DarkSide computing TDR

Yann Coadou

CPPM Marseille

DS group meeting CPPM, 4 July 2024

Table of contents

1. Introduction 1.1. Physics goals 1.2. System requirements 1.3. Computing model 1.4. Architecture	1 2 3 4	5. Simulation 5.1. Simulation data formats 5.2. Physics processes 5.3. Simulation pipeline 6.4. CPU and storage requirements	24 24 25 26 27
 Raw data 1. Operating modes of the detector Types of raw data Data streams As low control information Detector conditions Data format Tstorage requirements Bata transfer Data flow 	$\begin{array}{c} 4\\ 4\\ 6\\ 7\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12 \end{array}$	6. Computing model 6.1. Architecture 6.2. Databases 6.3. Data management 6.4. Data distribution 6.5. Data access 6.6. Data processing 6.7. Reconstruction scheduling 6.8. Simulation scheduling 6.9. User analysis	27 29 30 31 32 32 33 33 33 33 34
 Raw data processing I. Reconstruction Types of reconstructed data Reconstruction pipeline Calibration and monitoring pipelines CPU requirements Storage requirements User analysis User analysis Isom reconstructed data to physics results 	12 12 14 15 16 18 20 22 22 22	 Software development Software components Software releases 3. Development workflow 7.4. Computing model implementation Organization and planning Bevelopment of the system 8.2. Commissioning 8.3. Operation and maintenance 	35 35 36 37 37 37 39 40
4.2. Typical workflow	23	8.4. Financial requests	41

Section managers

- Davide Franco
- Marco Rescigno

- Maria Adriana Sabia
- Paolo Agnes

- Pierre-André Amaudruz
- Saverio D'Auria

- Timothée Hessel
- Valerio Ippolito

Operating modes of detector

- WIMP search mode: most of the time. 88 Hz from ³⁹Ar β activity in TPC. Additional rate from SiPM dark counts: 40 Hz per each of the 2720 readout channels
- Laser calibration mode: PDM calibration by irradiating TPC with fibers in single-PE regime
- Random trigger calibration mode: unbiased PDM noise measurement and digitiser level hit finder efficiency
- External calibration mode: radioactive sources in calibration pipes or dissolved in LAr
- Random waveform monitoring mode: random acquisition of waveform chunks (length of single-PE signal, 5.6 μs))

Data streams

- Main stream (WIMP search mode) at about 60 MB/s
- Additional fast online event identification to control data throughput (selection, prescaling) and flag supernova candidates for SNEWS alerts (under investigation)

Yann Coadou (CPPM) — DarkSide computing TDR

Context	Content type	Content		
slice header	int4	slice start mai	rker	
slice header	int4	run type		
slice header	int20	run numbe	r	
slice header	int4	data quality f	ags	
slice header	int32	slice ID		
slice header	int32	timestamp		
slice header	int32	slice end mar	ker	
slice header	int32	number of blocks in	the slice	
block specifier	int16	block element	type	
block specifier	int16	block element version		
block specifier	int32	block element multiplicity		
block specifier	int32	block element	size	
		Context	Content type	Content
		ZLE block	/int16	ZLE channel
a		ZLE block	int16	number of hits in ZLE
Content	10	ZLE block	float32	ZLE time
TPU ZLE block s	specifier	ZLE block	float32	ZLE integral
TPC hit block s	pecifier	ZLE block	float32	ZLE length

Hit block

Hit block

Summed waveform block

float32

float32

 $N_{samples} \times float32$

Summed waveform block N_{samples} × float32 sum of the bottom waveforms

Content type

 $2 \times \text{int} 32$

 $2 \times \text{int} 32$

IV hit block specifier

OV hit block specifier

sum of the top waveforms block specifier

sum of the bottom waveforms block specifier

Context

block specifier

block specifier

block specifier

block specifier

block specifier

block specifier

hit time

hit charge

sum of the top waveforms

- Not that straightforward given LNGS location
- On paper:
 - Ad-hoc optical fiber connecting underground LNGS to surface, planned at 10 Gb/s
 - 10 Gb/s link from external LNGS facility to Italian GARR computing network ("soon" upgraded to 100 Gb/s)
 - Via GARR, 8–10 Gb/s connection to CNAF
- Real life tests: 2 Gb/s from external LNGS to CNAF
- Weak point: underground to external LNGS (not considered critical by labs...) ⇒ underground storage buffer to stay offline for more that a week (100 TB)

