
Analysis workflow with Easyjet
CAF - ATLAS France users meeting

28/11/2024

Georges Aad (CPPM)



Introduction

● AthAnalysis based framework aiming to process DAODs and dump ntuples
● Mainly used by different di-Higgs analyses

○ Some analysis use EasyJet as submodule
● HHFramework practical information:

○ Conveners: G. Aad (CPPM), Christophe Roland (LPNHE)
○ Previous conveners (still active): Louis D’Eramo (LPCA), Thomas Strebler (CPPM)
○ Tuesdays bi-weekly 5pm CERN time https://indico.cern.ch/category/17096/
○ atlas-phys-hdbs-dihiggs-hhframework@cern.ch
○ Easyjet Git repository
○ Mattermost

2

Core software

Analysis

https://indico.cern.ch/category/17096/
mailto:atlas-phys-hdbs-dihiggs-hhframework@cern.ch
https://gitlab.cern.ch/easyjet/easyjet
https://mattermost.web.cern.ch/signup_user_complete/?id=zqgsdao6sffjum15jm11y65gkh&md=link&sbr=su


What is EasyJet

● Common framework implementing CP recommendations through CP algorithms
● Based on AthAnalysis

○ Using Athena CP algorithm block configuration for object calibration, ID, systematics, …
○ Using component accumulator to schedule EasyJet and analysis specific algorithms
○ Input can be DAOD_PHYS or DAOD_PHYSLITE

● Very modular approach
○ Easy to add analysis specific functionalities

● Flexible python interface to configure and steer different tools and algorithms
● Yaml files to set/modify user configuration

○ Converted to Flags available to all python blocks
○ Can be overwritten with command line option

● Ntuple dumper from CP::TreeMakerAlg
○ All systematics available in the same tree

● Easy access to newcomers and for fast studies
○ Configurable mutli-working point support for object selection
○ Easy to plugin computation of new variables
○ Support for several MVA tools through Athena MVAUtils (TMVA, ONNX, …)
○ Configurable slimming/skimming/thinning capabilities

3



Configuration and Steering

● Two level configuration based on Python and Yaml
○ All configuration accumulated in AthConfigFlags

● Yaml used to define analysis parameters
○ CP configurations, containers, cuts, output branches …
○ Recursive file merging with possibility to “include” Yaml files

■ Default files containing default blocks and flags
■ Analysis specific Yaml can extend blocks and overwrite existing flags

● Steering of algorithm configuration and sequence done in python
○ Allows dynamic configuration building depending on analysis flags
○ Allows algorithmic checking/merging/extension of flags

● More flexible than ConfigText in athena
○ Dynamic (python) interface to ConfigFactory (CP Algs) and ComponentAccumulator 

(sequence) rather than static description (Yaml)
○ No need to duplicate properties shared by different blocks

4

More details in Dan’s et 
al presentation

https://indico.cern.ch/event/1400487/contributions/5895836/attachments/2831630/4947463/24.04.04%20Easyjet%20configuration.pdf
https://indico.cern.ch/event/1400487/contributions/5895836/attachments/2831630/4947463/24.04.04%20Easyjet%20configuration.pdf


Configuration and Steering

5

Base file
Config algs in python using flags filled from yaml

Analysis specific file



Example structure (bbyy)

6

bbyy_branches

bbyy-ntupler

Executable steering script

Object/event selectors 
+ analysis algorithms

RunConfig-bbyy.yaml

Analysis specific configurations: 
channels, object working points, 
triggers, CutList for cutflow…

ResonantPNNbbyyAlg

BaselineVarsbbyyAlg

Build syst-aware calibrated 
object containers and loose 
selection (configurable using 
analysis flags).

