Constraining the in-medium cross section in transport model with Ca+Ni collisions at 140 AMeV

Chi-Kin Tam (Western Michigan University) 10 am, October 29, 2024 (EST)

Dense Nuclear Matter Equation of State from Theory and Experiments Session : Transport model comparisons

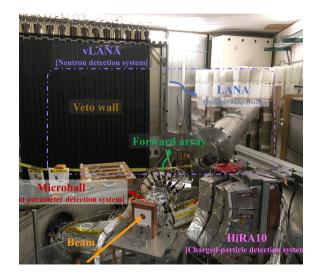
content

experiment

- setup
- transverse momentum spectra

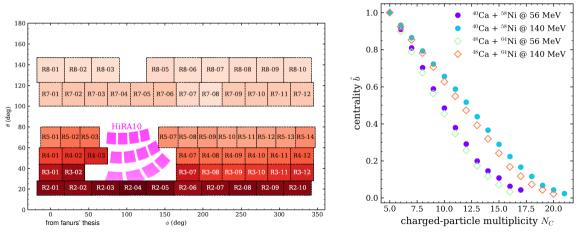
model

- screened in-medium cross section
- event selection
- comparison with data

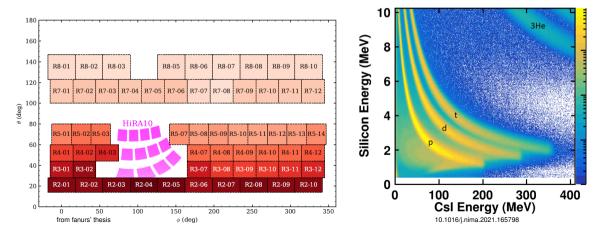

3 isoscaling result

conclusion

experiment

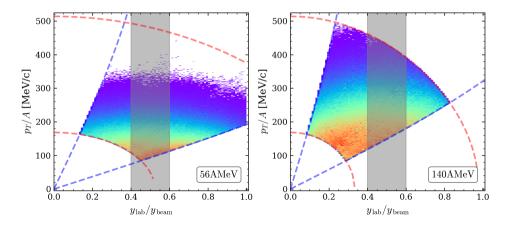

beam	target	$E/A \ \mathrm{[MeV]}$	δ_{asym}	
40 Ca	58 Ni	56, 140	0.020	
40 Ca	64 Ni	56, 140	0.143	

- $\beta \approx 0.22$
- 2019, at NSCL
- $\sim 4\pi \ \mu$ ball for multiplicity
- Hira10, charged particle spectra
- focus on charged particles


experimental coverage

- μ ball : $\sim 4\pi$ of CsI(TI) crystal surrounding the target
- · measure charged-particle multiplicity to estimate impact parameter
- 40 % most central events

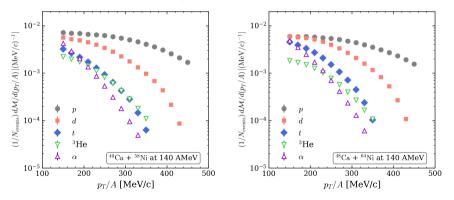
experimental coverage


- Hira10 : charged particle spectra ($\theta_{lab} \in (30^{\circ}, 75^{\circ})$)
- PID of $p, d, t, {}^{3}\operatorname{He}, \alpha$

transverse momentum spectra

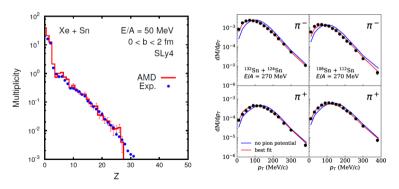
- deuteron in $^{40}\mathrm{Ca}+^{58}\mathrm{Ni}$ at 140~AMeV
- geometric and reaction efficiency corrected
- mid-rapidity $\hat{y} \in (0.4, 0.6)$

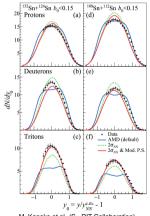
- $\theta_{\text{lab}} \in (30^\circ, 75^\circ)$
- $E_{\text{lab}} \in (15.0, 131.5) \text{ MeV/A}$


transverse momentum spectra

• $\theta_{\text{lab}} \in (30^{\circ}, 75^{\circ})$ $\hat{y} \in (0.4, 0.6)$

•


Reaction	p	d	t	$^{3}\mathrm{He}$	α
⁴⁰ Ca + ⁵⁸ Ni at 140 AMeV					
${ m ^{48}Ca}$ + ${ m ^{64}Ni}$ at $140~{ m AMeV}$	1.37	0.80	0.37	0.18	0.26



