

October 30th 2024

Collaboration	FAZIA	Physics cases	FAZIA future	New observables
•00	000000	000	0000	0000

FAZIA collaboration

$\begin{array}{c} Collaboration \\ \circ \bullet \circ \end{array}$	<i>FAZIA</i> 000000	Physics cases 000	FAZIA future 0000	New observables
Future of HIC				

IN2P3 and INFN are going into the same direction

IRL-NPA

NUSDAF

IN2P3 and INFN are going into the same direction

Collaboration	FAZIA	Physics cases	$FAZIA \ future$	$New \ observables$
000	000000	000	0000	0000
SYMEOS	initiative			

INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

Giuseppe Verde¹, C. Agodi², M. Battaglieri⁹, M. Bondi¹, M. Cavallaro², M. Colonna², D. Gambacurta², A. Gottardo³, L. Lamia^{4,2}, S. Leoni^{5,6}, L. Marcucci⁷ S. Pirrone¹, G. Pizzone^{2,4}, P. Russotto², S. Valdrè⁸, J.J. Valiente³, M. Viviani⁷

on behalf of the ASFIN, CHIRONE, EPIC, GAMMA, JLAB12, NUCL-EX, NUMEN, MONSTRE and NUCSYS groups of INFN (see Appendix 3 for detailed list of institutes)

Kyle Brown¹⁰, Giordano Cerizza¹⁰, Zbigniew Chajecki¹¹, Alexandra Gade¹⁰, Dean Lee¹⁰, Artemis Spyrou¹⁰, Remco Zeger¹⁰

Local points of contact who agreed to collaborate and support these programs

¹INFN Catania, ²INFN Laboratorio Nazionali del Sud, ³INFN Laboratori Nazionali di Legnaro, ⁴University of Catania, ⁵University of Milan, ⁶INFN Milan, ⁷INFN Pisa, ⁸INFN Florence, ⁹INFN Genova ¹⁰FRIB, Michigan State University, ¹¹Western Michigan University

$\begin{array}{c} Collaboration \\ oo \bullet \end{array}$	<i>FAZIA</i> 000000	Physics cases 000	FAZIA future 0000	New observables
SYMEOS init	iative			

Submitted to FRIB-PAC3 INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

> Giuseppe Verde¹, C. Agodi², M. Battaglieri⁹, M. Bondì¹, M. Cavallaro², M. Colonna², D. Gambacurta², A. Gottardo³, L. Lamia^{4,2}, S. Leoni^{5,6}, L. Marcucci⁷ S. Pirrone¹, G. Pizzone^{2,4}, P. Russotto², S. Valdrè⁸, J.J. $Valiente^3 M Viviani^7$

on behalf of the ASFIN, CHIRONE, EPIC, GAMMA, JLAB12, NUCL-EX, NUMEN, MONSTRE and NUCSYS groups of INFN (see Appendix 3 for detailed list of institutes)

Kyle Brown¹⁰, Giordano Cerizza¹⁰, Zbigniew Chajecki¹¹, Alexandra Gade¹⁰, Dean Lee¹⁰, Artemis Spyrou¹⁰, Remco Zeger¹⁰

Local points of contact who agreed to collaborate and support these programs

¹INFN Catania, ²INFN Laboratorio Nazionali del Sud, ³INFN Laboratori Nazionali di Legnaro, ⁴University of Catania, ⁵University of Milan, ⁶INFN Milan, ⁷INFN Pisa, ⁸INFN Florence, ⁹INFN Genova ¹⁰FRIB, Michigan State University, ¹¹Western Michigan University

$\begin{array}{c} Collaboration \\ \circ \circ \bullet \end{array}$	<i>FAZIA</i>	Physics cases	FAZIA future	New observables
	000000	000	0000	0000
SYMEOS initia	tive			

Submitted to FRIB-PAC3 INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

Six scientific initiatives

```
SYMEOS EoS and E_{sym} with HIC
  GASPEC \gamma spectroscopy and Collective excitations
  RIBDCE RIB-induced Double Charge Exchange
   NUSYC NUcleoSYnthesis and Clustering
   THEOF THEOretical physics @ FRIB
SYSTERSE SYnergic Stategy for future ElectRonics and Streaming
            rEadout solutions
```

