

From chiral EFT to perturbative QCD:

a Bayesian model mixing approach to the dense matter equation of state

Alexandra C. Semposki

in collaboration with: C. Drischler, R. J. Furnstahl, J. A. Melendez, D. R. Phillips

arXiv:2404.06323v2

Drischler et al. (2021)

IRL NPA FRIB WORKSHOP

IRL NPA FRIB WORKSHOP

UNIVERSITY

"Low" densities: EOS from chiral EFT

QCD non-perturbative at low energies, build *effective description* using nucleons, pions as degrees of freedom

Quantifiable truncation error, obeys all symmetries of QCD

C. Drischler, S. Bogner (2021)

Original calculations and ideas: C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. Lett. **122**, 042501 (2019)

"Low" densities: EOS from chiral EFT

QCD non-perturbative at low energies, build *effective description* using nucleons, pions as degrees of freedom

3N forces

NN forces

Quantifiable truncation error, obeys all symmetries of QCD

Phys. Rev. Lett. **122**, 042501 (2019)

*A choice, not a necessity---BMM framework is modelindependent

C. Drischler, J. Holt, C. Wellenhofer (2021)

Halloween 2024

 $\left\langle \mathbf{2}'\mathbf{3}' \, \middle| \, V_{\mathrm{NN}}^{\mathrm{med}} \, \middle| \, \mathbf{23}
ight
angle$

FOREVER DHIO

Original calculations and ideas: C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019)

•••

IRL NPA FRIB WORKSHOP

C. Drischler, S. Bogner (2021)

LO (Q⁰)

NLO (Q^2)

 $N^{2}LO(Q^{3})$

 $N^{3}LO(Q^{4})$

 $N^4LO(Q^5)$

"Low" densities: EOS from chiral EFT

Halloween 2024

Prior

Original work: Melendez, Wesolowski, Furnstahl, Phillips, Pratola, PRC (2019)

OHIO

Original work: Melendez, Wesolowski, Furnstahl, Phillips,

Pratola, PRC (2019)

Halloween 2024

OHIO

"Low" densities: EOS from chiral EFT

Symmetric nuclear matter

1.64

Obtain pressure as a function of number density, P(n), for model mixing calculations

$$P(n) = n^2 \frac{\mathrm{d}}{\mathrm{d}n} \frac{E}{A}(n)$$

Coefficient extraction for truncation error estimation done via gsum

$$Q(k_{\rm F}) = \frac{k_{\rm F}}{\Lambda_b} \sim 600 \,\,{\rm MeV}$$

$$y_{\rm ref}(k_{\rm F}) = 16 \,\mathrm{MeV} \times \left(\frac{k_{\rm F}}{k_{\rm F,0}}\right)$$

N³LO $N^{2}LO$ LO NLO $E/A \pm 1\sigma$ Energy per Particle E(n)/A [MeV] [MeV] 100 -10 -20 $-30 \stackrel{{}_{\scriptstyle \frown}}{0.05}$ $\mathbf{2}$

-60.20.10.3Density $n \, [\mathrm{fm}^{-3}]$ Truncation error scheme yields natural-sized curves as expected

Fermi Momentum $k_{\rm F}$ [fm⁻¹]

1.44

1.14

Energy per Particle E/A

IRL NPA FRIB WORKSHOP

Truncation error analysis: C. Drischler, J. A. Melendez, R. J. Furnstahl, D. R. Phillips, Phys. Rev. C 102, 054315 (2020)

0.20

Density $n \, [\mathrm{fm}^{-3}]$

0.25

0.30

0.15

0.10

Obtain pressure as a function of number density, P(n), for model mixing calculations

$$P(n) = n^2 \frac{\mathrm{d}}{\mathrm{d}n} \frac{E}{A}(n)$$

Coefficient extraction for truncation error estimation done via gsum

$$Q(k_{\rm F}) = \frac{k_{\rm F}}{\Lambda_b} \stackrel{\approx 600 \text{ MeV}}{\checkmark}$$
$$y_{\rm ref}(k_{\rm F}) = 16 \text{ MeV} \times \left(\frac{k_{\rm F}}{k_{\rm F,0}}\right)$$

Symmetric nuclear matter

0.3

IRL NPA FRIB WORKSHOP

Truncation error analysis: C. Drischler, J. A. Melendez, R. J. Furnstahl, D. R. Phillips, Phys. Rev. C 102, 054315 (2020)

Halloween 2024

1.64

Two-loop running:

$$\alpha_s(\bar{\Lambda}) = \frac{4\pi}{\beta_0 L} \left[1 - \frac{2\beta_1}{\beta_0^2} \frac{\ln L}{L} \right] \quad \left\{ \begin{array}{c} L = \ln\left(\bar{\Lambda}^2 / \Lambda_{\overline{MS}}^2\right), \\ \bar{\Lambda} = 2X\mu \end{array} \right.$$