default_sequence_cfg

Calls object calibration 
and ID defined centrally

CP algs

analysis_configuration

Object selection

bbyy_cfg

Config output

minituple_cfg OutputDumper

Dump syst-aware output

Analysis package
EasyJet Central package

Athena

Start HERE

https://gitlab.cern.ch/easyjet/easyjet/-/blob/main/bbyyAnalysis/python/bbyy_config.py?ref_type=heads
https://gitlab.cern.ch/easyjet/easyjet/-/blob/main/bbyyAnalysis/bin/bbyy-ntupler
https://gitlab.cern.ch/easyjet/easyjet/-/blob/main/bbyyAnalysis/share/RunConfig-bbyy.yaml
https://gitlab.cern.ch/easyjet/easyjet/-/blob/main/bbyyAnalysis/src/SelectionFlagsbbyyAlg.cxx?ref_type=heads
https://gitlab.cern.ch/easyjet/easyjet/-/blob/main/bbyyAnalysis/src/BaselineVarsbbyyAlg.cxx?ref_type=heads
https://gitlab.cern.ch/easyjet/easyjet/-/tree/main/EasyjetHub?ref_type=heads
https://gitlab.cern.ch/easyjet/easyjet/-/tree/main/EasyjetHub?ref_type=heads
https://gitlab.cern.ch/easyjet/easyjet/-/tree/main/EasyjetHub?ref_type=heads
https://gitlab.cern.ch/easyjet/easyjet/-/blob/main/bbyyAnalysis/python/bbyy_config.py?ref_type=heads
https://gitlab.cern.ch/easyjet/easyjet/-/tree/main/EasyjetHub?ref_type=heads
https://gitlab.cern.ch/easyjet/easyjet/-/tree/main/EasyjetHub?ref_type=heads


Sequence flow

7

Typical Alg sequence
Add generic 

event weights

Trigger, PV and 
quality selection

EasyJet adds some 
handy info

Objects (photons) 
calibrations and 

selection from CP algs

Handle (thinned) 
containers

Build MET after 
calibration

Perform overlap removal

Decorate objects with 
(multiple) selections Add analysis specific 

truth information
Add analysis specific variables 

and tight/event selection

Dump output

Add cutflow at any step
Add MetaData



Output Structure

● Typical structure with all what is needed in typical analysis
○ Metadata, cutflows and sum-of-weights including MC systematics

● Tree containing:
○ Generic events variables
○ Trigger information
○ Vector of object variables after calibrations (configurable variable list and selection)
○ Analysis specific variables (decorated to EventInfo)
○ Truth information
○ Event weights and scale factors 8

DSID, campaign, MC/data

CutFlow

Events Tree
List of systematics

Sum of weights (per 
MC syst)



Systematics
● Systematics handled centrally using Athena

○ Code aware of the list of systematics for each object type
● Systematic selection configurable from Yaml
● All systematics in one tree

○ Optimized duplication of branches that are not affected by specific systematics
○ All objects passing an OR of all systematics are added to the vectors
○ Add “boolean” branches to select which object passes cuts for which systematics

9

More details in Minori’s presentation

https://indico.cern.ch/event/1425660/contributions/5996188/attachments/2880315/5046022/HHFramework_180624.pdf


Post-Processing Software

● Post processing is needed before statistical analysis
○ Computation of sum-of-weights and cross-section normalisation factors
○ Potential formatting and skimming/slimming for the fitting tools
○ Developpement of MVAs and fast analysis optimisations
○ Fast checks and data/MC plots

● Several options available and used by different analyses
● Easyjet provides a simple post-processing software with basic functionalities (EasyJetPlus)

○ Also based on AthAnalysis
○ Providing a starting point but underdeveloped for now

■ Getting cross-sections from PMG
■ Computation of sum-of-weights and sample normalisation
■ Skimming and slimming functionalities can be added if there is interest from the users

10



Management and Support

● Project managed in git
○ Git issues and merge requests

● CI for basic automatic checks
○ Compiles and runs
○ Plans to add more checks on 

the output
● Quick update following athena 

releases
● Human supports on mattermost 

and bi-weekly Zoom

11

~50 merge request per months

Active community 



Grid processing

● Started to gain experience with the grid
○ More understanding and optimisations still needed (progressing)

● Collecting information from the users
○ No complaining about running nominal MC
○ MC with systematics taking long time (more than a week)

■ Needs tuning and babysitting of prun commands
■ Using scouts to define the job parameters not efficient (timewise for us)

○ Running on data is also long (more than a week)
■ Also tuning needed

● Running on PHYSLITE is especially constraining
○ More than 100k events per file (smallest possible jobs)

