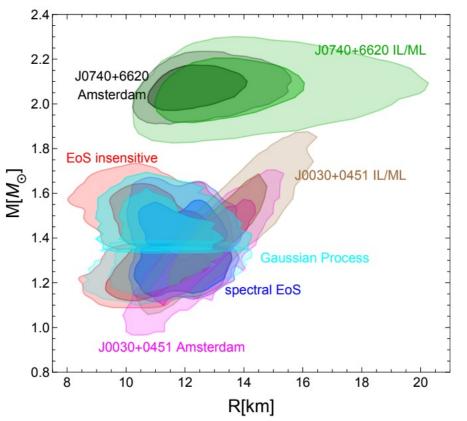


Illinois Center for Advanced Studies of the Universe

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Structure in the speed of sound: from neutron stars to heavy-ion collisions

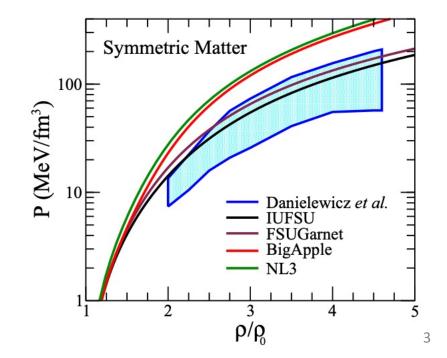

Nanxi Yao

With Agnieszka Sorensen, Veronica Dexheimer, and Jaki Noronha-Hostler

Physical Review C 109 (6), 065803

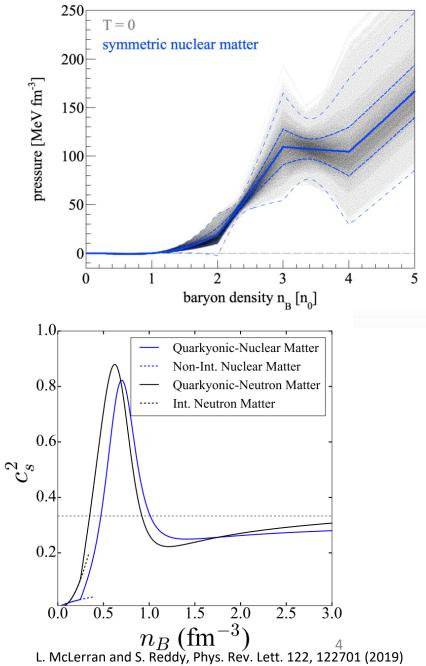
Nuclear Equation of State (EOS)

- To describe the relationship between properties of nuclear matter (e.g. energy density, pressure) and quantifies the structure of different nuclear matter and the interactions
- Perturbative QCD calculation for EOS is very limited at high density
 - need to use astrophysical observations, HIC, and etc to constrain the EOS
- M-R constraints on the right from T=0 NS EOS

