

Préparation de la reconstruction pour Hyper-Kamiokande

Lorenzo Restrepo Orrantia Sorbonne Université | 2024

Contexte scientifique 1. T2K

2. Hyper-Kamiokande

2 fiTQun

- 1. Prefit
- 2. Subeventing
- 3. Ring fitter

3 **Résultats de stage** 1. PyfiTQun 2. Prefit 3. Peak finder

 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·

Contexte scientifique

Sorbonne Université | 2024

			•	•	•	0
			•	•	0	0
		•	•	•	•	0
		•	•	•	•	0
		•	•	•	•	0
		•	•	•	•	•
		•	•	•	•	•
						•

Expérience d'oscillation T2K 2

- > Oscillation de neutrinos: changement de saveur pendant la propagation
- Paramétrisée par UPMNS

Expérience d'oscillation T2K 2 > Oscillation de neutrinos: changement de saveur pendant la propagation Paramétrisée par UPMNS TZ **Détecteur** ニュートリノで迫る宇宙の謎 **Cherenkov** à eau **J-PARC** Super-Kamiokande **Near Detectors** Mt. Ikeno 1,360 m 1,700 m below sea level Kamioka Tokai 295 km

@ K. Abe et al., "The T2K Experiment"

Hyper-Kamiokande

- Algorithme de reconstruction pour SK: <u>fiTQun</u> (C++)
- > Reconstruction de (x, t, p, θ , ϕ) → Identification de particule

Hyper-Kamiokande

- > Algorithme de reconstruction pour SK: <u>fiTQun</u> (C++)
- > Reconstruction de (x, t, p, θ , ϕ) \rightarrow Identification de particule

Détecteur de nouvelle génération (8 fois le volume fiduciel de SK !) Première prise de données: 2027

pour HK

Détecteur Hyper-**Kamiokande**

3

Nouvelle géométrie et électronique

→ Nécessité d'adapter fiTQun

	•	0	0	•	0	0	0							
	•	0	0	0	0	0	0							
•	•	•	•	•	•	•	•	•						0
•	•	•	0	0	0	0	0	•						
	•	•	•	0	•	•	•							
	0	0	0	0	0	0	0					0		

fiTQun

Sorbonne Université | 2024

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

Préfit

- > Estimation grossière du vertex
- > Utilise uniquement *t*hits
- Le résultat est utilisé dans les autres algorithmes

Temps résiduel

Fonction Goodness

 $G(\boldsymbol{x},t) \equiv \sum \exp(-(T_{\rm res}^i/\sigma)^2/2)$

 $T_{\rm res}^i \equiv t_i - t - |\mathbf{R}_{\rm PMT}^i - \mathbf{x}|/c_n$

Préfit

- > Estimation grossière du vertex
- > Utilise uniquement *t*hits
- Le résultat est utilisé dans les autres algorithmes

Vertex/e/µ

 $T_{\rm res}^i \equiv t_i - t$

 \succ Pour le vrai vertex (t, x, y, z) : $\Box Tres \sim 0$ **G** est maximale

Seul paramètre libre

Temps résiduel

$$- |oldsymbol{R}^i_{ ext{PMT}} - oldsymbol{x}|/c_n$$

Subeventing

- Permet de traiter différents sousévènements séparés en temps
- Premier algorithme: Peak finder
 Détermine le nombre et l'instant des sous-évènements

Subeventing

- Permet de traiter différents sousévènements séparés en temps
- Premier algorithme: Peak finder Détermine le **nombre** et **l'instant** des sous-évènements

$$G(\boldsymbol{x}, t) \equiv \sum_{i}^{\text{hit}} \exp(-(T_{\text{res}}^{i}/\sigma)^{2}/2)$$
$$T_{\text{res}}^{i} \equiv t_{i} - t - |\boldsymbol{R}_{\text{PMT}}^{i} - \boldsymbol{x}|/c_{n}$$

Peak finder :

faisant varier **t**

Scan de la goodness avec X fixe et en \triangleright Sous évènements = pics dans G

@ fiTQun TN-146-ver.2.0, S. Beckerman et al.

der ·

 $+\eta M = maximums locaux$

6

$$(au) \equiv \frac{1}{1 + (\tau/\gamma)^2}, \ \gamma = \begin{cases} 25 \text{ns} & (\tau < 0) \\ 70 \text{ns} & (\tau > 0) \end{cases}$$

Sélection des pics:
<u>Premier pic:</u> G-scan doit excéder la courbe bleue
<u>Deuxième pic:</u> *idem* + G-scan doit aller en dessous de la courbe verte entre les deux pics

Résultats de stage

Sorbonne Université | 2024

				•	•	•	•	0
			-	•	•	•	0	0
		-		•	•	•	•	0
			•	•	•	•	•	0
			•	•	•	•	•	0
				•	•	•	•	0
				•	•	•	•	0
								•

PyfiTQun

□ <u>fiTQun</u> est très performant

- Excellente identification de particule (pureté >99%)
- Bien testé (plus de 10 ans d'utilization sur SK)

□ Mais…

- Code compliqué et pas commenté
- ✤ Algorithme lent (90s/evènement @ électrons de 500 MeV)

\Box <u>PyfiTQun</u> \rightarrow Version python de fiTQun conçue au LPNHE par G. Díaz