Antisymmetrized Molecular Dynamics (AMD)

- dynamics of many-nucleon system by the time evolution of a Slater determinant of Gaussian wave packets.
- \circ explicitly incorporated cluster correlation, $N_1 + N_2 + B_1 + B_2 \rightarrow C_1 + C_2$
- o successfully described observables in different reactions

Akira Ono 2013 J. Phys.: Conf. Ser. 420 012103 J. Estee et al. (SπRIT Collaboration) Phys. Rev. Lett. 126, 162701 M. Kaneko et al. (SπRIT Collaboration) Phys. Lett. B Vol. 822

screened in-medium cross section

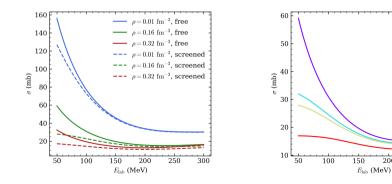
$$\sigma_{
m NN} = \sigma_0 \tanh(\sigma_{
m free}/\sigma_0), \text{ with } \sigma_0 = \eta(
ho')^{-2/3}$$

Phys. Rev. C 48, 1702 Phys. Rev. C 49, 566 Acta Phys. Pol. B 33, 45

 $n = \infty$

n = 1.00

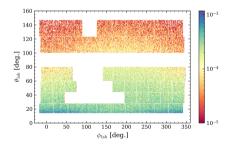
n = 0.85

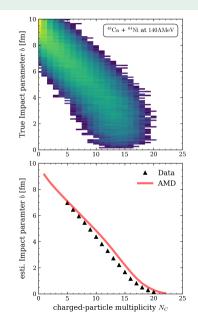

n = 0.50

200

250

300

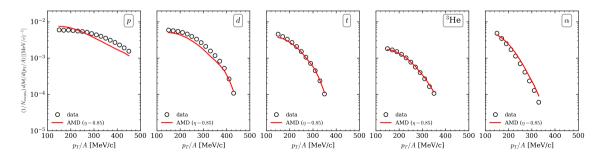

- for a particle going through medium with density ρ , the cross section for two-body collision should be less than the order of $\rho^{-2/3}$, i.e. $\sigma_{\rm NN}^{\rm med.} \leq \eta(\rho)^{-2/3}$
- larger density means stronger suppression
- $\sigma_{\text{NN}}^{\text{med.}} \to \sigma_{\text{free}} \text{ as } \eta \to \infty$


event selection

$$\hat{b} = \frac{b(N_C)}{b_{\max}} \propto \sqrt{\sum_{N=N_C}^{\infty} P(N)}$$

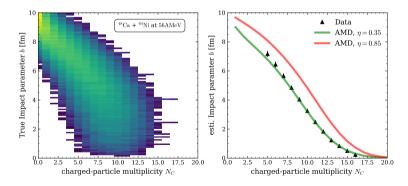
- + $b_{\rm max}$ is the maximum impact parameter considered
- P(N) is the probability of detecting N charged-particles
- assume b decreases monotonically with N_C

 \checkmark event selected by gating on N_C , as in experimental data



p_T spectra comparison 140AMeV

- Skyrme parameterization SLy4 (L = 46 MeV)
- screened in-medium cross-section parameter $\eta=0.85$
- parameters for reproducing rapidity in Sn + Sn reaction at 270 AMeV
- reconstructed \hat{b} agrees with that of data

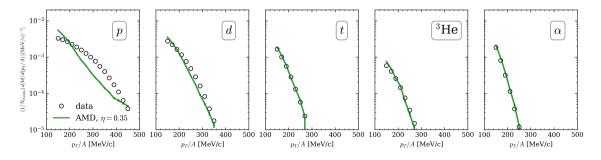

${ m ^{48}Ca} + { m ^{64}Ni}$ at 140 AMeV

```
\sigma_{
m NN} = \sigma_0 \tanh(\sigma_{
m free}/\sigma_0), with \sigma_0 = \eta 
ho^{-2/3}
```

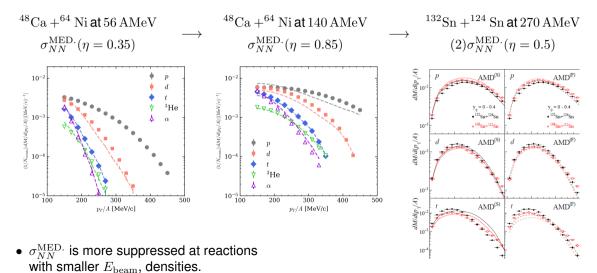

p_T spectra comparison 56AMeV

- Skyrme parameterization SLy4 (L = 46 MeV)
- screened in-medium cross-section parameter $\eta=0.35, 0.85$
- reconstructed \hat{b} agrees with that of data