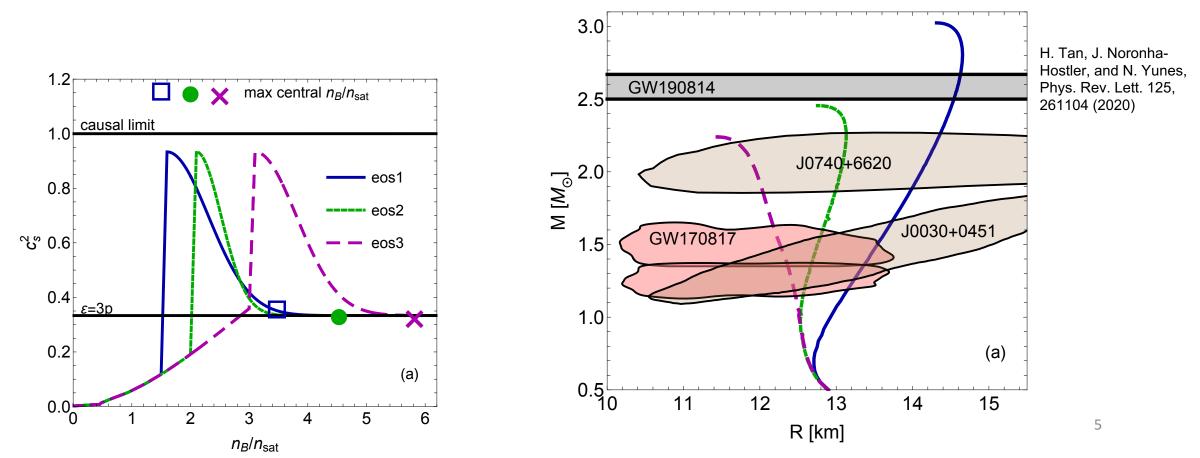


MUSES Collaboration. Rajesh Kumar (Kent State U.) et al. 2303.17021.

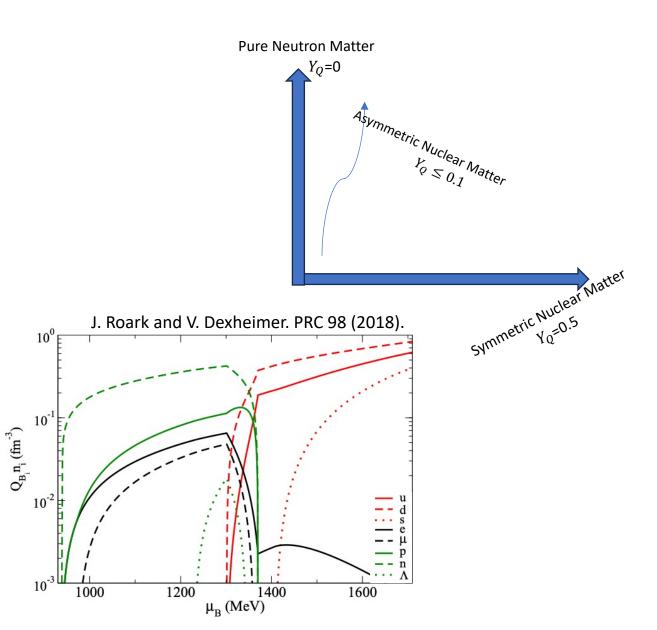
Is NS compatible with HIC data?


- "Determination of the equation of state of dense matter." Danielewicz et al. Science 298 (2002), pp. 1592–1596.
 - Analyzes flow of matter in nuclear collision
 - Obtain predictions for EOS of neutron matter
- Observations of GW190814
- Previous studies: EOS of NS with mass >2.6 M_☉ not consistent with HIC data (F. J. Fattoyev et al. Phys. Rev. C 102, 065805)
 - Assumed hadronic degrees of freedom

Is NS compatible with HIC data?


- Cold neutron stars (NS) equations of state (EOS) can sustain heavy neutron stars over 2 M_{\bigodot}
 - \cdot Need large, rapid rise in the speed of sound (c_s^2)
- We want to investigate this with NS EOS where we add a bump to c_s^2
 - associated with higher-order repulsive terms in the description of the strong force among nucleons and hyperons
 - Quarkyonic matter, deconfinement crossover phase transition, new hadronic degrees of freedom

D. Oliinychenko, A. Sorensen, V. Koch, and L. McLerran, Phys. Rev. C 108, 034908 (2023)


Neutron Star EOS of Interest

- Easily create a family of EoSs that reach M \ge 2.5 M_{\odot} , either by implementing a narrow peak at low n_B or a wide peak at higher n_B
- EOS 1 extreme heavy NS
- EOS 2&3 –consistent with most of the experimental data

HIC vs Neutron Star

- NS is asymmetric nuclear matter(ANM), and HIC is symmetric nuclear matter(SNM)
 - $Y_{Q,QCD} \equiv n_{Q,QCD}/n_B$
- Cold NS are at T=0 and contain few positively charged particles
 - $Y_{Q,QCD}$ is dependent on n_B and ≤ 0.1 for NS,
- $Y_{Q,QCD}$ for HIC is 0.38~0.5
 - Example: for Au, *Y*_Q=79/197=0.4

