ROLE OF CBM-FAIR IN MULTI-MESSENGER Pursuit Of Dense Matter EOS

Kshitij Agarwal

/şī.ṯīd͡z əg.rª.vaːl/

Eberhard-Karls-Universität Tübingen (DE)

- For the CBM Collaboration -

Workshop on "Dense Matter Equation of State from Theory and Experiments"

IRL-NPA FRIB, Oct 28 – Nov 01, 2024

Adapted from: C.Y. Tsang et al., Nature Astron. 8 (2024) 3, 328-336

CBM

CURRENT ROLE OF HEAVY-ION COLLISIONS IN SUPRA-SATURATION EOS

Bayesian Inference used to combine the information from nuclear theory (χ EFT), astrophysical observations and heavy-ion collision experiments

Adapted from: C.Y. Tsang et al., Nature Astron. 8 (2024) 3, 328-336

CURRENT ROLE OF HEAVY-ION COLLISIONS IN SUPRA-SATURATION EOS

Bayesian Inference used to combine the information from nuclear theory (χ EFT), astrophysical observations and heavy-ion collision experiments

S. Huth, P.T.H. Pang et al., Nature 606, 276-280 (2022)

Although a remarkable compatibility has been established between heavy-ion collisions and astrophysical observations till $1.5\rho_0$, the dense matter EOS at neutron star core densities is driven by astrophysical sources, so the terra incognita for heavy-ion collisions lies beyond $\sim 2\rho_0$

Adapted from: C.Y. Tsang et al., Nature Astron. 8 (2024) 3, 328-336

Dense Matter EOS ($\geq 2\rho_0$) is Becoming Increasingly Interesting...

Dense Matter EOS ($\geq 2\rho_0$) is Becoming Increasingly Interesting...

Current data and observations hint that the nuclear matter at neutron-star core densities, both symmetric and neutron-rich, exhibit some softening and potential transition from hadronic to partonic degrees-of-freedom

Symmetric Nuclear Matter

Heavy-Ion Collisions STAR Flow Data (v_1 and v_2) at $\sqrt{s_{NN}}$ = 3 and 4.5 GeV (Au + Au) SMASH Transport Code (w/o p-dependence)

Neutron Star Matter

ChEFT constraints till 1.2 n_{sat} and pQCD constraints from 40 n_{sat} Parametric (c_s^2 , γ) and non-parametric (GP) interpolation at int. densities Astrophysical observations (X-ray, GW)

TOWARDS BUILDING A MULTI-PURPOSE HIC EXPERIMENT

TOWARDS BUILDING A MULTI-PURPOSE HIC EXPERIMENT

+ 🔅 +

INGREDIENT #1: Heavy-ion high-intensity beams

A. Sorensen et al., Prog.Part.Nucl.Phys. 134 (2024) 104080

TOWARDS BUILDING A MULTI-PURPOSE HIC EXPERIMENT

INGREDIENT #1: Heavy-ion high-intensity beams

INGREDIENT #2: Experiment capable of measuring candidate observables

FACILITY FOR ANTI-PROTON AND ION RESEARCH (FAIR)

- Intensity gain w.r.t. SIS-18@GSI: x 100 1000 (~10⁹/s for Au)
- Energy gain w.r.t. SIS-18@GSI : x 10
- Ion beams up to 11 A GeV energy $\rightarrow \sqrt{s_{\rm NN}}$ = 2.9 4.9 GeV (Au + Au)
- Antiproton beams
- Precision: System of storage and cooler rings
- Current estimate: SIS-100 commissioning with beams starts in 2028

FACILITY FOR ANTI-PROTON AND ION RESEARCH (FAIR)

SIS-100 dipole magnets installation commenced at FAIR

Technical Building Infrastructure to support FAIR

YouTube | LinkedIn | Instagram | Facebook | Mastodon | X | GSI/FAIR News

- Intensity gain w.r.t. SIS-18@GSI: x 100 1000 (~10⁹/s for Au)
- Energy gain w.r.t. SIS-18@GSI : x 10
- Ion beams up to 11 A GeV energy $\rightarrow \sqrt{s_{\rm NN}}$ = 2.9 4.9 GeV (Au + Au)
- Antiproton beams
- Precision: System of storage and cooler rings
- Current estimate: SIS-100 commissioning with beams starts in 2028

