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MOTIVATING 
SCIENCE GOALS

• Where is the transition line 

at high density?

• Is there a critical point in the 

QCD phase diagram?

• What are the degrees of 

freedom in the vicinity of the 

phase transition?

• Run 2019:

• Collider: √sNN=14.6, 19.6, 200 

GeV

• Fixed target: √sNN=3.2 GeV

• Run 2020:

• Collider: √sNN=9.2, 11.5 GeV

• Fixed target: √sNN=3.5, 3.9, 4.5, 

5.2, 6.2, 7.2, 7.7 GeV

• Run 2021:

• Collider: √sNN=7.7, 17.3 GeV

• Fixed target: √sNN=3.0, 9.2, 11.5, 

13.7 GeV
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• What are the phases of QCD 

at high density?

• How are heavy nuclei created 

and what is the site of the 

r-process?

"Normal" matter



WHAT HAPPENS AT 
FINITE DENSITIES?

➢ Expansion methods can be used, but still 

restricted to low density regions

➢ We need to merge the lattice QCD 

EoS with other effective theories

➢ Careful study of their respective range of 

validity

Lattice QCD

Holography

Perturbative QCD

Quarkyonic

Matter?

Chiral EFT

Liquid-gas, Nuclei: see e.g. Du et al. PRC (2019)

Chiral EFT: see e.g. Holt, Kaiser, PRD (2017)

pQCD: Andersen et al., PRD (2002); Annala et al., Nat. Ph. (2020)

Quarkyonic: McLerran et al. (2007), Vovchenko et al. (2023)

CSC: Alford et al., PLB (1998); Rapp et al., PRL (1998);
S. Rossner, C. R. et al, PRD (2007).

 

Quarks: Ratti et al., PRD (2006), Dexheimer et al., PRC (2009);
Baym et al., Astr. J. (2019)

Interacting HRG: V. Vovchenko et al., PRL (2017) 

Lattice QCD: S. Borsanyi, C. R. et al, PRL (2021)

Holography: R. Critelli, C. R. et al.,  PRD (2017)

Color

Superconductor?
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From 1st principles calculation, lattice QCD

only allows to compute thermodynamics at 

μB = 0 (matter/antimatter=1).

Could we try to merge them 

together to ensure full coverage

of the phase diagram ?

Liquid-Gas, Nuclei



MUSES – MODULAR UNIFIED SOLVER OF THE 
EQUATION OF STATE

“An open-source cyberinfrastructure fostering a community-driven ecosystem that provides key 

computational tools to promote, transform and support groundbreaking research in nuclear 

physics and astrophysics, computational relativistic fluid dynamics, gravitational-wave and 

computational astrophysics.”

• Modular: while at low densities the equation of state is known from 1st principles, at high μB we will 

implement different models (“modules”) that the user will be able to pick

• Unified: the different modules will be smoothly merged together to ensure maximal coverage of the phase 

diagram, while respecting established limiting cases (lattice, perturbative QCD, Chiral EFT…)
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MUSES GOALS AND MILESTONES
o CyberInfrastructure of interoperating tools and services within a replicable and flexible deployment system

• Upgrade of existing calculation tools to modern programming languages

• Equation of State (EoS) package that combines all the EoS modules using smooth transition functions

• Observables & toolkit package to compute observables and provide tools to facilitate comparison with experiments

• Web-based tools and services that provide interactive interfaces to the calculation engine

• Job management system and a deployment system that can be reproduced in other computing environments

5

Observables & ToolkitEquations of state
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PARTICIPANTS
PI and co-PIs