$\begin{array}{c} Collaboration \\ \circ \circ \bullet \end{array}$	FAZIA 000000	Physics cases 000	FAZIA future 0000	New observables
SYMEOS initia	ative			

Submitted to FRIB-PAC3 INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

Six scientific initiatives

SYMEOS EoS and E_{sym} with HIC

more details during workshop group discussions

FAZIA Forward A and Z Identification Array

FAZIA Forward A and Z Identification Array

FAZIA Forward A and Z

Identification Array

Transportable

FAZIA Forward A and Z

Identification Array

Transportable

Modular

FAZIA Forward A and Z

Identification Array

Transportable

Modular

Couplable

Collaboration	FAZIA 000000	Physics cases	FAZIA future 0000	New observables 0000
Il telescopio	FAZIA			

- Ø 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- \bigcirc 10 cm CsI(TI) cristal read by a photodiode.

Collaboration	FAZIA000000	Physics cases	FAZIA future 0000	New observables
Il telescopio	FAZIA			

- 300 µm reverse-mounted Si detector;
- Ø 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

Collaboration	FAZIA 000000	Physics cases	FAZIA future 0000	New observables 0000
Il telescopio	FAZIA			

- 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- \bigcirc 10 cm Csl(Tl) cristal read by a photodiode.

Collaboration	FAZIA	Physics cases	FAZIA future	New observables
	00000			
Il telescopio F.	AZIA			

- 300 µm reverse-mounted Si detector;
- 500 µm reverse-mounted Si detector;
- 10 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

R. Bougault et al., Eur. Phys. J. A 50, 47 (2014)

Mod	ular
-----	------

Couplable

16 telescopes, together with **front-end electronics**, form a **block** operating in **vacuum**.

Collaboration	FAZIA	Physics cases	FAZIA future	New observables
000	000000	000	0000	0000
TA ZIA	1 1 •1			

Collaboration	FAZIA 000000	Physics cases	FAZIA future 0000	$New \ observables$ 0000
FAZIA mod	ularity			

GANIL (France) 2018 – today

Collaboration	FAZIA 000000	Physics cases	FAZIA future 0000	New observables
FAZIA mod	ularity			

GANIL (France) 2018 – today

Collaboration	FAZIA	Physics cases	FAZIA future	
000	000000●	000	0000	
INDRA cotum				

Original configuration (1992-2016)

- 90% of the solid angle covered
- 17 telescope rings (8-24 sectors per ring)
 - ring 1: IC + plastic scintillators
 - rings 2-9: IC-Si-Csl telescopes
 - rings 10-17: IC-Csl telescopes

J. Pouthas et al, Nucl. Instr. and Meth. A 357 (418), 1995

Collaboration	FAZIA	Physics cases	FAZIA future	New observables
000	000000●	000	0000	0000
INDRA setup				

Present configuration (2017-today)

- FAZIA at forward angles!
- 12 telescope rings (8-24 sectors per ring)
 - rings 1-5: removed!
 - rings 6-9: IC-Si-Csl telescopes
 - rings 10-17: IC-Csl telescopes

Collaboration FAZIA		Physics cases	FAZIA future	New observables
000	000000	000	0000	0000

INDRA setup

Quasi-projectile	"chemistru"			
Collaboration	<i>FAZIA</i>	Physics cases	FAZIA future	New observables
000	000000	●00	0000	0000

C. Ciampi et al. Phys. Rev. C 106, 024603 (2022)

C. Ciampi et al. Phys. Rev. C 106, 024603 (2022)

C. Ciampi et al. Phys. Rev. C 106, 024603 (2022)

Collaboration	FAZIA	Physics cases	FAZIA future	New observables
		000		
Quasi-projectile	hreakun			

S. Piantelli et al. Phys. Rev. C 101, 034613 (2020) based on A. Jedele et al. Phys. Rev. Lett. 118, 062501 (2017) and citations therein