- Beaucoup plus simple
- Idéal pour tester les optimizations

Résultats de stage: préfit

Spatial residuals for 1 GeV electron particle gun at the center of the detector

PyfiTQun:

> Ajustement analytique (méthode de Newton en utilisant le Jacobien de G)

hit $G(\boldsymbol{x},t) \equiv \sum \exp(-(T_{\rm res}^i/\sigma)^2/2)$

Résultats de stage: préfit siduals for 1 GeV electron particle gun

Spatial residuals for 1 GeV electron particle gun at the center of the detector

Ajustement analytique (méthode de Newton en utilisant le Jacobien de G)

8

$$G(\boldsymbol{x},t) \equiv \sum_{i}^{\text{hit}} \exp(-(T_{\text{res}}^{i}/\sigma)^{2}/2)$$

 Préfit par étapes:
 σ est progressivement réduit (σ1 =80ns, σ2 =10ns, σ3 =5ns, σ4 =1ns)
 Chaque fit utilise comme seed la valeur retournée par le précédent
 ~ 70 itérations au total

Résultats de stage: préfit

Spatial residuals for 1 GeV electron particle gun at the center of the detector

<u>fiTQun</u> :

➢ Grid search (scan de G pour 8323 points de l'espace) → long calcul

 Ajustement numérique (n'utilise pas le jacobien)

~ 400 itérations seulement l'ajustement !

2000

3000

-3000

du premier anneau pour le préfit

(ns

times

Arrival

Résultats de stage: préfit

)			
Cl	Jts				
ra	dius				
				 _	
25	00	30	00	35	00
۱)					
-					

Résultats de stage: Peak Finder 11

Goodness scan and threshold functions for a 110 MeV muon particle gun at the center of the detector

2000

Scan de G

Fonctions de sélection des pics

Équivalent à la figure de la slide 6

Résultats de stage: Peak Finder 12

Décroissance exponentielle: $f(t) = N_0 e^{\overline{t_{\mu}}}$

Optimisation des paramètres de selection

Référence: temps de vie du muon (~2.2 μs)

10 échantillons de 1000 évènements chacun

 Comptage du nombre d'évènements avec 2
 pics séparés de Δt < t

Projet de thèse

Continuer à optimiser le préfit

- Finir l'optimisation les algorithmes de subeventing
- Optimiser la totalité de fiTQun

1

 \rightarrow Premier algorithme de reconstruction de HK ?

$$L(\mathbf{x}) = \prod_{j}^{\text{unhit}} \frac{P_j(\text{unhit}|\mu_j)}{P_j(\text{unhit}|\mu_j)} \prod_{i}^{\text{hit}} \frac{P_i(\text{unhit}|\mu_j)}{P_i(\text{unhit}|\mu_j)}$$

ility PMT charge pdf

 $\mathbf{t}|\mu_i) \} f_q(q_i|\mu_i) f_t(t_i|\mathbf{x})$

PMT timing pdf

Projet de thèse

- Continuer à optimiser le préfit
- Finir l'optimisation les algorithmes de subeventing
- Optimiser la totalité de fiTQun

 \rightarrow Premier algorithme de reconstruction de HK ?

Préparation des analyses d'oscillation pour HK

Projet de thèse

 $J_{\rm CP}$

Continuer à optimiser le préfit

- Finir l'optimisation les algorithmes de subeventing
- Optimiser la totalité de fiTQun

 \rightarrow Premier algorithme de reconstruction de HK ?

Préparation des analyses d'oscillation pour HK

2

3

Contrainte des modèles de leptogénèse avec les futures projections de HK

								•	•	•	•	•	•	•
	•	٠	•	•	•	•	•							
•	•	•	•	•	•	•	•							
•	•	•	•	•	•	•	•							
•	•	٠	•	•	•	•	•							
•	•	•	•	•	•	•	•							
	•	•	•	•	•	•	•							

Différentes particules → différentes topologies d'évènement

□ *Likelihood* = probabilité d'occurrence d'un évènement Pour un type de particule * Pour un jeu de paramètres (x, t, p, θ, φ)

e

@ K. Abe et al., "Hyper-Kamiokande" Design report

PMT unhit probability PMT hit probability PMT ch

$$L(\mathbf{x}) = \prod_{j} P_{j}(\text{unhit}|\mu_{j}) \prod_{i}^{\text{hit}} \{1 - P_{i}(\text{unhit}|\mu_{i})\} f_{q}(q)$$

Charge prédite sur chaque PMT

arge pdf

 $q_i|\mu_i)f_t(t_i|\mathbf{x})$

PMT timing pdf

Ring fitter

U0.07

0.06

0.04

PMT unhit probability unhit hit $P_j(\text{unhit}|\mu_j) [\{1 - P_i(\text{unhit}|\mu_i)\}f_q(q_i|\mu_i)f_t(t_i|\mathbf{x})]$ $L(\mathbf{x}) = \mathbf{1}$

> Ajustement simultané de $(\mathbf{x}, \mathbf{t}, \mathbf{p}, \theta, \varphi)$ Pour chaque hypothèse de particule

 \clubsuit Minimisation de $-\ln(L)$

> Identification de particule:

Coupure en fonction de la valeur de $-\ln(L)$ après minimisation

