

Illinois Center for Advanced Studies of the Universe

1

Structure in the speed of sound: from neutron stars to heavy-ion collisions

Nanxi Yao

With Agnieszka Sorensen, Veronica Dexheimer, and Jaki Noronha-Hostler

Physical Review C 109 (6), 065803

Nuclear Equation of State (EOS)

- To describe the relationship between properties of nuclear matter (e.g. energy density, pressure) and quantifies the structure of different nuclear matter and the interactions
- Perturbative QCD calculation for EOS is very limited at high density
	- need to use astrophysical observations, HIC, and etc to constrain the EOS
- M-R constraints on the right from T=0 NS EOS

2303.17021.

MUSES Collaboration. Rajesh Kumar (Kent State U.) et al.

Is NS compatible with HIC data?

- "Determination of the equation of state of dense matter." Danielewicz et al. Science 298 (2002), pp. 1592–1596.
	- Analyzes flow of matter in nuclear collision
	- Obtain predictions for EOS of neutron matter
- Observations of GW190814
- Previous studies: EOS of NS with mass >2.6 M_{\odot} not consistent with HIC data (F. J. Fattoyev et al. Phys. Rev. C 102, 065805)
	- Assumed hadronic degrees of freedom

Is NS compatible with HIC data?

- Cold neutron stars (NS) equations of state (EOS) can sustain heavy neutron stars over 2 M_{\odot}
	- Need large, rapid rise in the speed of sound (c_s^2)
- We want to investigate this with NS EOS where we add a bump to c_s^2
	- associated with higher-order repulsive terms in the description of the strong force among nucleons and hyperons
	- Quarkyonic matter, deconfinement crossover phase transition, new hadronic degrees of freedom

D. Oliinychenko, A. Sorensen, V. Koch, and L. McLerran, Phys. Rev. C 108, 034908 (2023)

Neutron Star EOS of Interest

- Easily create a family of EoSs that reach M \geq 2.5 M_{\odot} , either by implementing a narrow peak at low n_B or a wide peak at higher n_B
- EOS 1 extreme heavy NS
- EOS 2&3 –consistent with most of the experimental data

HIC vs Neutron Star

• NS is asymmetric nuclear matter(ANM), and HIC is symmetric nuclear matter(SNM)

• $Y_{Q,QCD} \equiv n_{Q,QCD}/n_B$

- Cold NS are at T=0 and contain few positively charged particles
	- $Y_{Q,QCD}$ is dependent on n_B and ≤ 0.1 for NS,
- $Y_{Q,QCD}$ for HIC is 0.38~0.5
	- Example: for Au, $Y_0 = 79/197 = 0.4$

Symmetry Energy Expansion

- Energy per nucleon E(n, δ) is the most basic term used to obtain EOS of NS, regardless of model used
	- n≡ baryon number density, $\delta \equiv$ isospin asymmetry
	- $\delta = 1 2 Y_{\Omega}$
- E(n, δ) has a symmetry energy term E_{sym} which quantifies the energy needed to make nuclear matter more neutron rich

•
$$
E_{sym}(n, \delta) = E_{asym} - (E_{sym,0} + \frac{L_{sym}}{3}(\frac{n_B}{n_0} - 1) + \frac{k_{sym}}{18}(\frac{n_B}{n_0} - 1)^2 + \frac{L_{sym}}{162}(\frac{n_B}{n_0} - 1)^3)\delta^2
$$

• Magnitude of the symmetry energy: $E_{sym}(n = n_{sat})$, 31.7 \pm 3.2 MeV¹

• Slope:
$$
L_{sym} \equiv 3n \frac{dE_{sym}}{dn} \Big|_{12}^{n} = n_{sat}
$$
, 58.7 \pm 28.1 MeV¹ or 106 \pm 37 MeV, PREXII

• Curvature: $K_{sym} \equiv 9n^2 \frac{d^2 E_{sym}}{dn^2} |n = n_{sat} - 120^{+80}_{-100} \text{ MeV}^2$

• Skewness:
$$
J_{sym} \equiv 27n^3 \frac{d^3 E_{sym}}{dn^3} \Big| n = n_{sat}
$$
, 300 \pm 500 MeV³

1 M. Oertel et al. Rev. Mod. Phys. 89, 015007 (2017) 2 W.-J. Xie et al, Astrophys. J. 899, 4 (2020) 3 I, TEWS et al. Astrophys. J. 848, 105 (2017)