 ${
m ^{48}Ca} + {
m ^{64}Ni}$ at 56 AMeV


 $\sigma_{
m NN} = \sigma_0 \tanh(\sigma_{
m free}/\sigma_0),$ with $\sigma_0 = \eta
ho^{-2/3}$

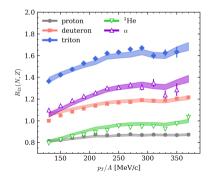
p_T spectra comparison 56AMeV


- Skyrme parameterization SLy4 (L = 46 MeV)
- screened in-medium cross-section parameter $\eta=0.35$
- reconstructed \hat{b} agrees with that of data

 $\sigma_{
m NN}=\sigma_0 anh(\sigma_{
m free}/\sigma_0),$ with $\sigma_0=\eta
ho^{-2/3}$

 ${
m ^{48}Ca} + {
m ^{64}Ni}$ at 56 AMeV

Dependence on in-medium cross-section

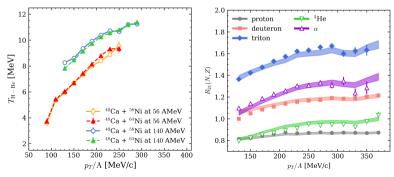

Lee, J.W., Tsang, M.B., Tsang, C.Y. et al. Eur. Phys. J. A 58, 201 (2022).

spectral ratio R_{21} Data

• spectral ratio of neutron-rich to neutron-deficient reaction

$$R_{21}(N,Z) = \frac{d\mathcal{M}_2(N,Z)}{d\mathcal{M}_1(N,Z)} = \frac{d\mathcal{M}({}^{48}\mathrm{Ca} + {}^{64}\mathrm{Ni}\,\mathbf{\textcircled{0}}\,140\,\mathrm{AMeV})}{d\mathcal{M}({}^{40}\mathrm{Ca} + {}^{58}\mathrm{Ni}\,\mathbf{\textcircled{0}}\,140\,\mathrm{AMeV})}(N,Z)$$

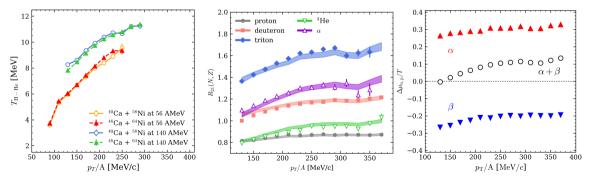
• grouping of ratios with the same N-Z value



spectral ratio R_{21} Data

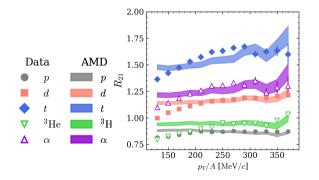
· spectral ratio of neutron-rich to neutron-deficient reaction

$$R_{21}(N,Z) = \frac{d\mathcal{M}(^{48}\mathrm{Ca} + ^{64}\mathrm{Ni}\,\mathbf{@}\,140\,\mathrm{AMeV})}{d\mathcal{M}(^{40}\mathrm{Ca} + ^{58}\mathrm{Ni}\,\mathbf{@}\,140\,\mathrm{AMeV})} \propto \exp(\alpha N + \beta Z)$$


• similar temperature in both reactions is assumed, $T_{\text{H-He}} = 14.3 / \ln \left[1.6 \frac{Y(d) \cdot Y(\alpha)}{Y(t) \cdot Y(^{3}\text{He})} \right]$

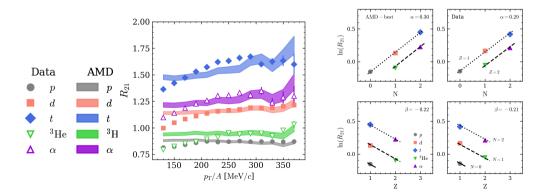
spectral ratio R_{21} and Isoscaling (Data)

$$R_{21}(N,Z) = \frac{d\mathcal{M}(^{48}\mathrm{Ca} + ^{64}\mathrm{Ni}\,\mathbf{@}\,140\,\mathrm{AMeV})}{d\mathcal{M}(^{40}\mathrm{Ca} + ^{58}\mathrm{Ni}\,\mathbf{@}\,140\,\mathrm{AMeV})} \propto \exp(\alpha N + \beta Z)$$


