bientôt interprétation MSSM
- > CDF :
 - Trileptons : en progrès
 - Squark, gluino : en progrès
- D'autres recherches SUSY... mes excuses...

Désintégrations $\sim t_1 \rightarrow b l \sim v : \rightarrow$

Analyse difficile : Z, QCD < Signal < ttbar

- (e,μ) : mène la recherche du stop en 3-corps
- (μ,μ) : Malgré Z :
 - Coupures topologiques, 1 jet, etiquetage-b "mous"
 - NN, "Decision Making Tree" : pas mieux
 - * "Probability Density Function" : en cours
 - > Sensibilité au-delà du RunI à basse Δm
- (e,e) : bientôt...
- ► (e,µ)+(µ,µ) : Pas de signe de \sim t₁ Sensibilité à Δ m \sim 20 GeV/c²

Perspectives SUSY / ~t,

Développer outils d'analyse "petit ∆m" auprès collisionneur hadronique

- Perspective SUSY au LHC : Sensibilité $M(\chi_1^0 / -t_1) < 1 \text{ TeV/c}^2$
- $M(\sim t_1) = 230 \text{ GeV/c}^2 \dots M(\chi_1^0) = 200 \text{ GeV/c}^2 \dots (!)$

$$M(\sim t_1) < M_{top} + M(\chi_1^0) : b \chi_1^{+-} / b W \chi_1^0$$

- Préférée(s) par grande partie d'espace MSSM & données de cosmologie
- Canal {ll Met 2jets} :
 - Bruit faible, Br petit : pas un problème avec luminosité LHC

 - Canal {l Met 4jets} : test exclusif du scénario b l W
 - W + jets < Signal < ttbar, plus haute Br</p>
 - Estimation : > 6fb⁻¹ pour sensibilité : domaine du LHC...