High-intensity heavy-ion beams from SIS-100 at FAIR, with its First Science + milestone from 2028, are optimal to extend the EOS reach of nuclear experiments to neutron star core densities

COMPRESSED BARYONIC MATTER (CBM) EXPERIMENT

- 4. Muon Chambers
- Determination of vertices ($\sigma \approx 50 \ \mu m$)
- Identification of leptons and hadrons
- Di-electron and muon setup

- Fast and radiation hard detectors
- Trigger-less free-streaming readout
- Online event selection

- 4-D event reconstruction
- Operation with beam from 2028-29

8. Forward Spectator Detector

COMPRESSED BARYONIC MATTER (CBM) EXPERIMENT

CBM is designed to conduct its research program over the SIS-100 energy range at up to 10 MHz beam-target interaction rates giving an unprecedent access to the 'rare probes'

01/11/2024 - EOS Workshop (IRL-NPA FRIB)

K. Agarwal - Role of CBM-FAIR in Multi-Messenger Pursuit of Dense Matter EOS

OBSERVABLE #1: SUB-THRESHOLD STRANGENESS PRODUCTION

J. Aichelin et al., Phys. Rev. C 101, 044905

OBSERVABLE #1: SUB-THRESHOLD STRANGENESS PRODUCTION

J. Aichelin et al., Phys. Rev. C 101, 044905

 $\mathbf{m}_{inv} \{\overline{\Lambda} \pi^+\} [\text{GeV/c}^2]$

 $m_{inv} \{\Lambda K^{-}\} [GeV/c^{2}]$

1.8

1.7

1.2

CBM performance simulations show precise reconstruction of multi-strange hyperons, enabling the setup's sensitivity to yield variations due to EOS

Ĭ.6

1.3

I. Vassiliev et al., CBM Progress Report 2019 (2020)

Observable #2: Collective Flow (v_1 , ...)

A. Sorensen (28.10) T. Reichert (30.10)

0.5

O. Lubynets, FAIRNESS 2022

[STAR], Phys. Rev. C 103, 034908 (2021)

n

CBM

- Data-driven methods to perform extensive multi-differential v_1 flow analysis for protons and strange hadrons (Λ , K_s^0) have been developed
- Comparable v_1 predicted by DCM-QGSM-SMM for STAR-FXT at $\sqrt{s_{NN}}$ = 4.5 GeV
- Ongoing Higher harmonics (v_2 , ...) and energy scan throughout SIS-100 range
- Ongoing Feasibility study for asymmetric flow cumulants

High-rate capability of CBM can enable a precise multi-differential flow analyses of not only protons, but of strange hadrons too. v_1 analyses tools have been developed and for high-harmonics are under development.

-0.5

01/11/2024 - EOS Workshop (IRL-NPA FRIB)

K. Agarwal - Role of CBM-FAIR in Multi-Messenger Pursuit of Dense Matter EOS

OBSERVABLE #3: FIREBALL CALORIC CURVE & DILEPTONS YIELDS F. Seck (30.10)

CBM

OBSERVABLE #3: FIREBALL CALORIC CURVE & DILEPTONS YIELDS F. Seck (30.10)

OBSERVABLE #4: FEMTPSCOPY & PARTICLE CORRELATIONS

OBSERVABLE #4: FEMTPSCOPY & PARTICLE CORRELATIONS

P. Nzabahimana (30.10)

The currently large experimental uncertainties represent an opportunity for CBM to explore femtoscopic and azimuthally dependent observables (potentially by using optical deblurring techniques to precisely infer the emission source)

OBSERVABLE #5: HYPERNUCLEI PROPERTIES

Thermal:A. Andronic et al., Phys.Lett.B 697 (2011) 203-207Coalescence:J. Steinheimer et al., Phys.Lett.B 714 (2012) 85-91

OBSERVABLE #5: HYPERNUCLEI PROPERTIES

Thermal: A. . Coalescence: J. S

A. Andronic et al., Phys.Lett.B 697 (2011) 203-207 e: J. Steinheimer et al., Phys.Lett.B 714 (2012) 85-91

- Tools in place for the multi-differential physics analysis of strange hadrons and hypernuclei
- Reconstruction based on the dedicated KFParticleFinder package, with reconstruction routines tested with STAR FXT data (efficiency and cuts optimization are ongoing with ML approach)