Nuclear Symmetry Energy Expansion

• For HIC, we do not have perfectly symmetry nuclear matter

• $Y_{Q,HIC} = 0.39$

• Thus, we obtain the asymmetric energy density for HIC from symmetric energy density through a double expansion:

$$
\epsilon_{HIC}
$$
\n
$$
= \epsilon_{NS} - 4 \left[E_{sym,0} + \frac{L_{sym}}{3} \left(\frac{n_B}{n_0} - 1 \right) + \frac{K_{sym}}{18} \left(\frac{n_B}{n_0} - 1 \right)^2 + \frac{J_{sym}}{162} \left(\frac{n_B}{n_0} - 1 \right)^3 \right] \left[\left(Y_{Q,QCD}^{const} - Y_{Q,QCD}(n_B) \right) + \left(Y_{Q,QCD}^2(n_B) - Y_{Q,QCD}^{const} \right)^2 \right] n_B
$$

Conversion Process

- Input:
	- NS beta-equilibrated EOS at T=0 with a bump at speed of sound
	- A range of symmetry energy coefficients
- Subtract lepton contribution: $\varepsilon_{QCD} = \varepsilon \varepsilon_{lep}$
- Convert ε_{QCD} with symmetry energy expansion
- Calculate pressure via $p = n_B^2 \frac{d(\varepsilon/n_B)}{dn_B}$ dn $_B$
- Calculate $c_s^2 = \frac{dp}{ds}$ $d\varepsilon$

Converted EOS Band

- Converted at $Y_{Q,QCD}^{const} = 0.5$
- Same location of the peak, shifted magnitude
- Constraints on the converted EOS:
	- Stability and causality ($c_s^2 > 0$ for $n_B \geq 0.9 n_{sat}$ and $c_s^2 < 1$
	- Saturation properties
		- 0.14 $fm^{-3} < n_{sat} < 0.18 fm^{-3}$
		- $-18 \text{ MeV} < B < -14 \text{ MeV}$

Symmetry Energy Coefficients

Comparison with HIC data

- At lower $\sqrt{S_{NN}}$, we have very high n_B and lower $T_{\rm max}$
- Interplay between the QGP phase and the hadrons
- Best described by hybrid models relativistic hydrodynamics with a hadronic transport.
- Current relativistic viscous hydrodynamic calculations coupled with the hadronic transport code SMASH provide a reasonable description of particle production down to $\sqrt{S_{NN}}$, = 4.3 GeV (E_{kin} = 8 AGeV)
	- use mean-field potentials dependent on vector baryon density
	- No complex temperature dependence

Comparison with HIC experimental data

- To ensure $\varepsilon/n_B \to m_N$ and $c_s^2 \to 0$ as $n_B \rightarrow 0$, match the converted EOS to an EOS obtained from the density functional (VDF) model.
- EOS with sharp rise at $2n_B$ is favored by the flow data

- "*Finite-temperature expansion of the dense-matter equation of state*."
	- Expansion of EOS of dense matter from pure neutron to isospin symmetric nuclear matter, from 0 to finite temperatures (up to T =100 MeV)
	- Model independent
	- can be used to describe neutron star mergers and core-collapse supernova explosions

$$
\bullet \ \ p(T, \vec{\mu}) = p_{T=0} + \frac{\partial p}{\partial T}\Big|_{T=0, \overrightarrow{\mu}} T + \frac{1}{2} \frac{\partial^2 p}{\partial T^2}\Big|_{T=0, \overrightarrow{\mu}} + \frac{1}{6} \frac{\partial^3 p}{\partial T^3}\Big|_{T=0, \overrightarrow{\mu}} + \mathcal{O}(T^4)
$$

Mroczek et al.arXiv:2404.01658. ¹⁴

Coupled with EOS from Modified Gaussian Process…

- Takes 100,000 NS EOS generated with modified Gaussian process
	- meet the requirements informed by GW190817 and PSR J0030+0451, mass cut $M_{max} \geq 1.8 M_{\odot}$
	- Apply symmetry energy expansion on these NS EOS with causality/stability constraints applied

Conclusion & Outlook

- Converted HIC EOS preserve the large rise of c_s^2
- Constrained the symmetry energy coefficients further
- A heavy neutron star could be compatible with HIC data!
- MC simulation for symmetry energy expansion for Bayesian analysis
	- Numerically challenging 10^9 EOSs as input to hadronic transport
- Consider inclusion of strangeness and quark degrees of freedom
- Hadronic transport model also need to consider momentum dependence of the potentials, inmedium cross sections, etc

Back-up slides