1. Nicolas Yunes; University of Illinois at Urbana-Champaign; PI

2. Jacquelyn Noronha-Hostler; University of Illinois at Urbana-
Champaign; co-PI

3. Jorge Noronha; University of Illinois at Urbana-Champaign; co-PI

4. Claudia Ratti; University of Houston; co-PI and spokesperson
5. Veronica Dexheimer; Kent State University; co-PI

6. Senior investigators

1. Roland Haas; National Center for Supercomputing Applications

2. Timothy Andrew Manning; National Center for Supercomputing 
Applications

3. Andrew Steiner; University of Tennessee, Knoxville

4. Jeremy Holt; Texas A&M University
5. Gordon Baym; University of Illinois at Urbana-Champaign

6. Mark Alford; Washington University in Saint Louis
7. Elias Most; Princeton University

External collaborators
1. Helvi Witek; University of Illinois at Urbana-Champaign

2. Stuart Shapiro; University of Illinois at Urbana-Champaign
3. Katerina Chatziioannou; California Institute of Technology 
4. Phillip Landry; California State University Fullerton 

5. Reed Essick; Perimeter Institute
6. Rene Bellwied; University of Houston

7. David Curtin; University of Toronto
8. Michael Strickland; Kent State University

9. Matthew Luzum; University of Sao Paulo
10. Hajime Togashi; Kyushu University
11. Toru Kojo; Central China Normal University
12. Hannah Elfner; GSI/Goethe University Frankfurt

This is the list that appeared in the proposal, BUT:

1st MUSES collaboration paper was signed by 58 authors

→ We are growing!
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FIRST MUSES-WIDE PUBLICATION
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https://link.springer.com/article/10.1007/s41114-024-00049-6
https://arxiv.org/abs/2303.17021


DETAILS

❖ 1st set of modules will be released very soon (just a few more weeks to wait...)

❖ They will be publicly available & open-source

❖ We invite people to test these modules and give us feedback!

❖ The modules to be released will be marked by during this talk

PUBLIC RELEASE: NOV. 2024
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EOS FOR NEUTRON STARS

Insert : https://www.google.com/search?sxsrf=APwXEddfRz9MFIWVWU43LOd-

2tDCpNGJ3Q:1687448488980&q=neutron+star+binary+merger&tbm=isch&sa=X&ved=2ahUKEwjcmYy-

m9f_AhUGKewKHXl_BZQQ0pQJegQIDRAB&biw=1396&bih=656&dpr=1.38#imgrc=IoFiVyC5VPI1nM

NASA Scientific Visualization Studio
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https://www.google.com/search?sxsrf=APwXEddfRz9MFIWVWU43LOd-2tDCpNGJ3Q:1687448488980&q=neutron+star+binary+merger&tbm=isch&sa=X&ved=2ahUKEwjcmYy-m9f_AhUGKewKHXl_BZQQ0pQJegQIDRAB&biw=1396&bih=656&dpr=1.38
https://www.google.com/search?sxsrf=APwXEddfRz9MFIWVWU43LOd-2tDCpNGJ3Q:1687448488980&q=neutron+star+binary+merger&tbm=isch&sa=X&ved=2ahUKEwjcmYy-m9f_AhUGKewKHXl_BZQQ0pQJegQIDRAB&biw=1396&bih=656&dpr=1.38
https://www.google.com/search?sxsrf=APwXEddfRz9MFIWVWU43LOd-2tDCpNGJ3Q:1687448488980&q=neutron+star+binary+merger&tbm=isch&sa=X&ved=2ahUKEwjcmYy-m9f_AhUGKewKHXl_BZQQ0pQJegQIDRAB&biw=1396&bih=656&dpr=1.38


NEUTRON STARS & MERGERS: DETAILS

DETAILS

❖ Long lifetime

❖ Weak interaction must be considered

❖ Flavor is driven out of equilibrium 

temporarily (mergers)

❖ Electrically neutral for stability

 <ρQ>=0

NEEDS

❖ Standard EoS: (p, s, ε, ρB, cs
2, μi, Yi)