S. Glässel [CBM], Quark Matter 2023 | <u>Link</u> I. Vassiliev [CBM], Strangeness in Quark Matter 2024

- Production estimate for ${}_{\Lambda\Lambda}{}^{6}$ He at 0.5 MHz interaction rate for 90 days:
 - $\Rightarrow IR \times f_{av} \times \epsilon_{duty} \times P_{prod} \times f_{mb/cen} \times BR \times \epsilon_{rec} \times \Delta t$
 - $\approx (0.5\times10^6)\times0.5\times0.7\times(0.5\times10^{-7})\times0.25\times0.5\times0.012\times(7.6\times10^6)$
 - = 100 signal counts (currently, only 3 observations reported)

The high-interaction rate at CBM will give a better handle on Y-Y interactions by studying elusive hypernuclei such as ${}_{\Lambda\Lambda}^{6}He$

OBSERVABLE #6: $(n/p)_{like}$ Particle Ratios

Motivation for pion ratios at FRIB: K. Brown (28.10)

G-C. Yong et al., Phys. Rev. C 106, 024902 (2022)

CBM

OBSERVABLE #6: $(n/p)_{like}$ Particle Ratios

G-C. Yong et al., Phys. Rev. C 106, 024902 (2022)

measurement of Σ hyperons to systematically study the isospin effects

CBM

ARE THERE MORE EOS OBSERVABLES?

A food for thought, i.e., potential feedback and collaboration point:

Are there any other particles and/or observables amongst the CBM roster which are sensitive to the dense nuclear matter EOS?

01/11/2024 - EOS Workshop (IRL-NPA FRIB)

K. Agarwal - Role of CBM-FAIR in Multi-Messenger Pursuit of Dense Matter EOS

CBM PHYSICS GOALS – MUCH MORE THAN EOS PHYSICS

- Equation of State (EoS) of symmetric nuclear (and asymmetric neutron) matter at neutron star core densities
- Phase structure of QCD matter (1st-order phase trans.? critical point?)
- Chiral symmetry restoration at large μ_B
- Bound states with strangeness
- Charm in cold and dense matter

Unheterrechtlick geschütztes Y Bengt L. Friman Claudia Höhne Jörn E. Knoll Stefan K.K. Leupold Jorgen Randrup Ralf Rapp Peter Senger Editors

LECTURE NOTES IN PHYSICS 814

The CBM Physics Book

Compressed Baryonic Matter in Laboratory Experiments

D Springer

Lect. Notes Phys. 814 (2011) pp.1-980 DOI: 10.1007/978-3-642-13293-3

Eur.Phys.J.A 53 (2017) 3, 60 DOI: 10.1140/epja/i2017-12248-y

CBM has much wider physics goals, all centered to address the unanswered fundamental questions of QCD at high densities

RECENT (& BRIEF) ACHIEVEMENTS IN DETECTOR PROJECTS

Accelerating towards series production and being ready for SIS-100 beams in 2028

Superconducting dipole magnet

award of contract to Bilfinger Noell GmbH 20.12.2023

Beam monitoring system

Transition Radiation Detector

pre-production modules of 1D and 2D options ready

Micro Vertex Detector sensor/module integration

Time of flight detector

module pre-production concluded

MUon CHamber system

test of full-size GEM and RPC prototypes

Silicon Tracking System

Forward Spectator

ZnS scintillators and LYSO crystals

read-out via SiPM or/and PMT

Detector

Ring Imaging Cherenkov detector 1 of 2 photo cameras ready 50% FEE produced

Prototype of CBM online data processing tests with mCBM

5 1.2 1.25 m_{pπ} [GeV/c²]

01/11/2024 - EOS Workshop (IRL-NPA FRIB)

K. Agarwal - Role of CBM-FAIR in Multi-Messenger Pursuit of Dense Matter EOS

"LARGE-SCALE" DEMONSTRATORS WITH CBM COMPONENTS

HADES-RICH: Already 1/2 (430 MAPMTs + FEE) of CBM-RICH

J. A-Musch et al., CBM Progress Report 2020

STAR-eTOF: 10% (108 MRPCs) of CBM-TOF CBM Online Reconstruction Software for STAR-BES

STS in E16 (J-PARC) 10 pre-production modules in magnetic field

mCBM-SIS18: Pre-production components from all CBM detector sub-systems Conceptual verification of the triggerless-streaming read-out at O (1 MHz) interaction rates Systematic high-rate studies performed for various detector subsystems CBM software development – Λ reconstruction in 2024 data