Symmetry Energy Expansion

- Energy per nucleon $\mathrm{E}(\mathbf{n}, \delta)$ is the most basic term used to obtain EOS of NS, regardless of model used
 - n \equiv baryon number density, $\delta \equiv$ isospin asymmetry
 - $\delta = 1 2 Y_Q$
- E(n, δ) has a symmetry energy term E_{sym} which quantifies the energy needed to make nuclear matter more neutron rich

•
$$E_{sym}(n, \delta) = E_{asym} - (E_{sym,0} + \frac{L_{sym}}{3} (\frac{n_B}{n_0} - 1) + \frac{k_{sym}}{18} (\frac{n_B}{n_0} - 1)^2 + \frac{J_{sym}}{162} (\frac{n_B}{n_0} - 1)^3) \delta^2$$

• Magnitude of the symmetry energy: $E_{sym}(n = n_{sat})$, 31.7 \pm 3.2 MeV¹

• Slope:
$$L_{sym} \equiv 3n \frac{dE_{sym}}{dn} |_{n=1}^{n} = n_{sat}$$
, 58.7 $\pm 28.1 \text{ MeV}^1$ or 106 $\pm 37 \text{ MeV}$, PREXII

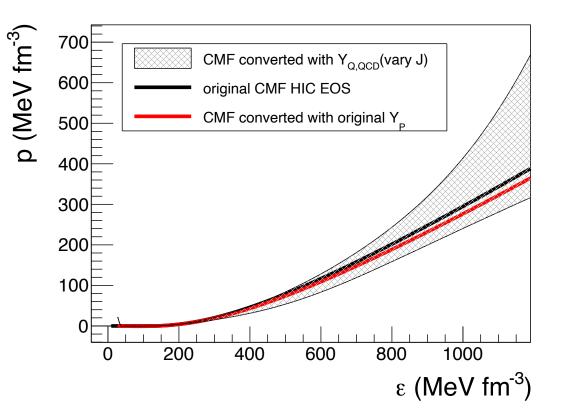
• Curvature: $K_{sym} \equiv 9n^2 \frac{d^2 E_{sym}}{dn^2} | n = n_{sat}, -120^{+80}_{-100} \text{ MeV}^2$

• Skewness:
$$J_{sym} \equiv 27n^3 \frac{d^3 E_{sym}}{dn^3} | n = n_{sat}, 300 \pm 500 \text{ MeV}^3$$

¹M. Oertel et al. Rev. Mod. Phys. 89, 015007 (2017) ²W.-J. Xie et al, Astrophys. J. 899, 4 (2020) ³I, TEWS et al. Astrophys. J. 848, 105 (2017)