Degrees of freedom: quarks and gluons Massless u, d quarks with equal μ

Original model: Tyler Gorda, Risto Paatelainen, Saga Säppi,

and Kaapo Seppänen, Phys. Rev. Lett. 131, 181902

IRL NPA FRIB WORKSHOP

Original model: Tyler Gorda, Risto Paatelainen, Saga Säppi,

and Kaapo Seppänen, Phys. Rev. Lett. 131, 181902

IRL NPA FRIB WORKSHOP

Original model: Tyler Gorda, Risto Paatelainen, Saga Säppi,

and Kaapo Seppänen, Phys. Rev. Lett. 131, 181902

IRL NPA FRIB WORKSHOP

Original model: Tyler Gorda, Risto Paatelainen, Saga Säppi,

and Kaapo Seppänen, Phys. Rev. Lett. 131, 181902

IRL NPA FRIB WORKSHOP

OHIO

IRL NPA FRIB WORKSHOP

IRL NPA FRIB WORKSHOP

Results: pressure

UNIVERSITY

Results: pressure

Constraining the correlation length between chiral EFT & pQCD is crucial to avoid unphysical model correlations at low densities

IRL NPA FRIB WORKSHOP

GP kernel: stationary, smooth RBF (as with SNM) [Other stationary kernels give similar results]

$$p(\vec{\theta}) = \prod_{i} \mathcal{U}(\theta_i \in [a_i, b_i]) \mathcal{N}(\theta_i, \mu_i, \sigma_i^2) \text{ truncated normal distributions}$$

IRL NPA FRIB WORKSHOP

Summary

Applied Bayesian model mixing to ChEFT and pQCD in **pressure** for **SNM** and **ANM**

Examined the **speed of sound** results for the mixed EOS

Quantified the **truncation error** in pQCD using BUQEYE methods and consistently obtained **P(n)**

Goals: multi-dimensional extension of BMM to finite T, δ ; integration with **MUSES** framework

Summary & discussion

Current adventures

Exploring phase transitions

Inclusion of discontinuous phase transitions through non-stationary GP kernels

Confronting the mixed model with data

Implementing the Bayesian framework to further constrain the posterior of the EOS with astrophysical and heavy-ion results

... and stuff we left out

Including a microscopic crust

Use results from neural-network quantum states (includes clusters), learn crust-core transition

Full UQ of chiral EFT

Low energy constant (LEC) uncertainties not included, manybody uncertainties may be underestimated

Summary

Applied Bayesian model mixing to ChEFT and pQCD in **pressure** for **SNM** and **ANM**

Examined the **speed of sound** results for the mixed EOS

Quantified the **truncation error** in pQCD using BUQEYE methods and consistently obtained **P(n)**

Goals: multi-dimensional extension of BMM to finite T, δ ; integration with **MUSES** framework

Summary & discussion

Current adventures

Exploring phase transitions Inclusion of discontinuous phase

transitions through non-stationary GP kernels

Confronting the mixed model with data

Implementing the Bayesian framework to further constrain the posterior of the EOS with astrophysical and heavy-ion results

... and stuff we left out

Including a microscopic crust

Use results from neural-network quantum states (includes clusters), learn crust-core transition

Full UQ of chiral EFT

Low energy constant (LEC) uncertainties not included, manybody uncertainties may be underestimated

Our end goal: global, microscopic, QCD-based EOSs for merger simulations, but...

BMM is generally applicable to problems in dense matter

Open-source repository for the EOS coming soon!

Halloween 2024

IRL NPA FRIB WORKSHOP

Thank you!

Christian Drischler (OU)

Dick Furnstahl (OSU)

Jordan Melendez

ACS supported by: US DOE, contract DE-FG02-93ER-40756, NSF CSSI program, award number OAC-2004601

Backup slides

IRL NPA FRIB WORKSHOP

Speed of sound

IRL NPA FRIB WORKSHOP

Stationary kernel investigation

Covariance investigation

IRL NPA FRIB WORKSHOP

"Set of random variables, any subset of which possesses a Gaussian distribution"

Less abstract: Defined by mean function and covariance function (*kernel*)

$$f(x) \sim \mathcal{GP}[m(x), \kappa(x, x')]$$

Contains dependence on variance and lengthscale (RBF, Matérn, etc.)

