

Bayesian calibration of the in-medium modification of light cluster binding energies

Tiago Custodio¹, **Alex Rebillard-Soulié**², Rémi Bougault², <u>Diego Gruyer</u>², Francesca Gulminelli², Tuhin Malik¹, Helena Pais¹, Constança Providencia¹

¹ CFisUC , University of Coimbra, Portugal ² LPC, Caen, France

 \rightarrow PESSOA France-Portugal agreement

Introduction

W.

Astro-motivations

During core-collapse supernovae, nuclear matter explores a wide range of temperatures and densities

Dense matter composition

At low density and finite temperature, correlations between nucleons increases and light clusters appear Cluster can affect the neutrino transport and the shock wave proparation

[1] T. Fischer, EPJA (2014) 50 : 46

Astro-motivations

During core-collapse supernovae, nuclear matter explores a wide range of temperatures and densities

Dense matter composition

At low density and finite temperature, correlations between nucleons increases and light clusters appear Cluster can affect the neutrino transport and the shock wave proparation

In-medium properties

Clusters are not in vacuum, they interact with the surrounding medium wich can affect their properties → Binding energies depend on temperature and density

[1] T. Fischer, EPJA (2014) 50 : 46[2] H.Pais et al, PRC97 (2018) 045805

Astro-motivations

During core-collapse supernovae, nuclear matter explores a wide range of temperatures and densities

Dense matter composition

At low density and finite temperature, correlations between nucleons increases and light clusters appear Cluster can affect the neutrino transport and the shock wave proparation

In-medium properties

Clusters are not in vacuum, they interact with the surrounding medium wich can affect their properties → Binding energies depend on temperature and density

 \rightarrow These ingredients need to be calibrated on data !

[1] T. Fischer, EPJA (2014) 50 : 46[2] H.Pais et al, PRC97 (2018) 045805

Highly energetic particles produced by participant zone in central heavy-ion collisions : gas of nucleons and clusters (²H, ³H, ³He and ⁴He) at different thermodynamic conditions

Highly energetic particles produced by participant zone in central heavy-ion collisions : gas of nucleons and clusters (²H, ³H, ³He and ⁴He) at different thermodynamic conditions

Thermodynamics

Grand canonical equilibrium model (ideal gas hypothesis) :

- Temperature (T) from H and He yields
- Density (ρ) from momentum space density
- \rightarrow Low density ~ $\rho_0/10$ and temperature ~5-10 MeV

Highly energetic particles produced by participant zone in central heavy-ion collisions : gas of nucleons and clusters (²H, ³H, ³He and ⁴He) at different thermodynamic conditions

Thermodynamics

Grand canonical equilibrium model (ideal gas hypothesis) :

- Temperature (T) from H and He yields
- Density (ρ) from momentum space density
- \rightarrow Low density ~p_0/10 and temperature ~5-10 MeV

Equilibrium constants

Equilibrium constants (K_c) from mass fractions and density compared with nuclear matter calculations

→ Properties of nucleons and clusters in nuclear medium do not correspond to their vacuum properties

L. Qin et al. PRL108 (2012) 172701

Highly energetic particles produced by participant zone in central heavy-ion collisions : gas of nucleons and clusters (²H, ³H, ³He and ⁴He) at different thermodynamic conditions

Thermodynamics

Grand canonical equilibrium model (ideal gas hypothesis) :

- Temperature (T) from H and He yields
- Density (ρ) from momentum space density
- \rightarrow Low density ~ $\rho_0/10$ and temperature ~5-10 MeV

Equilibrium constants

Equilibrium constants (K_c) from mass fractions and density compared with nuclear matter calculations → Properties of nucleons and clusters in nuclear medium do

not correspond to their vacuum properties

→ We can provide experimental constraints on in-medium cluster properties using heavy-ion collisions !