- effective chemical potentials $\alpha = \Delta \mu_n / T$ and $\beta = \Delta \mu_p / T$.
- utilized for constructing pseudo-neutron $Y(p) \cdot Y(t)/Y(^{3}\text{He})$
- + $|\alpha| \approx |\beta|$ in previous works but not necessarily true

R_{21} and isoscaling (AMD vs Data)

$$R_{21}(N,Z) = \frac{d\mathcal{M}(^{48}\text{Ca} + ^{64}\text{Ni}\,\mathbf{@}\,140\,\text{AMeV})}{d\mathcal{M}(^{40}\text{Ca} + ^{58}\text{Ni}\,\mathbf{@}\,140\,\text{AMeV})} \propto \exp(\alpha N + \beta Z)$$


• spectra ratio $R_{21}(N, Z)$ moderately reproduced

R_{21} and isoscaling (AMD vs Data)

$$R_{21}(N,Z) = \frac{d\mathcal{M}(^{48}\mathrm{Ca} + ^{64}\mathrm{Ni}\,\mathbf{@}\,140\,\mathrm{AMeV})}{d\mathcal{M}(^{40}\mathrm{Ca} + ^{58}\mathrm{Ni}\,\mathbf{@}\,140\,\mathrm{AMeV})} \propto \exp(\alpha N + \beta Z)$$

- spectra ratio $R_{21}(N, Z)$ moderately reproduced
- isoscaling observed in data and AMD

Summary and Outlook

- $\checkmark\,$ Choice of AMD parameters guided by the reconstructed impact parameter
- \checkmark reproduced p_T spectra in Ca + Ni collisions at 56 and 140 AMeV
- $\checkmark\,$ Dependence of in-medium cross section on ${\it E}_{\rm beam}$ and reaction densities
- $\checkmark\,$ Observed isoscaling in data and AMD opens possibility for pseudo neutron

- including neutron the analysis might gives insight in comparison with AMD calculation
- AMD parameters are in active development

Summary and Outlook

- \checkmark Choice of AMD parameters guided by the reconstructed impact parameter
- \checkmark reproduced p_T spectra in Ca + Ni collisions at 56 and 140 AMeV
- $\checkmark\,$ Dependence of in-medium cross section on $\mathit{E}_{\mathrm{beam}}$ and reaction densities
- $\checkmark\,$ Observed isoscaling in data and AMD opens possibility for pseudo neutron

- o including neutron the analysis might gives insight in comparison with AMD calculation
- AMD parameters are in active development

Thank you and Q. and A.

Back up : AMD Model details

- dynamics of many-nucleon system by the time evolution of a Slater determinant of Gaussian wave packets.
- ✓ explicitly incorporated cluster correlation in the final state of two-nucleon collision, $(N_1 + N_2 + B_1 + B_2 \rightarrow C_1 + C_2)$
- \checkmark collision cross section of a specific final state C_1, C_2 is given by

$$\frac{d\sigma(C_1, C_2)}{d\Omega} = P(C_1, C_2, p_f, \Omega) \frac{p_i}{v_i} \frac{p_f}{v_f} |M|^2 \frac{p_f}{p_i}$$

✓ matrix element for two-nucleon scattering $|M|^2$, is an important input to AMD calculation since it can be modified in nuclear medium. It can be connected to the in-medium two-nucleon cross sections through

$$|M|^2 = (2/m_N)^2 d\sigma_{NN}/d\Omega$$

Back up : AMD definition of density

$$\sigma_{\rm NN} = \sigma_0 \tanh(\sigma_{\rm free}/\sigma_0), \text{ with } \sigma_0 = \eta(\rho')^{-2/3}$$

o phase-space density instead of normal density

 $\circ
ho' = \left((
ho_1')^{\mathrm{init}} (
ho_2')^{\mathrm{init}} (
ho_1')^{\mathrm{final}} (
ho_2')^{\mathrm{final}}
ight)^{1/4}$ where

$$(\rho_i')^{\text{init/final}} = \left(\frac{2\nu}{\pi}\right)^{3/2} \sum_{k \neq i} \Theta(p_{\text{cut}} > |(\mathbf{P}_i)^{\text{init/final}} - \vec{\mathbf{P}}_k|) e^{-2\nu(\vec{\mathbf{R}}_i - \vec{\mathbf{R}}_k)^2}$$

 $\circ\,$ suppress clusters in medium by forming clusters only in low phase-space density region with the condition $\rho' < 0.125 {\rm fm}^{-3}$.