Collaboration	FAZIA	Physics cases	FAZIA future	New observables
	•1 1 1		0000	0000
Quasi-project	ile breakun			

S. Piantelli *et al.* Phys. Rev. C **101**, 034613 (2020) based on A. Jedele *et al.* Phys. Rev. Lett. **118**, 062501 (2017) and citations therein

Collaboration	FAZIA	Physics cases	FAZIA future	New observables
		000		
Quasi-projectile	hreakun			

only 4 blocks (low statistics) but large-Z fragments could be isotopically identified

S. Piantelli *et al.* Phys. Rev. C **101**, 034613 (2020) based on A. Jedele *et al.* Phys. Rev. Lett. **118**, 062501 (2017) and citations therein

Too or a soil a soil and a so a				
000	000000	00•	0000	0000
Collaboration	FAZIA	Physics cases	FAZIA future	New observables

Invariant mass spectroscopy

courtesy of D. Gruyer (FAZIACOR experiment)

Collaboration	FAZIA	Physics cases	FAZIA future	New observables
	000000		●000	
FAZIA future				

$Present\ status$

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for Fermi energies (15-50 AMeV)

Collaboration	<i>FAZIA</i> 000000	Physics cases 000	FAZIA future 0000	New observables 0000
FAZIA faiture				

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for Fermi energies (15-50 AMeV)

Future at GANIL

There are still many physics cases to be explored 2 experiments approved for 2025!

Collaboration	FAZIA	Physics cases	FAZIA future	New observables
	000000		0000	
FAZIA future				

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

Collaboration	FAZIA	Physics cases	FAZIA future	New observables
			0000	
FAZIA faitain	0			

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

• Thicker sensors with the same FAZIA electronics

Collaboration	<i>FAZIA</i>	Physics cases	FAZIA future	New observables
000	000000	000	0000	0000
FAZIA future				

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols

Collaboration	<i>FAZIA</i>	Physics cases	FAZIA future	New observables
000	000000	000	0000	0000
FAZIA future				

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

Collaboration	<i>FAZIA</i>	Physics cases	FAZIA future	New observables
000	000000	000	0000	0000
FAZIA future				

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

FAZIA technology will be fundamental for the future developments

Collaboration	FAZIA	Physics cases	FAZIA future	
000	000000	000	0000	0000

Aaa

Short-term plans (coupling of existing detectors: FRIB + INFN)

≈350 Si-CsI(Tl) telescopes + FROG \rightarrow reaction plane, b, ...

E., steps: peds

12 blocks * 16 units each

- → 192 Si-Si-CsI(Tl) telescopes
- → Isotopic identification and low thresholds up to Z=25
- → Isospin diffusion/transparency, isotopic distributions from participants and spectators

LANA and MoNA

Neutron detectors (flows, femtoscopy, invariant mass spectroscopy)

AE steps: 5555D

HIRA + FARCOS + OSCAR DSSSD: Femtoscopy and Invariant Mass Spectroscopy

Collaboration	FAZIA	Physics cases	FAZIA future	New observables
			0000	

Aaa

Long-term solution: TPC + Ancillary detectors

15/19

Collaboration	<i>FAZIA</i> 000000	Physics cases	FAZIA future 0000	New observables $\bullet 0000$
New observe	ables			

The next years will be crucial to find how to access observables to constraint EoS parameters with radioactive beams

Collaboration 000	FAZIA 000000	Physics cases	FAZIA future 0000	$New \ observables$
New observe	ables			

The next years will be crucial to find how to access observables to constraint EoS parameters with radioactive beams

Lol proposals:

- Neutron and proton flow parameters
- Isospin diffusion, stopping and transparency
- Pygmy Dipole Resonances
- Femtoscopy
- Invariant Mass Spectroscopy

Collaboration 000	FAZIA 000000	Physics cases	FAZIA future 0000	$New \ observables$
New observe	ables			

The next years will be crucial to find how to access observables to constraint EoS parameters with radioactive beams

Lol proposals:

- Neutron and proton flow parameters
- Isospin diffusion, stopping and transparency
- Pygmy Dipole Resonances
- Femtoscopy
- Invariant Mass Spectroscopy

Elliptic flow

Flow parameters of free neutron and proton emissions are among the most sensitive probes of the symmetry energy

Choice of reactions in order to enhance isospin asymmetries

- 54,56 Ni ${}^{+58}$ Ni and 70 Ni ${}^{+64}$ Ni at E/A = 150 400 MeV
- 106 Sn+ 112 Sn and 132 Sn+ 124 Sn at E/A = 150 400 MeV

Elliptic flow

Flow parameters of free neutron and proton emissions are among the most sensitive probes of the symmetry energy

Choice of reactions in order to enhance isospin asymmetries

- 54,56 Ni $+{}^{58}$ Ni and 70 Ni $+{}^{64}$ Ni at E/A = 150 400 MeV
- 106 Sn+ 112 Sn and 132 Sn+ 124 Sn at E/A = 150 400 MeV

at the same time FAZIA-like blocks can measure projectile spectators (extension of topics already measured at Fermi energies)

- breakup of projectile spectators
- isospin diffusion

Collaboration	<i>FAZIA</i>	Physics cases	FAZIA future	New observables
000	000000	000	0000	00●0
Femtoscopy and	l Invariant M	ass Spectroscopy		

Experimental conditions

- medium charge (Z < 30) radioactive beam, close to the proton-drip line, on a light target
- decay by one or two-proton emission from its loosely bound ground state
- useful information on the structure,
 - e.g. the one- or two-proton separation energies

- protons detected by silicon strips array (HiRA and/or FARCOS)
- heavier residue can be identified by FAZIA blocks
 - also providing a measurement of kinetic energy and angle

Collaboration	<i>FAZIA</i>	Physics cases	FAZIA future	New observables
000	000000	000	0000	000●
Conclusions				

• HIC community needs FRIB high intensity radioactive beams at $E/A = 150-400 {
m MeV}$

Collaboration	<i>FAZIA</i>	Physics cases	FAZIA future	New observables
000	000000	000	0000	000●
Conclusions				

- HIC community needs FRIB high intensity radioactive beams at $E/A = 150-400 {
 m MeV}$
- New observables are needed to constrain EoS parameters

Collaboration	<i>FAZIA</i>	Physics cases	FAZIA future	New observables
000	000000	000	0000	000●
Conclusions				

- HIC community needs FRIB high intensity radioactive beams at $E/A = 150 400 \mathrm{MeV}$
- Are new observables needed to constrain EoS parameters?

Collaboration	<i>FAZIA</i>	Physics cases	FAZIA future	New observables
000	000000	000	0000	000●
Conclusions				

- HIC community needs FRIB high intensity radioactive beams at $E/A = 150 400 \mathrm{MeV}$
- Are new observables needed to constrain EoS parameters?
- Or new ways to access already known observables are needed?

Collaboration	<i>FAZIA</i>	Physics cases	FAZIA future	New observables
000	000000	000	0000	000●
Conclusions				

- HIC community needs FRIB high intensity radioactive beams at E/A = 150 400 MeV
- Are new observables needed to constrain EoS parameters?
- Or new ways to access already known observables are needed?

We submitted a letter of intents with some proposals of future experiments, suggested observables and hints on a new multipurpose apparatus. Discussions in this and future workshops will be fundamental to trace a route for the future of EoS investigations.

Thanks for your attention

Backup slides

Backup

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - $\bullet\,$ energy resolution is better than 1 $\%\,$ from 5 MeV to 4 GeV

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

Backup

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

Backup

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

₩

- Compactness and modularity
- Very good isotopic discrimination capabilities
- \bullet Thresholds (${\lesssim}10\,\text{MeV}/\text{u})$ suited for Fermi energies

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

Backup

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

₩

- Compactness and modularity
- Very good isotopic discrimination capabilities
- Thresholds ($\lesssim 10 \text{ MeV}/u$) suited for Fermi energies

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019