L. Qin et al. PRL108 (2012) 172701

Equilibrium Constants

Experimental data

- ^{136,124}Xe + ^{124,112}Sn at 32 MeV/nuc. reactions at GANIL
- Charged reaction products measured with the INDRA 4n multidetector (no neutron detection)

Data selection

- Central collisions (cut on light particle transverse energy)
- Mid-velocity cut to select particles originating from the participant zone, excluding contribution from projectile

Experimental data

- ^{136,124}Xe + ^{124,112}Sn at 32 MeV/nuc. reactions at GANIL
- Charged reaction products measured with the INDRA 4n multidetector (no neutron detection)

Data selection

- Central collisions (cut on light particle transverse energy)
- Mid-velocity cut to select particles originating from the participant zone, excluding contribution from projectile

Evolution intervals

Surface velocity (v_{surf}) : particle velocity corrected from Coulomb repulsion of the « central » source :

$$v_{surf} = c \times \sqrt{1 - \left(\frac{mc^2}{E_k - Z \times E_C + mc^2}\right)^2}$$

 \rightarrow v_{surf} bins correspond to different ensembles with different temperature and density

P. Stroppa/CEA

Temperature

Albergo thermometer from ²H, ³H, ³He and ⁴He yields and vacuum binding energies

Density

Ratio of the total mass of the source and the free volume computed from momentum space density power law

Proton fraction

Neutron and proton content of measured clusters, free protons and free neutron (from ³H and ³He yields)

Temperature

Albergo thermometer from ²H, ³H, ³He and ⁴He yields and vacuum binding energies

Density

Ratio of the total mass of the source and the free volume computed from momentum space density power law

Proton fraction

Neutron and proton content of measured clusters, free protons and free neutron (from ³H and ³He yields)

→ Temperature, density and proton fraction increases
with v_{surf}, coherent with an expanding source picture
→ Absolute values similar to NIMROD data
→ Proton fraction depends on the N/Z of the system

Mass fractions

Cluster and free nucleons mass fraction computed from measured cluster yields in each v_{surf} bin. Neutron yields estimated from ³H and ³He yields.

$$w_j = \frac{M_j \times A_j}{\sum_{i=1}^{M_{tot}} A_j}$$

→ Mostly ⁴He at low density and temperature → ⁴He decreases while other cluster increases with increasing desity and temperature

Mass fractions

Cluster and free nucleons mass fraction computed from measured cluster yields in each v_{surf} bin. Neutron yields estimated from ³H and ³He yields.

$$\mathrm{w}_{j} = \frac{\mathrm{M}_{j} \times \mathrm{A}_{j}}{\sum_{i=1}^{\mathrm{M}_{tot}} \mathrm{A}_{j}}$$

→ Mostly ⁴He at low density and temperature → ⁴He decreases while other cluster increases with increasing desity and temperature

Equilibrium constants

Equilibrium constants (K_c) from mass fractions and density :

$$K_c(A, Z) = \frac{\rho(A, Z)}{\rho_p^Z \rho_n^{(A-Z)}} = \frac{\omega_{AZ}}{A\omega_{11}^Z \omega_{10}^{A-Z}} \left(\frac{V_{\rm T}}{A_{\rm T}}\right)^{A-1}$$

 \rightarrow K_cs decrease with increasing density and temperature

5

RMF formalism

Nucleons and clusters treated as independent quasi-particles Interactions are mediated by virtual mesons exchange

In-medium effects

- Binding energy shift (δB) due to Pauli blocking (theory)
- Quenching of the cluster- σ coupling x_s to be calibrated

$$\begin{split} \mathcal{L} &= \sum_{\substack{j=n,p,\\ ^{2}\mathrm{H},^{3}\mathrm{H},\\ ^{3}\mathrm{He},^{4}\mathrm{He}}} \mathcal{L}_{j} + \sum_{m=\sigma,\omega,\rho} \mathcal{L}_{m} + \mathcal{L}_{\omega\rho} \\ \mathrm{M}_{j}^{*} &= \mathrm{A}_{j}\mathrm{m} - \mathrm{g}_{\sigma j}\sigma - (\mathrm{B}_{j}^{0} + \delta \mathrm{B}_{j}) \\ \mathrm{g}_{\sigma j} &= \mathrm{x}_{s}\mathrm{A}_{j}\mathrm{g}_{\sigma} \end{split}$$

→ H. Pais et al. PRC97, O45805 (2018) → H. Pais et al. PRC99, O55806 (2019)

RMF formalism

Nucleons and clusters treated as independent quasi-particles Interactions are mediated by virtual mesons exchange

In-medium effects

- Binding energy shift (δB) due to Pauli blocking (theory)
- Quenching of the cluster-σ coupling x_s to be calibrated

RMF for experimentalists

- Input : proton fraction (y_p), density (ρ) and temperature (T)
- Output : nucleons and cluster mass fractions (ω_{AZ})
- Parameter : cluster coupling (x_s) and EoS

→ H. Pais et al. PRC97, O458O5 (2018) → H. Pais et al. PRC99, O558O6 (2019)