❖ T=0 EoS for mergers and neutron stars

❖ Finite-T EoS for mergers

❖ Lepton EoS

❖ Flavor equilibration tied to microscopic 

EOS models

AND NEEDS
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MULTI-PHASE EQUATION OF STATE FOR NEUTRON STARS

o Chiral Mean Field (CMF) model

• Crossover at low density and first-order phase transition at high density

• Based on non-linear sigma model with the addition of deconfined quarks

and different parametrizations of vector meson self-interaction term

• Reproduces nuclear & astrophysics constraints, and matches pQCD in 

relevant regimes

Dexheimer's group

V. Dexheimer, S. Schramm, PRC 81 (2009)

N. Cruz-Camacho, V. Dexheimer et al., arXiv:2409.06837

Outlooks:

• Add finite-T extension (T < 160 MeV)

• Add magnetic field

• Thermal meson interactions

• Study sensitivity of parameters

Range: T ~ 0 MeV  ; μB < 1600 MeV / nB < ~10ns
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https://inspirehep.net/literature/810881
https://arxiv.org/abs/2409.06837


Holt's group
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HADRONIC EQUATIONS OF STATE FOR NEUTRON STARS

J. Holt & N. Kaiser, PRC (2017)

o Chiral effective field theory (ChiEFT)

• Interacting nucleons and pions 

within chiral effective field theory

• Fitted to nucleon scattering data 

and boundstate potentials

• Can compute both symmetric and 

asymmetric EoS: 0 < Yp < 0.5

Outlooks:

• Add extension at finite-T (up to 30 MeV)

• Include a wider variety of 

ChiEFT potentials

• Provide uncertainty quantification

Range: T ~ 0 MeV  ;  nB < ~2ns

https://inspirehep.net/literature/1503209


X. Du, A. Steiner, J. Holt, PRC (2019)

X. Du, A. Steiner, J Holt, PRC 110 (2022)

Steiner's group

o University of Tennessee in Knoxville (UTK) EoS

• Includes nucleonic degrees of freedom based on a 

phenomenological fit of free energy density to

▪ nuclear experiments

▪ astronomical observations

+ guided by many-body theory calculations

• Defined for both symmetric and asymmetric matter

for 0.01 < Yp < 0.5

HADRONIC EQUATIONS OF STATE FOR NEUTRON STARS

Outlooks:

• Addition of finite T equations of state

• Extension to strangeness degrees of freedom

• Machine learned emulator

Range: T ~ 0 MeV  ; 10-12 < nB < 2 fm3

Ye = 0.5
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https://arxiv.org/abs/1802.09710
https://inspirehep.net/literature/1883869


MADAI collaboration

EOS FOR HEAVY IONS
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NEEDS

❖ To take into account local fluctuations, 

4D Equations of State are needed

❖ Free parameters: T, μB, μS, μQ

❖ Thermodynamic variables (p, s, ε, nB, cs
2)

❖ 1st and 2nd order derivatives of pressure 

with respect to chemical potentials

❖ Inclusion of critical point

❖ Transport coefficients

HEAVY ION COLLISIONS: DETAILS

DETAILS

❖ System is described in terms of 

hydrodynamic simulations 

and/or microscopic transport

❖ System is not in finite-sized, short lifetime

❖ Strangeness neutrality <nS>=0
 + locally conserved

❖ Charge: p vs. n in ions   <nQ>=0.4<nB>

15

AND NEEDS



• Use gauge/gravity correspondence to obtain QCD thermodynamics from an 
Einstein-Maxell-Dilaton Holographic model

• Fix the parameters to reproduce everything we know from the lattice

• Calculate equation of state at finite density, but only for finite μB

• Currently includes a critical point (TCEP = ~100 MeV ; μB
CEP = ~600 MeV)

EQUATION OF STATE FROM HOLOGRAPHY
Range: 30 MeV < T < 400 MeV  ; μB < 1100 MeV

Noronha/Ratti’s groups

J. Grefa, C. Ratti et al., PRD (2021)

J. Grefa, C. Ratti et al. subm. To PRD (2023)

Outlooks:

• Extension to multiple conserved charges
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https://inspirehep.net/literature/1848212
https://inspirehep.net/literature/2692808


S. Borsanyi, C. Ratti et al., JHEP (2018)

J. Noronha-Hostler, C. Ratti et al., PRC (2019)

A. Monnai et al., PRC (2019)

• Full Taylor expansion needed to study different μB/Q/S scenarios

Ratti’s group

• Parametrized susceptibilities fitted on lattice QCD + HRG

• Coefficients are available from lattice-QCD up to 

global order 4 (μ/T < 2.5)

4D EQUATION OF STATE FROM L-QCD (BQS-EOS)
Range: 30 MeV < T < 600 MeV  ; μB/Q/S < 450 MeV
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https://inspirehep.net/literature/1672799
https://inspirehep.net/literature/1720588
https://inspirehep.net/literature/1720252


• Novel T'-Expansion Scheme (TExS) allows to 

extend lattice-based EoS up to μB/T~3.5

(EoS available at μS=μQ=0)

• Includes a parametrized critical point from 

3D-Ising universality class, with free location 

along a transition line parametrized according 

to physical constraints

S. Borsanyi, C. Ratti et al., PRL (2021)

S. Borsanyi, C. Ratti et al., PRD (2022)

Ratti’s group
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M. Kahangirwe, J.J., C. Ratti et al., PRD (2024)

2D ISING-T.EX.S EQUATION OF STATE FROM L-QCD
Range: 30 MeV < T < 800 MeV  ; μB < 700 MeV

Outlooks:

• Extend it to the case <nS>=0 & <nQ>=0.4<nB>, 

relevant for HICs

• Provide adaptive grid to better resolve CP

https://inspirehep.net/literature/1846542
https://inspirehep.net/literature/2031417
https://inspirehep.net/literature/2757994


4D-T.EX.S EQUATION OF STATE  FROM L-QCD
Range: T < 800 MeV  ; μB/Q/S <? 700 MeV

Ratti’s group

• Generalization of the previous 2D T'-Expansion Scheme to 3 conserved charges
by projecting the "cartesian" (μB, μQ, μS) coordinates to spherical ones

still a 2D-TExS expansion, along a constant μ/T line

19J.J., P. Parotto, C. Ratti et al., (in preparation)



HADRON RESONANCE GAS (HRG) MODEL

Goals:

• Implementing FIST into module for thermodynamics results

• Give flexibiliy on the particle list as input

• Extend hadronic spectrum to the most updated PDG list

Range: 0 < T < 160 MeV  ; μB < 930 MeV

Vovchenko/Noronha-Hostler/Ratti’s groups

20

V. Vovchenko, H. Stoecker & M. Gorenstein., PRL (2017)

V. Vovchenko, H. Stoecker, Comput. Phys. Com. (2019)

• HRG model provides a well-established and realistic EoS at low temperatures

• Ideal version is based on the assumption that an interacting gas of hadrons in the 
ground state can be well-approximated by an ideal gas of resonances

• At large density, we need to incorporate additional interactions (van Der Waals)

• Describes the liquid-gas phase transition

https://inspirehep.net/literature/1486398
https://inspirehep.net/literature/1714004


OBSERVABLES & TOOLS
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Noronha/Ratti/Vovchenko’s groups

o Freeze-out physics

• T and μB  at chemical freeze-out can be 

fitted from experimental data with HRG

• will be incorporated from Thermal-FIST

o Transport coefficients from Holographic module

• Thermal conductivity

• Baryon conductivity & diffusion

• Shear & bulk viscosities

• HQ drag force & Langevin diffusion coefficients

• Jet quenching parameter

OBSERVABLES FOR HEAVY-IONS
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J. Grefa, C. Ratti et al., PRD (2022)

