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Nuclear Equation of State (EOS)
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• To describe the relationship between properties of nuclear

matter (e.g. energy density, pressure) and quantifies the

structure of different nuclear matter and the interactions

• Perturbative QCD calculation for EOS is very limited at high

density

• need to use astrophysical observations, HIC, and etc to

constrain the EOS

• M-R constraints on the right from T=0 NS EOS

MUSES Collaboration. Rajesh Kumar (Kent State U.) et al. 
2303.17021.



Is NS compatible with HIC data?

• “Determination of the equation of state 
of dense matter.” Danielewicz et al. 
Science 298 (2002), pp. 1592–1596.

• Analyzes flow of matter in nuclear collision
• Obtain predictions for EOS of neutron matter

• Observations of GW190814

• Previous studies: EOS of NS with mass >2.6 𝑀⨀ not 
consistent with HIC data (F. J. Fattoyev et al. Phys. Rev. 
C 102, 065805)

• Assumed hadronic degrees of freedom 
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Is NS compatible with HIC data?

• Cold neutron stars (NS) equations of state (EOS) can sustain heavy neutron 

stars over 2 𝑀⨀ 

• Need large, rapid rise in the speed of sound (𝑐"#)

• We want to investigate this with NS EOS where we add a bump to 𝑐"#

• associated with higher-order repulsive terms in the description of the 

strong force among nucleons and hyperons

• Quarkyonic matter, deconfinement crossover phase transition, new 

hadronic degrees of freedom
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Neutron Star EOS of Interest

J0740+6620

GW190814

GW170817 J0030+0451

(a)

10 11 12 13 14 15
0.5

1.0

1.5

2.0

2.5

3.0

R [km]

M
[M

⊙
]

5

• Easily create a family of EoSs that reach M ≥ 2.5 𝑀⨀ , either by implementing a narrow peak at low 𝑛"or a wide 

peak at higher 𝑛"
• EOS 1 – extreme heavy NS

• EOS 2&3 –consistent with most of the experimental data

H. Tan, J. Noronha-
Hostler, and N. Yunes, 
Phys. Rev. Lett. 125, 
261104 (2020)
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HIC vs Neutron Star

• NS is asymmetric nuclear matter(ANM), and 

HIC is symmetric nuclear matter(SNM)

• 𝑌","$% ≡ 𝑛","$%/𝑛&

• Cold NS are at T=0 and contain few positively charged 
particles

• 𝑌$,$&' is dependent on 𝑛( and ≤ 0.1 for NS,

• 𝑌","$% for HIC is 0.38~0.5
• Example: for Au, 𝑌!=79/197=0.4
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J. Roark and V. Dexheimer. PRC 98 (2018).

Pure Neutron Matter
𝑌!=0

Symmetric
Nuclear Matter

𝑌!=0.5

Asymmetric Nuclear Matter
𝑌! ≤ 0.1



Symmetry Energy Expansion
• Energy per nucleon E(n, 𝛿) is the most basic term used to obtain EOS of NS, 

regardless of model used
• n≡ baryon number density, 𝛿 ≡ isospin asymmetry
• 𝛿=1-2 𝑌!

• E(n, 𝛿) has a symmetry energy term 𝐸'() which quantifies the energy needed to make 
nuclear matter more neutron rich 

• 𝐸'()(n, 𝛿) = 𝐸*'() − (𝐸'(),+ +
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• Magnitude of the symmetry energy: E567(n = n589), 31.7	 ± 3.2	MeV1
• Slope: L567 ≡ 3n :;)*+

:<
7n = n589, 58.7	 ± 28.1	MeV1 or 106 ± 37 MeV, PREXII

• Curvature: K567 ≡ 9n2 :
,;)*+
:<,

7n = n589, −120=0++>1+  MeV2

• Skewness: J567 ≡ 27n- :
-;)*+
:<-

7n = n589, 300	 ± 500	MeV3
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Nuclear Symmetry Energy Expansion 

• For HIC, we do not have perfectly symmetry nuclear matter
• 𝑌#,%&' = 0.39

• Thus, we obtain the asymmetric energy density for HIC from 
symmetric energy density through a double expansion:
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Conversion Process
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• Input:

• NS beta-equilibrated EOS at T=0 with a
bump at speed of sound

• A range of symmetry energy coefficients

• Subtract lepton contribution: 𝜀$&' = 𝜀- 𝜀@AB

• Convert 𝜀$&' with symmetry energy
expansion

• Calculate pressure via p = 𝑛(#
C(E/4!)
C4 !

• Calculate 𝑐"#=HBCE



Converted EOS Band

0 1 2 3 4 5 6
sat/nBn

0.2−

0

0.2

0.4

0.6

0.8

1

1.22 sc

NS EOS

EOS 2

• Converted at 𝑌$,$&'234"5 = 0.5

•  Same location of the peak, shifted magnitude

• Constraints on the converted EOS:

• Stability and causality (𝑐"# > 0	for 𝑛( ≥ 0.9𝑛"I5 and 

𝑐"# < 1)

• Saturation properties

• 0.14	𝑓𝑚J1 < 𝑛"I5 < 0.18	𝑓𝑚J1

• −18	MeV < B < -14	𝑀𝑒𝑉
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Symmetry Energy Coefficients
• 30 < 	L./0< 50	𝑀𝑒𝑉
• 𝐾./0 < 0
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Comparison with HIC data

• At lower 𝑆??, we have very high 𝑛& and lower 𝑇78@

• Interplay between the QGP phase and the hadrons 

• Best described by hybrid models - relativistic hydrodynamics with a hadronic transport. 

• Current relativistic viscous hydrodynamic calculations coupled with the hadronic transport code 

SMASH provide a reasonable description of particle production down to 𝑆??, = 4.3 GeV (𝐸/A. = 

8 AGeV) 

• use mean-field potentials dependent on vector baryon density

• No complex temperature dependence
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Temperature Expansion?

• "Finite-temperature expansion of the dense-matter equation of state.” 
• Expansion of EOS of dense matter from pure neutron to isospin symmetric 

nuclear matter, from 0 to finite temperatures (up to T =100 MeV)

• Model independent

• can be used to describe neutron star mergers and core-collapse supernova 
explosions

• 𝑝 𝑇, 𝜇⃗ = 𝑝456 + <78
74 456, :

𝑇 + ;
3

<7&8
74& 456, :

+ ;
<

<7'8
74' 456, :

+ 𝒪(𝑇=)

14Mroczek et al.arXiv:2404.01658.

Mroczek et al.arXiv:2404.01658.



Coupled with EOS from Modified Gaussian 
Process…
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• Takes 100,000 NS EOS generated with 
modified Gaussian process

• meet the requirements informed by 
GW190817 and PSR J0030+0451, 
mass cut 𝑀>?@ ≥ 1.8 𝑀⨀ 

• Apply symmetry energy expansion 
on these NS EOS with 
causality/stability constraints 
applied



Conclusion & Outlook

• Converted HIC EOS preserve the large rise of 𝑐"#

• Constrained the symmetry energy coefficients further

• A heavy neutron star could be compatible with HIC data!

• MC simulation for symmetry energy expansion for Bayesian analysis

• Numerically challenging - 10K 𝐸𝑂𝑆𝑠 as input to hadronic transport

• Consider inclusion of strangeness and quark degrees of freedom

• Hadronic transport model also need to consider momentum dependence of the potentials, in-
medium cross sections, etc
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