3. Reconstruction

- Reconstruction: algorithms applied to raw data to derive nature (NR or ER), energy, topology, etc.
- Staged reconstruction planned (not fully ready yet) to speed up reprocessing
- Time slice = time series of PE-induced hits
- First step: Bayesian blocks (data chunks with constant rate)
- Second step: basic variables for "easy" pulse classification (number of hits, charge integration, prompt component)
- Refined reco: xy and z position, dealing with outliers
- Event building: association of scintillation and ionisation pulses

(40 CPPM)

Task	CPU pledge (cores)	Disk	Tape
Raw data		$20\mathrm{PB}$	$20\mathrm{PB}$
Prompt data processing	100	$75\mathrm{TB}$	$75\mathrm{TB}$
Reprocessings	3000	$300\mathrm{TB}$	$< 1\mathrm{PB}$
User analysis	300	$300\mathrm{TB}$	
MC simulation	500	$2\mathrm{PB}$	$2\mathrm{PB}$
Overall	1500	$20\mathrm{PB}$	$20\mathrm{PB}$

- Various assumptions, e.g. reprocessing of early stages every six months but turnaround of one week of refined reco in early stages, averaged to four months in TDR
- Includes dealing with calibration (2 weeks for ER, 36 days for NR)
- Considers that users will not analyse full 70 TB each time (event skimming/slimming), especially true as time goes on
 - \Rightarrow User analyses considered a minor contribution to computing resources

5. Simulation

- G4DS for tracking energy deposits and particle production
- Generation of scintillation signals (S1 full sim) in G4DS
- Generation of electroluminescence signal (S2) by fully tracking photons (G4DS, full-sim) or inferring light pattern for each energy deposit from light maps (dslab, fast-sim)
- Simulation of electronics response in PDM
- Reconstruction (as on real data)

6. Databases

- Storage of slow control, detector conditions, calibration constants, bookkeeping of data and simulation datasets, and of user jobs, authentication
- Not much detail yet

- Data management: potentially rucio (from ATLAS originally)
- Distribution: CNAF foreseen. Decide this year if we could propose another site like CC-IN2P3
- Processing: considering DIRAC, or PanDA (from ATLAS originally)

AC CPPM

- Relies of python packages like numpy and dask, accelerated with high-performance just-in-time compilation with numba
- Analysis format: ROOT TTree
- Code managed in git, hosted at IN2P3 gitlab

Milestone	When	Goal	Needs
M1: Offline data challenge	Dec 2024	Stress-test the pulse reconstruction	Pulse reconstruction software
		with 10 h of simulated raw data	
M2: Release of computing TDR	Mar 2025	Provide final assessment of needed	Estimation of pulse and event re-
		resources for DarkSide computing	construction performance
Computing prototype	Mar 2025	Integrate simulation/reconstruc-	Data management and workload
		tion with prototype of data and	management pilots
		workload management system	
M3: $DAQ + offline data challenge$	Jun 2025	Test integration of vertical slice and	Vertical slice setup, computing
		computing prototype	prototype
M4: $DAQ + offline + DBs data$	Dec 2025	Integrate computing system with	DAQ operational underground at
challenge		its full input with the actual detec-	LNGS
		tor underground	
M5: Commissioning	Dec 2026	Commissioning of the computing	Detector ready
		system with the sealed detector	

Risk	Probability	Impact	Mitigation
Unavailability of data management system	Medium	High	Early implementation on the development
			phase, in sinergy with CNAF. Disk buffer
			at LNGS allows one week to fix transient
			issues.
Unavailability of workload management	Low	Medium	Early implementation. Availability of full
system			data on a single computing site (CNAF) al-
			lows to resort to temporary backup solution
			such as HTCondor.
Unavailability of detector databases	Medium	Medium	Can export DB fragments as dataset
			metadata.
Unavailability of authentication system	Low	Low	Backup credentials for central production
Storage corruption	Low	Medium	Redundancy of data copies (disk/tape)
Interruption of network connection to/from	High	High	Disk buffer on DAQ farm, DB replicas
LNGS			
Data format insufficient for detector	Medium	Low	Flexible raw data format. Support for
characterization/physics			schema evolution in raw and processed data
			formats.
Limited person power	High	High	Periodic user, developer and support team
			training. Shared documentation. Usage of
			GitOps/DevOps paradigms for automation