C. Sturm et al., CBM Progress Report 2022 C. Sturm et al., CBM Progress Report 2023

01/11/2024 - EOS Workshop (IRL-NPA FRIB)

K. Agarwal - Role of CBM-FAIR in Multi-Messenger Pursuit of Dense Matter EOS

GROWING MULTI-MESSENGER ERA (AT DENSITIES $\geq \rho_0$)

Tools for leveraging this: Morning Session (31.10) N. Yao (30.10)

SUMMARY AND OUTLOOK

+ ()+ CBM

CBM@SIS-100 has significant discovery potential

- Equation of State (EoS) of symmetric nuclear (and asymmetric neutron) matter at neutron star core densities
- Phase structure of QCD matter (1st-order phase trans.? critical point?)
- Chiral symmetry restoration at large μ_B
- Bound states with strangeness
- Charm in cold and dense matter

Pushing the high-rate capability frontier

- to achieve high precision of multi differential observables
- to enable rare processes as sensitive probes

CBM Phase 0 activities (HADES, STAR, mCBM)

- performance optimisation of major components
- production of physics results with CBM devices

CBM is open to new participation and collaborations

CBM@SIS-100 (Au-Au at $\sqrt{s_{NN}} = 2.86 \dots 4.93$ GeV) provides unique conditions in lab to probe QCD matter properties at neutron star core densities, including the high-density EOS, and the search for new phases at higher densities

MOVING TOWARDS A NEW MULTI-MESSENGER PHYSICS ERA

Τηάνκ Υου

01/11/2024 - EOS Workshop (IRL-NPA FRIB)

K. Agarwal - Role of CBM-FAIR in Multi-Messenger Pursuit of Dense Matter EOS

VOTE OF CONFIDENCE FOR CBM-FAIR

GSI Press Release – <u>Link</u> Report PDF – <u>Link</u>

Accelerator Parameters And Comparisions

Table 4.1 Main parameters of accelerators around the world. Taken from [370]. In case of RAON linear accelerator, the length from the superconducting electron cyclotron resonance ion sources to the LAMPS experimental setup is given

	SIS18	SIS100	Nuclotron	NICA	HIAF	RAON	J-PARC
Circumference/length,	216.72	1083	251.5	503.04	569.1	687	1567.5
m							
Rigidity, Tm	18	100	25 - 43.25	45	36		160
Repetition rate, Hz	0.3 – 1	0.7			0.09		
Cycle duration, s		1.5	5		3 - 10		5.52
B-field ramp, T/s	10	4	1		4		
Accelerated ion	U ⁷³⁺	Au ⁷⁹⁺	Au ⁷⁹⁺	Au ⁷⁹⁺	U ³⁴⁺	U ⁷⁹⁺	U ⁹²⁺
Extraction E ion, GeV	1	12	4.5	4.5	0.2 - 0.8	0.2	11.2 (19.5)
Extraction E proton, GeV	4.5	29	12.6	12.6		0.6	30 (50)
Intensity ion, ions/cycle	4×10^{9}	5×10^{10}	1×10^{9}	1×10^{9}	10 ¹¹	8.3 pµA	4×10^{11}
Intensity proton, p/cycle	10 ¹¹	2×10^{13}	1×10^{11}	1×10^{11}		660 µA	2×10^{14}
Extraction scheme	Fast, slow	Fast, slow	Single-turn, slow		Slow		Slow
Emittance, mm mrad		12/5			18/9		
Number of bunches/cycle				22			
β function, m				0.35		0.51 (SSR2)	
Rms bunch length, m				0.6			

Xiaofeng Luo, Qun Wang, Nu Xu, Pengfei Zhuang (Eds.), Properties of QCD Matter at High Baryon Density, Springer Singapore, eBook ISBN - 978-981-19-4441-3

DETECTOR PARAMETERS AND COMPARISIONS

Table 4.2 Running and planned high μ_B facilities. The facility and experiment, the anticipated year for data tacking, the range in μ_B and $\sqrt{s_{NN}}$ as well as capabilities of measuring hadrons, dileptons, and charm are listed. Taken from [370]