Symmetry energy from chiral EFT

IRL NPA FRIB WORKSHOP

High densities: pQCD EOS
High densities: pQCD EOS
P(
$$\mu$$
) = $P_{FG}(\mu) \left[c_0 + c_1 Q(\bar{\Lambda}) + c_2(\mu) Q^2(\bar{\Lambda}) \right]$
Goal: $P(\mu) \rightarrow P(n)$
1 $\mu = \mu_{FG} + \mu_1 + \mu_2$ Perturbative expansion
2 Taylor expand $\Rightarrow n(\mu) = \frac{\partial P(\mu)}{\partial \mu} \rightarrow n(\mu_{FG}) \equiv n(\mu_{FG} + \mu_1 + \mu_2) \equiv \bar{n}$ Input number density
3 Equate terms by counting $\bar{n}(\mu) = c_0(\mu) \frac{\partial P_{FG}(\mu)}{\partial \mu} \Big|_{\mu=\mu_{FG}} \mu_1 = -\frac{c_1 Q(\bar{\Lambda}) \frac{\partial P_{FG}(\mu)}{\partial \mu}}{c_0 \frac{\partial^2 P_{PG}(\mu)}{\partial \mu^2}} \Big|_{\mu=\mu_{FG}} + \mu_2$ expression
4 Expand P(μ), insert terms, keep up to second order in α_s
 $\frac{P(n)}{P_{FG}(n)} = 1 + \frac{2}{3\pi} \alpha_s(\bar{\Lambda}_{FG}) + \frac{8}{9\pi^2} \alpha_s^2(\bar{\Lambda}_{FG}) - \frac{\beta_0}{3\pi^2} \alpha_s^2(\bar{\Lambda}_{FG})$
Directly *n*-dependent $-\frac{N_f^2}{3\pi^2} c_2(\mu_{FG}) \alpha_s^2(\bar{\Lambda}_{FG}) - \frac{\beta_0}{3\pi^2} \alpha_s^2(\bar{\Lambda}_{FG})$

4

Original model: Tyler Gorda, Risto Paatelainen, Saga Säppi, and Kaapo Seppänen, Phys. Rev. Lett. **131**, 181902

FOREVER

IRL NPA FRIB WORKSHOP

Original model: Tyler Gorda, Risto Paatelainen, Saga Säppi, and Kaapo Seppänen, Phys. Rev. Lett. 131, 181902

IRL NPA FRIB WORKSHOP

Original model: Tyler Gorda, Risto Paatelainen, Saga Säppi, and Kaapo Seppänen, Phys. Rev. Lett. **131**, 181902

IRL NPA FRIB WORKSHOP

Original model: Tyler Gorda, Risto Paatelainen, Saga Säppi, and Kaapo Seppänen, Phys. Rev. Lett. **131**, 181902

IRL NPA FRIB WORKSHOP

Truncation error: gsum and GPs

GP: governed by mean function and covariance function

 $\delta y_{k}(x) \left[\theta, Q \sim \mathcal{GP}[m_{\delta k}(x), \bar{c}^{2}R_{\delta k}(x, x'; \ell)] \right] \xleftarrow{c_{n}(x) \left[\theta \stackrel{\text{iid}}{\sim} \mathcal{GP}[\mu, \bar{c}^{2}r(x, x'; \ell)], \\ \theta \equiv \{\mu, \bar{c}^{2}, \ell\}.$ $m_{\delta k}(x) \equiv y_{\text{ref}}(x) \frac{Q(x)^{k+1}}{1 - Q(x)} \mu \equiv b_{\delta k}(x) \mu$ $R_{\delta k}(x, x'; \ell) \equiv y_{\text{ref}}(x) y_{\text{ref}}(x') \frac{[Q(x)Q(x')]^{k+1}}{1 - Q(x)Q(x')} r(x, x'; \ell)$ Hyperparameter estimation

Hyperparameter estimation

 $\mu, \bar{c}^2 \sim N\chi^{-2}(\eta_0, V_0, \nu_0, \tau_0^2)$ Results insensitive to exact form, so use conjugate priors

Diagnostic tests for assessing the calibration of the GP

Squared Mahalanobis distance: multi-dimensional sum of squared residuals

$$\mathbf{D}_{\mathrm{MD}}^{2}(\mathbf{f}_{\mathrm{val}}) = (\mathbf{f}_{\mathrm{val}} - \mathbf{m})^{\mathsf{T}} K^{-1} (\mathbf{f}_{\mathrm{val}} - \mathbf{m})$$

Pivoted Cholesky decomposition: pinpoints data that is yielding a failing MD

$$K = GG^{\intercal} \longrightarrow \mathbf{D}_G = G^{-1}(\mathbf{f}_{val} - \mathbf{m})$$

Credible interval diagnostic: testing accuracy of the emulator

$$D_{CI}(\alpha, \mathbf{f}_{val}) = \frac{1}{M} \sum_{i=1}^{M} \mathbf{1}[f_i \in CI_i(\alpha)]$$

All equations from J. Melendez et al. (2020)

Halloween 2024

IRL NPA FRIB WORKSHOP

OHIO UNIVERSITY

Extreme case: very short lengthscale

Results: pointwise approach

Taweret arXiv: 2310.20549

Rapidly increasing EOS from crossover to pQCD

Complete agreement with chiral EFT and pQCD uncertainties in the two limits

Some agreement with heavy-ion data, no overlap with FRG contour

Requires information at all densities from both theories!

EOS to have

Results: speed of sound