RMF formalism

Nucleons and clusters treated as independent quasi-particles Interactions are mediated by virtual mesons exchange

In-medium effects

- Binding energy shift (δB) due to Pauli blocking (theory)
- Quenching of the cluster-σ coupling x_s to be calibrated

RMF for experimentalists

- Input : proton fraction (y_p), density (ρ) and temperature (T)
- Output : nucleons and cluster mass fractions (ω_{AZ})
- Parameter : cluster coupling (x_s) and EoS

Phase diagram exploration

- Fraction of clusters depends on ρ and T
- Individual mass fraction (ω_{AZ}) depend on ρ and T
- Clusters disolution density depends on x_s

→ H. Pais et al. PRC97, O458O5 (2018) → H. Pais et al. PRC99, O558O6 (2019)

Inputs

- « Experimental » proton fraction (y_p)
- « Experimental » temperature (T)
- « Experimental » density (ρ)
- x_s parameter

Matching criteria

• Simple comparison of experimetal and simulated equilibrium constants for all clusters

Inputs

- « Experimental » proton fraction (y_p)
- « Experimental » temperature (T)
- « Experimental » density (ρ)
- x_s parameter

Matching criteria

• Simple comparison of experimetal and simulated equilibrium constants for all clusters

Result

Equilibrium constants of all clusters can be reproduced by RMF with a single value of $x_s = 0.92 \pm 0.02$

→ H. Pais et al. J. Phys. G 47 (2020) 105204 → H. Pais et al. PRL 125 (2020) 012701

Contradiction

Experimental density and temperature rely on ideal gas hypothesis using vacuum binding energies → Binding energy modified, not an ideal gas !

Ubiquitous density

- Density as input of RMF calculation
- Density to compute RMF K_c from ω_{AZ}
- Density to compute experimental K_c from ω_{AZ}

Contradiction

Experimental density and temperature rely on ideal gas hypothesis using vacuum binding energies → Binding energy modified, not an ideal gas !

Ubiquitous density

- Density as input of RMF calculation
- Density to compute RMF K_c from ω_{AZ}
- Density to compute experimental K_c from ω_{AZ}

Temporary fix

Remove part of the densities comparing ω_{AZ} Compute RMF mass fractions with the value of x_{s} extracted from K_{c}

Contradiction

Experimental density and temperature rely on ideal gas hypothesis using vacuum binding energies → Binding energy modified, not an ideal gas !

Ubiquitous density

- Density as input of RMF calculation
- Density to compute RMF K_c from ω_{AZ}
- Density to compute experimental K_c from ω_{AZ}

Temporary fix

Remove part of the densities comparing ω_{AZ} Compute RMF mass fractions with the value of x_{s} extracted from K_{c}

Disappointment

- Poor reproduction of ³H and ³He
- Terrible reproction of ²H (not even the trend)

Full Bayesian Inference

Replace the simple comparison procedure with a proper bayesian inference

- Emancipate from ideal gas hypothesis :
- Use only direct observables as RMF input
- Compare experimental and RMF mass fractions

Replace the simple comparison procedure with a proper bayesian inference

Emancipate from ideal gas hypothesis :

- Use only direct observables as RMF input
- Compare experimental and RMF mass fractions
- \rightarrow Include temperature and density in the inference

Replace the simple comparison procedure with a proper bayesian inference

Emancipate from ideal gas hypothesis :

- Use only direct observables as RMF input
- Compare experimental and RMF mass fractions
- \rightarrow Include temperature and density in the inference

Inputs

- Experimental proton fraction (y_p)
- Experimental mass fractions (ω_{AZ})

Output

Posterior distributions of x_s , ρ , and T for each v_{surf} bin and each reaction system using flat priors and gaussian likelihood

Replace the simple comparison procedure with a proper bayesian inference

Emancipate from ideal gas hypothesis :

- Use only direct observables as RMF input
- Compare experimental and RMF mass fractions
- \rightarrow Include temperature and density in the inference

Inputs

- Experimental proton fraction (y_p)
- Experimental mass fractions (ω_{AZ})

Output

Posterior distributions of x_s , ρ , and T for each v_{surf} bin and each reaction system using flat priors and gaussian likelihood

Implementation

Inference performed using **PyMultiNest** sampler and verified with julia wrapper

Model calibration

RMF mass fractions using marginalised posterior distributions (2σ) compared to INDRA data \rightarrow Excellent reproduction of the mass fractions for all v_{surf} bins and for all systems