Facility	Experiment	Start	$\sqrt{s_{NN}}$, GeV	μ_B , GeV	Hadrons	Dileptons	Charm
RAON	LAMPS	>2027	≤1.46	$\gtrsim 880$	+		
HIAF	CEE+	2023	1.9 - 4	880 - 760	+		
Nuclotron	BM@N	2022 (Au)	2 - 3.5	880 - 670	+		
J-PARC- HI	DHS, D2S	>2025	2 - 6.2	880 - 430	+	+	(+)
SIS100	CBM / HADES	2025	2.7 - 5	760 - 500	+	+	(+)
NICA	MPD	2023	4 - 11	580 - 300	+	+	+
SPS	NA60+	> 2025	4.9 - 17.3	560 - 230	(+)	+	+
SIS18	HADES/mCBM	running	1.9 – 2.6	880 - 670	+	+	
RHIC	STAR	running	3 - 19.6	720 - 210	+	+	+
SPS	NA61	running	4.9 - 17.3	520 - 230	+		+

Xiaofeng Luo, Qun Wang, Nu Xu, Pengfei Zhuang (Eds.), Properties of QCD Matter at High Baryon Density, Springer Singapore, eBook ISBN - 978-981-19-4441-3

2022	Projectile	T_{proj}	Beam intensity per spill (10s)	Av. collision rate	Objective
March 29 - April 1	$^{238}U(73+)$	$1.00\mathrm{AGeV}$	$10^7 - 10^9$	100 kHz - 10 MHz	high-rate studies TOF & MUCH
May 26	${}^{58}Ni(28+)$	$1.93\mathrm{AGeV}$	$4 \cdot 10^{7}$	$400\mathrm{kHz}$	benchmark run I
June 16 - 18	$^{197}Au(69+)$	$1.23\mathrm{AGeV}$	$2 - 3 \cdot 10^7$	$200 - 300 \mathrm{kHz}$	benchmark run II
June 19 - 20	$^{197}Au(67+)$	$1.13\mathrm{AGeV}$	$1.10^{7} - 4.10^{8}$	100 kHz - 4 MHz	high-rate studies TOF & MUCH

Table 2.0.1: mCBM data taking in 2022.

Collision system	M_{Λ} , reconstr.	Av. collision rate	Beam intensity per spill (10s)	N_{Λ} reconstr. per 8h-shift
$Ni + Ni \ 1.93 AGeV$	$2.3 \cdot 10^{-5}$	$400\mathrm{kHz}$	$4 \cdot 10^{7}$	90k
$Au + Au \ 1.24 AGeV$	$2.2 \cdot 10^{-6}$	$200\mathrm{kHz}$	$2 \cdot 10^{7}$	4.4k
Ag + Ag 1.58 AGeV	$5 \cdot 10^{-6}$	$300\mathrm{kHz}$	$3 \cdot 10^{7}$	15k

Table 3.1.1: Rate estimate for Λ reconstruction with mCBM: the Λ yields for Ni + Ni collisions at 1.93 AGeV and for Au + Au at 1.24 AGeV are taken from simulations depicted in Fig. 3.1.1. Yields for Ag + Ag collisions at 1.58 AGeV were interpolated from above listed Ni and Au simulations (median in mass number and kinetic projectile energy). With a spill length of 10 s, 4 spills per minute and a duty cycle of about 0.5, approx. 1000 spills are taken per 8h-shift. The benchmark runs will be measured at moderate beam intensities resulting to 200-400 kHz averaged collision rate while using 10 % interaction probability targets.

	Year	Objective	Projectile	Intensity per spill	Extraction	User type	Shifts
(1)	2023	high-rate detector studies	ions 1 - 2 AGeV, preferably: Au, Pb, U	10 ⁷ - 10 ⁹	slow, 10 s	secondary	6
(2)	2023	commissioning for benchmark run	ions 1 - 2 AGeV, preferably: Ni 1.93 AGeV	10 ⁷ - 10 ⁸	slow, 10 s	secondary	3
(3)	2023	benchmark runs, Λ production ex- citation function	Ni 1.93, 1.58, 1.23, 1.0 AGeV	10 ⁸	slow, 10 s	main	18
(4)	2024	high-rate detector studies	ions 1 - 2 AGeV, preferably: Au, Pb, U	10 ⁷ - 10 ⁹	slow, 10 s	secondary	6
(5)	2024	commissioning for benchmark run	ions 1 - 2 AGeV, preferably: Ag 1.58 AGeV	10 ⁷ - 10 ⁸	slow, 10 s	secondary	3
(6)	2024	benchmark runs, Λ production ex- citation function	Ag 1.58, 1.23, 1.0 AGeV	10 ⁸	slow, 10 s	main	18

Table 3.1.2: Beam time application for the years 2023 and 2024 on SIS18 beam time for mCBM.