V. Vovchenko et al., PRC (2016)

https://inspirehep.net/literature/2040492
https://inspirehep.net/literature/1411474


Noronha-Hostler/Ratti's groups

o Susceptibilities & hadronic species contributions

• Susceptibilities from lattice QCD will be computable

• using HRG, one can study the breakdown of different hadron families:

➢ we will provide combinations for hadronic contributions to total pressure

➢ we will provide analogous relations for susceptibilities

o PDG21+ list

• Add up all resonances from PDG

(from * to *****)

• Create decay channels through radiation 

for unknown higher energy baryons

ADDITIONAL TOOLKIT FOR HEAVY-IONS
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J. Salinas San Martin, R. Hirayama, et al. (2016)

A. Nava, J.J., C. Ratti et al. (in preparation)

https://inspirehep.net/literature/2693474


Alford/Dexheimer/Most/Yunes’s groups

o Flavour equilibration

• β-equilibrium (by balancing rates)

• Given an EoS, computes:

➢ Urca rates 
( n  p + e + νe  /  p + e  n + νe)

➢ Equilibrium charge fractions

➢ Relaxation rates

➢ Damping time

➢ Susceptibilities

➢ Bulk viscosity

o Adapter modules for NS & mergers simulation tools

• Ensuring compatibility with CompStar Online Supernovae Equations of State (CompOSE),

a standard format, with the aim to provide thousands of 1D/2D/3D EoS tables for NS

• Ensuring compatibility with merger simulations

TOOLKIT FOR NEUTRON STARS

o Lepton module

• Takes in nuclear EoS

• Compute the charged lepton densities 

necessary to ensure having charge 

neutrality

Outlooks:

• include neutrinos

• include photons

24

M. Alford, A. Haber et al., Universe (2021)

M. Alford, A. Haber et al., PRC (2024)

https://compose.obspm.fr
https://inspirehep.net/literature/1901606
https://inspirehep.net/literature/2667985


Yunes’s group

o QLIMR module

Given an EoS, solves the Tolmann-Oppenheimer-Volkoff (TOV) 

equations

OBSERVABLES FOR NEUTRON STARS

and computes:

➢ Q: quadrupole moment Q of NS

➢ L: tidal Love number (tidal force deformability)

➢ I: moment of inertia

➢ M: mass of NS (+Δm to correct for rotation)

➢ R: radius of NS (+ΔR to correct for HRG too)

➢ Local function p(R), m(R)...

25

R. Kumar, V. Dexheimer et al., PRD 109 (2024)

https://inspirehep.net/literature/2750557


PUBLIC RELEASE
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• Online documentation on the use of the CE, 

the different modules, etc.

USING THE MUSES CALCULATION ENGINE

27

• Modules can be run on a dedicated cluster

(access given via login)

• Forum as a platform for users-developers 

exchanges about support, feedback...

https://musesframework.io/docs/
https://musesframework.io/
https://forum.musesframework.io/


• Example of a typical workflow within MUSES,
implying EoS generation + observable calculation

• More complex workflows can also be defined

28

WORKFLOWS IN MUSES



CONCLUSIONS

• MUSES will provide a public-accessible framework with a single friendly-user 

interface, to compute EoSs and related observables from different approaches

• Public release planned for Nov. 2024: open access soon!

o 3 modules for NS EoS

o 3 modules for HI EoS

o 2 toolkit modules / 1 observable modules

• Most modules have plans for improvement (   1.1.0)

29

Suggestions, feedback and new collaborators 

are welcome!



Backup slides
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LIGO/Virgo PRL (2017)

P.S. Cowperthwaite et al., Astrophys. J. Lett. (2017)

3
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ANATOMY OF A NEUTRON STAR MERGER
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E.R. Most, C.A. Raithel, PRD 104 (2021)

https://inspirehep.net/literature/1883870


NEUTRON STAR MERGER AND THE EOS

/VIRGO

Einstein 

Telescope

• Post-merger signal sensitive to order of the phase transition

• Next generation observatories will be able to detect it!