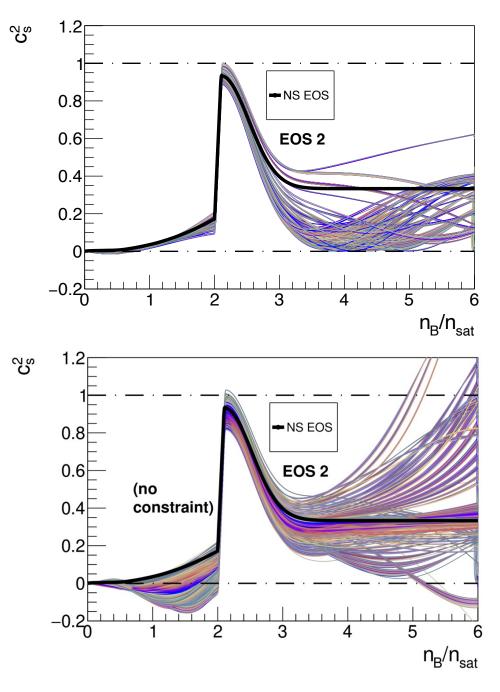
Nuclear Symmetry Energy Expansion

• For HIC, we do not have perfectly symmetry nuclear matter

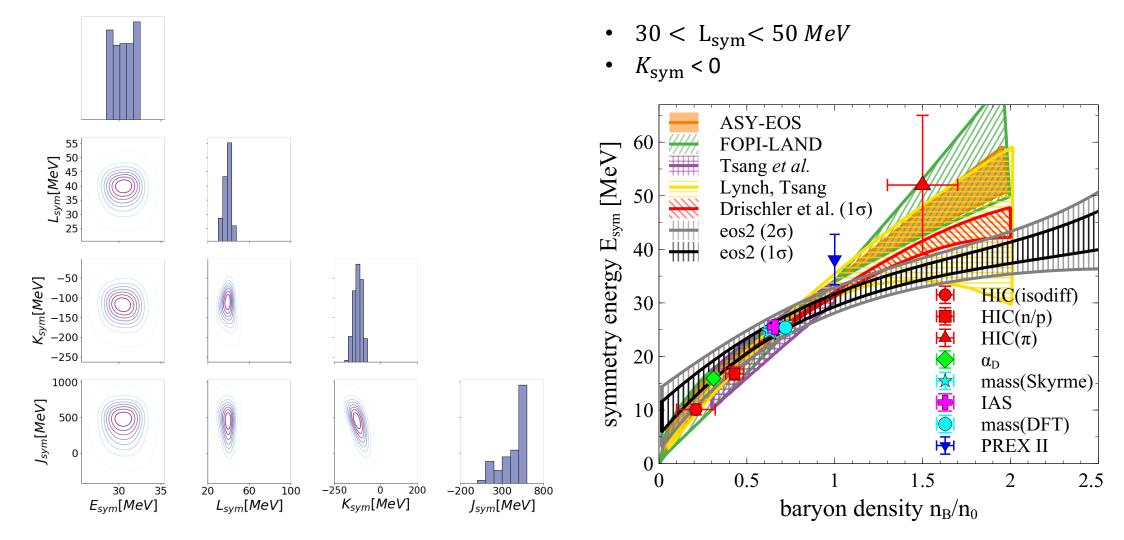

• $Y_{Q,HIC} = 0.39$

• Thus, we obtain the asymmetric energy density for HIC from symmetric energy density through a double expansion:

$$\epsilon_{HIC} = \epsilon_{NS} - 4 \left[E_{sym,0} + \frac{L_{sym}}{3} \left(\frac{n_B}{n_0} - 1 \right) + \frac{K_{sym}}{18} \left(\frac{n_B}{n_0} - 1 \right)^2 + \frac{J_{sym}}{162} \left(\frac{n_B}{n_0} - 1 \right)^3 \right] \left[\left(Y_{Q,QCD}^{const} - Y_{Q,QCD}(n_B) \right) + \left(Y_{Q,QCD}^2(n_B) - Y_{Q,QCD}^{const} \right)^2 \right] n_B$$


Conversion Process

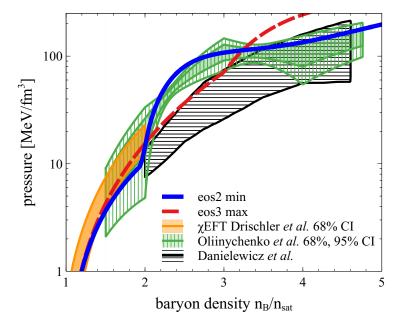
- Input:
 - NS beta-equilibrated EOS at T=0 with a bump at speed of sound
 - A range of symmetry energy coefficients
- Subtract lepton contribution: $\varepsilon_{QCD} = \varepsilon \varepsilon_{lep}$
- Convert ε_{QCD} with symmetry energy expansion
- Calculate pressure via $p = n_B^2 \frac{d(\varepsilon/n_B)}{dn_B}$
- Calculate $c_s^2 = \frac{\mathrm{d}p}{\mathrm{d}\varepsilon}$

