GPU usage for ML at CC-IN2P3

Introduction

Goal of this presentation :

- Discuss practical usage of GPU for ML in ATLAS
- Overview of many aspects/difficulties in ML projects
 - environements setup
 - libraries
 - file format & processing
 - application in Athena
- NOT meant to be a best-practice recommendation
 - other usage / workflow might be better
 - personnal choice/preference/experience in purple
 - discussions welcome !

P-A Delsart

Environment – Jupyter or scripts ?

Jupyter notebook

- Python development interface in a web browser
- Used in most (all?) ML tutorials
- Many advantages/nice features
 - integrated graphics, equation, markdown doc..
 - easily shareable
 - etc...
- Available at CC with GPUs
- Or use scripts & python command line
 - Intense usage of command line (history, shortcuts, auto-completion)
 - Jupyter editor limited (or I'm not used to it)
 - any important project will anyway need to
 - develop full libraries beyond simple notebook/scripts
 - write elaborated batch scripts

P-A Delsart

Environment - facilities

CC-IN2P3

- GPU farm available to all ATLAS users
- Batch: jobs submitted with **SLURM** (same as CPU)
- Interactive: srun-pgpu_interactive ... (see doc)
 - necessary to develop, debug, prototype
- Custom software environment possible
 - details next slides
- Excellent, direct support from CC !
 - the issue tracking system is an issue though...
- Batch slots availability : usually good... but sometimes completely full !
 - personal : jobs stuck in queue since several days at critical period => decided to ask for an account at IDRIS/JeanZay

Environment - facilities

IDRIS Jean Zay

- Need to submit a project to have an account
 - not difficult for small project : ~1 page description+signature from DU
 - took a few days to obtain an acount + 5000h GPU
- Slurm system for batch/interactive jobs
 - options/settings might differ
- Disk quota : ~50Tb
- Reactive support
- Batch slots availability: excellent, jobs never queued more than a few mins.

Environment – setting up ML libraries

CC-IN2P3

- · load conda then activate an environment
- Or prepare a custom environment

module load conda
conda activate <environment name>

```
conda env create -f ~/myEnvConfig.yaml -p /pbs/throng/atlas/delsart/myenv
# activate with :
conda activate /pbs/throng/atlas/delsart/myenv
```

- Install additional packages ?
 - use "conda install ..."
 - ... or "pip install" (works well but might conflict with conda packages)

JeanZay

• Use "module load <env>" + "pip install"

Data preparation for ML

- Typical case: how to extract data from DAOD to feed ML training algorithms ?
 - Athena job to write ROOT ntuple or HDF5 file
 - Many Athena frameworks exist, ex: easyjet
- Which format to use ?
 - HDF5 : popular in ML community, many tools and interface with ML libraries
 - ROOT: familiar to HEP users, can be read in pure python with uproot (very easy)

Data preparation for ML

- Typical case: how to extract data from DAOD to feed ML training algorithms ?
 - Athena job to write ROOT ntunle or HDE5 file
 Note on ROOT's future :
- Wh RNTupe will replace TTree: smaller and faster to read than all other format
 - v6.34 will provide solution to feed pytorch tensorflow directly from RDataFrame
 - potentially perfect solution for loading and preprocessing !

uproot (very easy)

e

with

ML coding : Tensorflow or pyTorch ?

- Both very mature & performant frameworks
 - No obvious choice...
- Wrote the same project with both tensorflow/keras and pytorch
- preferred pyTorch
 - easier to understand the training mechanics (keras simplicity is "hiding" many details), more flexible (tensors are mutable)
 - lower memory usage in my case
 - seem more popular in academia (more package based on pytorch)

Data flow and preprocessing

Can be a very important and time consuming development

- Large datasets do not all fit in GPU memory
- Need to stream from file to GPU
 - includes loading, filtering, preprocessing
- Wrote custom code to read-in ROOT ntuple
 - using uproot to load TTree from files
 - Did not find good data streaming solution for HDF5 files ??

Input (output) normalization suggestion:

- Do it as the 1st layer of your model
 - normalization code won't have to be ported when using the model in an other environment (Athena....)

P-A Delsart

Model architecture and development

Architecture

- Very project specific
 - found pyTorch extremely flexible & easy for complex NN architecture

Developing & debugging

- Use python interactive sessions a lot
 - auto-completion + history
 - inspect objects, quick tests...
- Hyper parameter optimization
 - possible if clear criteria for stopping training exist...
 - wasn't my case \rightarrow couldn't test !

Common issues during training

- NaN or Inf
 - the "gradient descent" used in training can easily produce numerical errors
 - ruins and stops the training
 - Often due to 1/x of \sqrt{x} operations (ex: inside loss function)
 - protect with $x \rightarrow x+\epsilon$ (where ϵ =small constant)
- memory issues
 - memory usage grows fast with model size : can exhaust memory during "back-propagation"
 - solutions:
 - reduce batch size
 - request higher memory jobs (SLURM option)

Validation of model prediction

- Training and validation loss are often not enough
- Other metrics might be long to evaluate
 - plan in advance when designing data flow & preprocessing
 - sometimes it imply going back to Athena
 - very slow validation !

Other points

- Train on multiple GPU for very complex model
 - not tested
 - was problematic at CC: are issues solved ?
- Choice of loss function
 - Mathematically determines what the model learns $\ \rightarrow$ make sure it is appropriate
- Input feature importance

Conclusions

Completing a large ML project involve lot of time and efforts

- Imply understanding many different technical aspects
- Similar as completing a physics analysis

Many workflows/approaches/tools are possible

- Finding the appropriate ones is not obvious
- ...but can help to save a lot of time !
- discussing & sharing info is important