• Need to combine the nuclear physics input and simulations

Cosmic explorerEinstein telescope

33

E.R. Most, V. Dexheimer et al., PRL (2019)

https://inspirehep.net/literature/1681634


ANATOMY OF A HEAVY-ION COLLISION

The ALICE experiment: A journey through QCD, CERN-EP-2022-227 (2022)
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https://inspirehep.net/literature/2178285


THERMODYNAMICS RELATIONS
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Noronha/Ratti’s groups

String theory/Classical gravity 

in 5D

Quantum Field Theory

in 4D

By solving the equations of motion (EoM) for 

a 5D Einstein-Maxwell-Dilaton (EMD) model

defined by the following action:

(simplest action reproducing a realistic 4D QCD EFT)

...one can obtain the following thermodynamic quantities by

• using the UV behavior of the EMD fields

• fixing free parameters Λ, κ5 and the functional form of 

V(ϕ) and f(ϕ) by matching with lQCD results at µB = 0

EQUATION OF STATE FROM HOLOGRAPHY
Range: 30 MeV < T < 400 MeV  ; μB < 1100 MeV
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Ratti’s group

37

Empirical observation:

• all 1st order susceptibilities scale when 

defining a µB-dependent temperature T'(T, µB)

• scales like:

one can thus redefine temperature and use an alternative expansion scheme:

with alternative expansion coefficients κ, related to susceptibilities:

M. Kahangirwe, J.J., C. Ratti et al., PRD (2024); arXiv:2402.08636

Main identity

2D ISING-T.EX.S EQUATION OF STATE FROM L-QCD
Range: 30 MeV < T < 800 MeV  ; μB/Q/S < 700 MeV

https://arxiv.org/abs/2402.08636


Ratti’s group
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Implement scaling behavior of 3D-Ising model EoS:

• Define map from 3D-Ising model to QCD

• Estimate contribution to Taylor coefficients from 

3D-Ising model critical point

• Reconstruct full baryon density

with

M. Kahangirwe, J.J., C. Ratti et al., PRD (2024); arXiv:2402.08636

2D ISING-T.EX.S EQUATION OF STATE FROM L-QCD
Range: 30 MeV < T < 800 MeV  ; μB/Q/S < 700 MeV

https://arxiv.org/abs/2402.08636


4D-T.EX.S EQUATION OF STATE  FROM L-QCD
Range: T < 800 MeV  ; μB/Q/S <? 700 MeV

Ratti’s group

• Generalization of the previous 2D T'-Expansion Scheme to 3 conserved charges
by projecting the "cartesian" (μB, μQ, μS) coordinates to spherical ones

still a 2D-TExS expansion, along a constant μ/T line

• Calculate expansion coefficient λ2 based on so-called "generalized susceptibilities" X2/4

(linear combinations of lattice QCD susceptibilities) + their Stefan-Boltzmann limits

39



4D-T.EX.S EQUATION OF STATE  FROM L-QCD
Range: T < 800 MeV  ; μB/Q/S <? 700 MeV

Ratti’s group

• Compute the "generalized charge density" X1 along the projected line
using the expanded temperature T' and the T.Ex.S main identity
(modified to match with Stefan-Boltzmann limit at T   ∞)

with

• Obtain pressure by integrating X1, allowing 
then to compute all thermodynamics

40



CYBERINFRASTRUCTURE

41



LOW-LEVEL SERVICES

• The client-facing API will handle communication with 

client applications through a webpage

• Direct communication with the Batch and 

Provenance for storage

• Provenance will record all useful information:

user activity, workflows executed, models evaluated, 

inputs/outputs, details of computational jobs 
(all only accessible internally)

• Storage will consist of a collection

of services that store and serve data

42



TYPICAL MODULE DESIGN

43
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