■ Cannot split file with nEventPerJob and SkipEvents due to metadata
■ No way now to ensure correct sum-of-weight for normalisation if we split files in several jobs

● Trying to optimise the job submission and the code
○ Avoid needing to split jobs
○ Last resort is to split systematics into 2 (several) blocks

12

More details in Georges’ presentation

https://indico.cern.ch/event/1474368/#3-grid-processing-feedback


Grid example: ttHH ntupler on ttbar sample

● Checking as an example one task running ttHH analysis on a ttbar sample
○ Task link

● Running with systematics
○ Not sure about the analysis strategy (running MVAs, CPU/memory intensive tasks, …)
○ Not sure about the exact number of systematics but should be comparable for most analyses

13

Large number of events 
per file O(100k)

Good for small output but 
can take significant extra 

time

Leads to one file per job 
for the dataset

448 jobs for 448 files

1 job failed after many 
attempts

More than 12 days from 
start to finish

https://bigpanda.cern.ch/task/41524513/


ttHH on ttbar job: Memory

● Memory around 2.5 GB per job
○ Max around 3 GB which might create some problems on some sites (some have 2.6 GB limit)
○ But it does not seem to create any major issues 

14

All plots are taken from the panda website
Many more are available per task to help with diagnostics



ttHH on ttbar job: Memory

● Look at PSS and/or RSS (don’t care about virtual)
○ Swap should be 0

● Memory increases at the beginning and stays relatively stable until the end of the jobs
○ Reasonable long jobs should not be killed do to memory issues

● No swap memory is used
○ Otherwise the job can take a huge amount of time and never finishes 

15



ttHH on ttbar job: Memory

● Estimated memory leak plot available
○ Done by iterative linear fit removing first events with a sharp increase
○ Not perfect but can give an idea

● 15 KB/s leak found in this job
○ Can’t exclude a small leak but it is most probably less than the given value
○ This needs a more thorough check (not our priority for now)

16



ttHH on ttbar job: Wall time

● Most jobs finish in less than one day
○ Maximum less than 3 days

● Why the task took 12 days then?
○ 448 jobs is not a huge number and should mostly run in parallel 

17



ttHH on ttbar job: History

● Looking more carefully at the task profile in time
○ Up to 15 attempts before finishing

18HH framework meeting - 19/11/2024

Scouts and sites 
availability

Bulk submission
93% done after 4 days
Jobs take ~1 day of CPU 

Second and third attempt of 
failed jobs
98.5% done after 6 days

Last job finished with attempt 4 after 8 days
Followed by 11 attempts for the last job that 
failed (wasted 4 days)



Running on data (example)

● Work in progress, detailed look not yet done
● Few preliminary conclusions

○ Large number of files distributed on the grid
○ Harder to tune than MC (big spread in Wall time between jobs)
○ But could finish in few days using large nGBPerJob

19

Let scouts do it all: 8 days

100GB per job: 6 days

The two tasks are running similar ntuple 
dumper but not exactly the same config



Conclusions

● EasyJet framework steadily spreading within HH analyses and beyond
○ Demonstrated flexibility to accommodate various analyses needs

● Active developments from the community
○ Improvement of core software
○ New functionalities to both Easyjets and Athena CP algorithms depending on analysis needs
○ Flow-up of CP recommendations and quick updates following AthAnalysis releases
○ Optimisation of output ntuple size
○ Analysis specific developments

● Reliable core performance metrics to be developed
○ Several analyses running nominal on the grid without problems
○ Tuning of jobs with systematics ongoing

● Skeleton post-processing code provided
○ But most analysis using other post-processing frameworks

● More details in the HHFramework tutorial presentation from Louis and Thomas
● Future structure evolutions

○ As more analyses are added it is becoming harder to maintain everything in one repository
○ Considering the use of sparse checkout or splitting to sub-modules
○ Splitting allows central installation of the core package in the future

20

https://docs.google.com/presentation/d/19HmxwUjOsJ0w6RP83yblLTjHHa4BZrgZTEXegB8eVvQ/edit#slide=id.g23df9d5b808_2_65


Backup

21