G-PAC Proposal for mCBM@SIS-18 (2023/24):

- <u>https://indico.gsi.de/event/15266/contributions/64063/attachments/</u> 40205/55084/mcbm-proposal-23-24-final.pdf
- https://indico.gsi.de/event/15901/#38-mcbm-presentation-at-the-g

CBM RUNNING SCENARIOS

Year	CBM Setup	Colliding System	$\begin{array}{c} \text{Beam} \\ \text{Energies} \\ [A \text{ GeV}] \end{array}$	Days on Target	Number of Events	Remarks
0	Electron-Hadron	$\begin{array}{l} \mathrm{Au} + \mathrm{Au} \\ \mathrm{Ag} + \mathrm{Ag} \\ \mathrm{C} + \mathrm{C} \end{array}$	$\begin{array}{c} 2,4,6,8,10,12\\ 2,4,6,8,10,12\\ 2,4,6,8,10,12\end{array}$	60 (total)		Commissioning Commissioning Commissioning
1	Electron-Hadron	$\begin{array}{l} Au + Au \\ C + C \\ p + Be \end{array}$	$\begin{array}{c} 2,4,6,8,10,12\\ 2,4,6,8,10,12\\ 3,4,8,29\end{array}$	30 (5 each) 18 (3 each) 12 (3 each)	$2 \times 10^{10} \text{ each}$ $4 \times 10^{10} \text{ each}$ $2 \times 10^{11} \text{ each}$	EB + minBias minBias minBias
2	Muon	$\begin{array}{l} Au + Au \\ C + C \\ p + Be \end{array}$	$\begin{array}{c} 2,4,6,8,10,12\\ 2,4,6,8,10,12\\ 3,4,8,29\end{array}$	30 (5 each) 18 (3 each) 12 (3 each)	$2 \times 10^{11} \text{ each}$ $4 \times 10^{11} \text{ each}$ $2 \times 10^{12} \text{ each}$	minBias minBias minBias
3	Hadron Hadron HADES Electron-Hadron	$\begin{array}{l} \mathrm{Au} + \mathrm{Au} \\ \mathrm{C} + \mathrm{C} \\ \mathrm{Ag} + \mathrm{Ag} \\ \mathrm{Ag} + \mathrm{Ag} \end{array}$	$\begin{array}{c} 2,4,6,8,10,12\\ 2,4,6,8,10,12\\ 2,4\\ 2,4\end{array}$	12 (2 each) 6 (1 each) 28 (14 each) 8 (4 each)	$4 \times 10^{11} \text{ each}$ $8 \times 10^{11} \text{ each}$ $1 \times 10^{10} \text{ each}$ $2 \times 10^{10} \text{ each}$	EB + Selector(s) minBias

Table A.1.: CBM running scenario for the first three years. Table compiled by N. Herrmann (U. Heidelberg). Different CBM setups/configurations are tabulated in Tab. A.2.

01/11/2024 - EOS Workshop (IRL-NPA FRIB)

CBM Setup	Detector Sub-Systems							
	BMON	MVD	STS	MuCh	RICH	TRD	TOF	FSD
Electron-Hadron	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Muon	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Hadron	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	

Table A.2.: CBM setups and the corresponding underlying detector sub-systems [236].

Colliding	Beam	Beam Intensity [ions/s]							
System	Energies [A GeV]	Electron-Hardon		Muon		Hadron			
	[11 0.01]	Baseline	Max	Baseline	Max	Baseline	Max		
Au + Au	2 12	5×10^6	1×10^8	5×10^7	1×10^9	1×10^8	1×10^9		
C + C	$2 \dots 12$	1×10^7	1×10^8	1×10^8	1×10^9	1×10^9	1×10^9		
Ag + Ag	$2 \ \ 4$	5×10^{6}	1×10^8						
p + Be	$3 \dots 29$	1×10^8	1×10^{10}	1×10^9	1×10^{11}				

Table A.3.: Maximum beam intensities for different running scenarios, including colliding systems, collision energies and experimental setups (see Tab. A.2). "Baseline" corresponds to CBM run scenario for the first three years (see Tab. A.1), where "Max" corresponds to the maximum achievable interaction rate essentially limited by MVD's rate capability. Table compiled from [174].