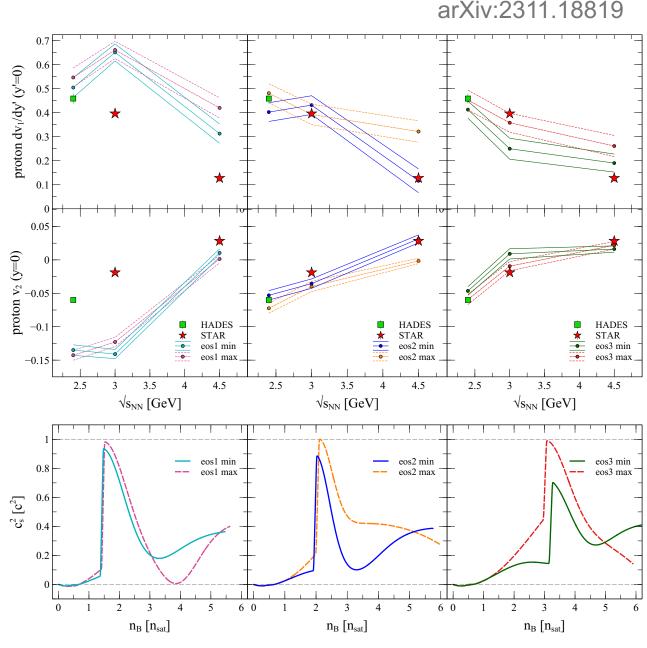


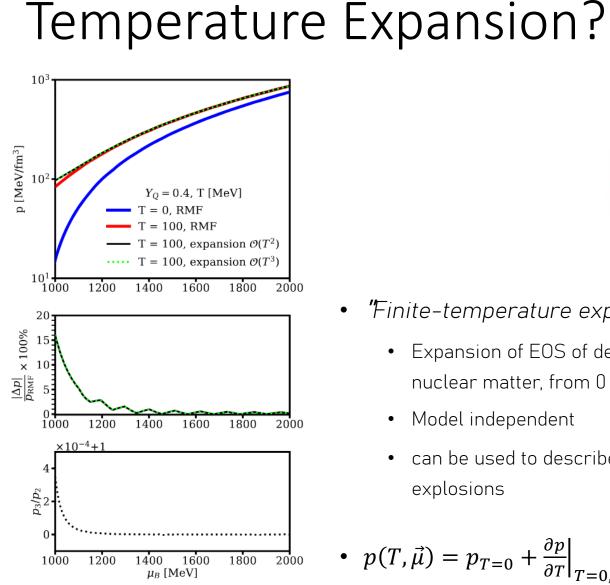
Converted EOS Band

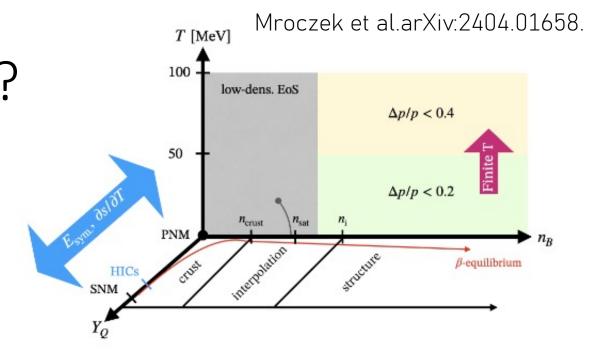
- Converted at $Y_{Q,QCD}^{const} = 0.5$
- Same location of the peak, shifted magnitude
- Constraints on the converted EOS:
 - Stability and causality ($c_s^2 > 0$ for $n_B \ge 0.9 n_{sat}$ and $c_s^2 < 1$)
 - Saturation properties
 - $0.14 fm^{-3} < n_{sat} < 0.18 fm^{-3}$
 - -18 MeV < B < -14 MeV