Model calibration

RMF mass fractions using marginalised posterior distributions (2σ) compared to INDRA data \rightarrow Excellent reproduction of the mass fractions for all v_{surf} bins and for all systems

Temperature

Temperature still increases with increasing v_{surf} Compatible with previous ideal gas estimate

$$T = \frac{B(^{4}He) + B(^{2}H) - B(^{3}He) - B(^{3}H)}{\ln\left(\sqrt{9/8} \times 1.59 \frac{M(^{2}H)M(^{4}He)}{M(^{3}H)M(^{3}He)}\right)}$$

Model calibration

RMF mass fractions using marginalised posterior distributions (2σ) compared to INDRA data \rightarrow Excellent reproduction of the mass fractions for all v_{surf} bins and for all systems

Temperature

Temperature still increases with increasing v_{surf} Compatible with previous ideal gas estimate

 $T = \frac{B(^{4}He) + B(^{2}H) - B(^{3}He) - B(^{3}H)}{\ln\left(\sqrt{9/8} \times 1.59 \frac{M(^{2}H)M(^{4}He)}{M(^{3}H)M(^{3}He)}\right)}$

Density

Almost same density for all v_{surf} bins Very different with respect to ideal gas estimate → Compatible with a fixed density freeze-out picture

Cluster coupling

- Similar value as previous analysis at low temperature
- x_s decreases with increasing temperature
- We could not extract any density dependance because the inference pointed to a unique density

$$\begin{split} \mathrm{M}_{j}^{*} &= \mathrm{A}_{j}\mathrm{m} - \mathrm{g}_{\sigma j}\sigma - (\mathrm{B}_{j}^{0} + \delta \mathrm{B}_{j}) \\ \mathrm{g}_{\sigma j} &= \mathrm{x}_{s}\mathrm{A}_{j}\mathrm{g}_{\sigma} \end{split}$$

Cluster coupling

- Similar value as previous analysis at low temperature
- x_s decreases with increasing temperature
- We could not extract any density dependance because the inference pointed to a unique density

$$\begin{split} \mathrm{M}_{j}^{*} &= \mathrm{A}_{j}\mathrm{m} - \mathrm{g}_{\sigma j}\sigma - (\mathrm{B}_{j}^{0} + \delta \mathrm{B}_{j}) \\ \mathrm{g}_{\sigma j} &= \mathrm{x}_{s}\mathrm{A}_{j}\mathrm{g}_{\sigma} \end{split}$$

Cluster fraction

Same total cluster fraction at low temperature (same x_s) \rightarrow Cluster fraction decreases faster with increasing temperature

Summary

N. S.

Motivations

Modeling low density nuclear matter with clusters needs experimental input to calibrate in-medium cluster properties

Bayesian calibration

Cluster mass fractions measured with INDRA were compared to RMF calculations :

- Temperature posterior similar to ideal gas hypothesis
- Density posterior compatible with single density
- σ-meson-cluster coupling (x_s) posterior distribution

Motivations

Modeling low density nuclear matter with clusters needs experimental input to calibrate in-medium cluster properties

Bayesian calibration

Cluster mass fractions measured with INDRA were compared to RMF calculations :

- Temperature posterior similar to ideal gas hypothesis
- Density posterior compatible with single density
- σ-meson-cluster coupling (x_s) posterior distribution

And then ?

Use this posterior to feed astrophysic simulations

And the EoS?

Full analysis done with two EoS (FSU and DD2)
→ No effect on temperature and density posterior
→ No effect on x_s posterior and cluster fractions

Vaporisation source

- Check the analysis and interpretation with particles from quasi-projectile vaporisation source
- Explore different thermodynamics conditions
- Extend to higher mass clusters (Li, Be...)

New experiment

- Ar + Ni and Ni + Ni at 74 MeV/nuc.
- INDRA-FAZIA coupling at GANIL
- → Allows for a good reconstruction of the collision geometry and isotopic identification of all forward emitted particles

Analysis

- Experiment performed in 2022
- Data reduction finished (Alex)
- \rightarrow Results available soon !
- \rightarrow Compare with transport models ?

Many thanks to :

Tiago Custodio¹, **Alex Rebillard-Soulié**², Rémi Bougault², Diego Gruyer², Francesca Gulminelli², Tuhin Malik¹, Helena Pais¹, Constança Providencia¹

¹ CFisUC , University of Coimbra, Portugal ² LPC, Caen, France

Support : PESSOA agreement

Many thanks to the organizers !

Thank you

ALL DE