Symmetry Energy Coefficients

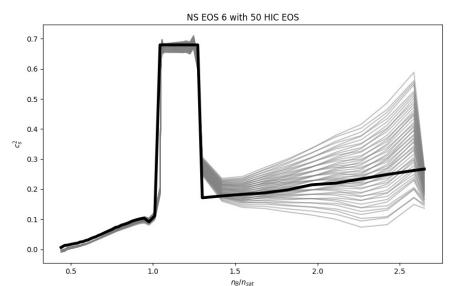


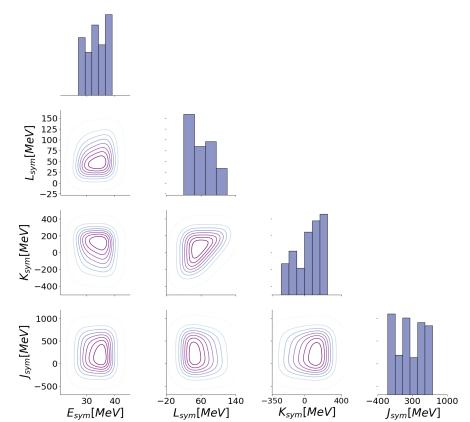

Comparison with HIC data


- At lower $\sqrt{S_{NN}}$, we have very high n_B and lower $T_{
 m max}$
- Interplay between the QGP phase and the hadrons
- Best described by hybrid models relativistic hydrodynamics with a hadronic transport.
- Current relativistic viscous hydrodynamic calculations coupled with the hadronic transport code SMASH provide a reasonable description of particle production down to $\sqrt{S_{NN}}$, = 4.3 GeV (E_{kin} = 8 AGeV)
 - use mean-field potentials dependent on vector baryon density
 - No complex temperature dependence


Comparison with HIC experimental data

- To ensure $\varepsilon/n_B \rightarrow m_N$ and $c_s^2 \rightarrow 0$ as $n_B \rightarrow 0$, match the converted EOS to an EOS obtained from the density functional (VDF) model.
- EOS with sharp rise at $2n_B$ is favored by the flow data

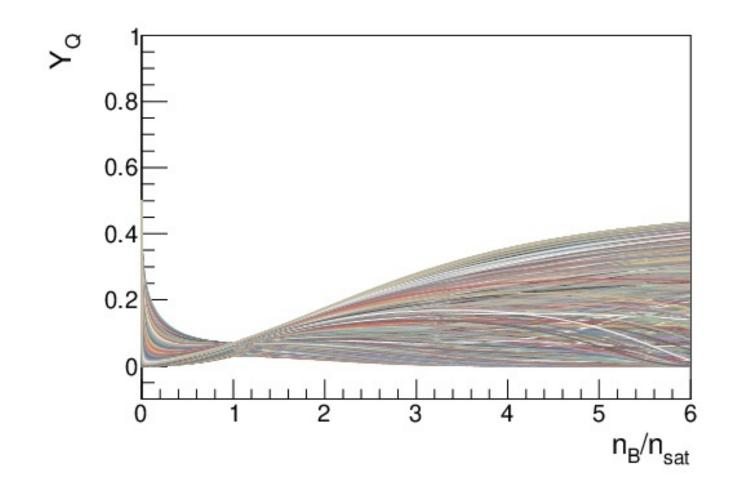

- "Finite-temperature expansion of the dense-matter equation of state."
 - Expansion of EOS of dense matter from pure neutron to isospin symmetric nuclear matter, from 0 to finite temperatures (up to T =100 MeV)
 - Model independent
 - can be used to describe neutron star mergers and core-collapse supernova explosions


•
$$p(T,\vec{\mu}) = p_{T=0} + \frac{\partial p}{\partial T}\Big|_{T=0,\vec{\mu}} T + \frac{1}{2} \frac{\partial^2 p}{\partial T^2}\Big|_{T=0,\vec{\mu}} + \frac{1}{6} \frac{\partial^3 p}{\partial T^3}\Big|_{T=0,\vec{\mu}} + \mathcal{O}(T^4)$$

Mroczek et al.arXiv:2404.01658.

Coupled with EOS from Modified Gaussian Process...

- Takes 100,000 NS EOS generated with modified Gaussian process
 - meet the requirements informed by GW190817 and PSR J0030+0451, mass cut $M_{max} \ge 1.8~M_{\odot}$
 - Apply symmetry energy expansion on these NS EOS with causality/stability constraints applied



Conclusion & Outlook

- Converted HIC EOS preserve the large rise of c_s^2
- Constrained the symmetry energy coefficients further
- A heavy neutron star could be compatible with HIC data!
- MC simulation for symmetry energy expansion for Bayesian analysis
 - Numerically challenging $10^9 EOSs$ as input to hadronic transport
- Consider inclusion of strangeness and quark degrees of freedom
- Hadronic transport model also need to consider momentum dependence of the potentials, inmedium cross sections, etc

Back-up slides

