Nuclear equation of state from nuclear experiments and neutron stars observations

GdR Ondes gravitationnelles, Ganil, Caen Pietro Klausner 11/10/2024

Collaborators

Gianluca **Colò** (University of Milano) Xavier **Roca-Maza** (University of Milano & University of Barcelona) Enrico Vigezzi (I.N.F.N.) Francesca Gulminelli (University of Normandie-Caen & L.P.C. Caen) Anthea **Fantina** (GANIL) Marco Antonelli (L.P.C. Caen)

Structure of the presentation

Nuclear equation of state from nuclear experiments and neutron stars observations

- First Part: constraints on EoS from nuclear experiments

- Bayesian inference - Skyrme Interaction

- Second Part: constraints on EoS from Neutron Stars observations

- Second Bayesian inference

Structure of the presentation

Nuclear equation of state from nuclear experiments and neutron stars observations

- First Part: constraints on EoS from nuclear experiments

- Bayesian inference - Skyrme Interaction

- Second Part: constraints on EoS from Neutron Stars observations - Second Bayesian inference

Parameters of the model

Parameters

ρ_0 ,	<i>E</i> ₀ ,	<i>K</i> ₀ ,	J	,	L
- 0	U	V			

 $m_0^*/m, m_1^*/m$

 G_0, G_1

 W_0

Nuclear matter parameters

Surface term parameters

Spin-orbit parameter

Effective masses

0 = isoscalar; 1 = isovector

Parameters of the model

Parameters

ρ_0 ,	<i>E</i> ₀ ,	<i>K</i> ₀ ,	J	,	L
	U	U			

 $m_0^*/m, m_1^*/m$

 G_0, G_1

 W_0

Nuclear matter parameters

Surface term parameters

> Spin-orbit parameter

Effective masses

0 = isoscalar; 1 = isovector

1-to-1 correspondence with usual Skyrme parameters¹!

¹L.-W. Chen et al. Phys. Rev. C 80, 014322 (2009)

Parameters of the model

Parameters

ρ_0 ,	<i>E</i> ₀ ,	<i>K</i> ₀ ,	J	,	L
	U	U			

 $m_0^*/m, m_1^*/m$

 G_0, G_1

 W_0

Nuclear matter parameters

Surface term parameters

> Spin-orbit parameter

Effective masses

0 = isoscalar; 1 = isovector

1-to-1 correspondence with usual Skyrme parameters¹!

Ρ	rior	dis	stri	bu	tion
•					

Par.	Units	Lower	Upper
		limit	limit
$ ho_0$	$[fm^{-3}]$	0.150	0.175
E_0	[MeV]	-16.50	-15.50
K_0	[MeV]	180.00	260.00
J	[MeV]	24.00	40.00
L	[MeV]	-20.00	120.00
G_0	$[MeV fm^5]$	90.00	170.00
G_1	$[MeV fm^5]$	-90.00	70.00
W_0	$[MeV fm^5]$	60.00	190.00
m_{0}^{*}/m		0.70	1.10
m_{1}^{*}/m		0.60	0.90

¹L.-W. Chen et al. Phys. Rev. C 80, 014322 (2009)

"hfbcs-qrpa¹" code to compute observables from parameters

¹G. Colò, X. Roca-Maza, arXiv:2102.06562v1 [nucl-th]

	Ground-s	state properties	
	B.E. [MeV]	$R_{\rm ch} [{\rm fm}]$	$\Delta E_{\rm SO}$
$^{208}\mathrm{Pb}$	$1636.4 \pm 2.0^{*}$	$5.50 \pm 0.05^{*}$	$2.02 \pm$
^{48}Ca	$416.0 \pm 2.0^{*}$	$3.48 \pm 0.05^{*}$	$1.72~\pm$
^{40}Ca	$342.1 \pm 2.0^{*}$	$3.48 \pm 0.05^{*}$	_
56 Ni	$484.0 \pm 2.0^{*}$	_	_
⁶⁸ Ni	$590.4 \pm 2.0^{*}$	_	_
100 Sn	$825.2 \pm 2.0^{*}$	_	_
$^{132}\mathrm{Sn}$	$1102.8 \pm 2.0^{*}$	$4.71 \pm 0.05^{*}$	_
$^{90}\mathrm{Zr}$	$783.9 \pm 2.0^{*}$	$4.27 \pm 0.05^{*}$	_

"hfbcs-qrpa¹" code to compute observables from parameters

> B.E.: Binding Energy R_{ch} : Charge radius ΔE_{SO} : Spin-orbit splitting

¹G. Colò, X. Roca-Maza, arXiv:2102.06562v1 [nucl-th]

[MeV] 0.50^{*} 0.50^{*}

	Ground-s	state properties	
	B.E. [MeV]	$R_{\rm ch} [{\rm fm}]$	$\Delta E_{\rm SO}$
$^{208}\mathrm{Pb}$	$1636.4 \pm 2.0^{*}$	$5.50 \pm 0.05^{*}$	$2.02 \pm$
^{48}Ca	$416.0 \pm 2.0^{*}$	$3.48 \pm 0.05^{*}$	$1.72~\pm$
^{40}Ca	$342.1 \pm 2.0^{*}$	$3.48 \pm 0.05^{*}$	_
56 Ni	$484.0 \pm 2.0^{*}$	_	_
⁶⁸ Ni	$590.4 \pm 2.0^{*}$	_	_
100 Sn	$825.2 \pm 2.0^{*}$	_	_
$^{132}\mathrm{Sn}$	$1102.8 \pm 2.0^{*}$	$4.71 \pm 0.05^{*}$	_
$^{90}\mathrm{Zr}$	$783.9 \pm 2.0^{*}$	$4.27 \pm 0.05^{*}$	_

"hfbcs-qrpa¹" code to compute observables from parameters

> B.E.: Binding Energy R_{ch} : Charge radius ΔE_{SO} : Spin-orbit splitting

* Theoretical error

¹G. Colò, X. Roca-Maza, arXiv:2102.06562v1 [nucl-th]

[MeV] 0.50^{*} 0.50^{*}

MeV

 0.50^{*}

 0.50^{*}

	Ground-s	state properties	
	B.E. [MeV]	$R_{\rm ch} [{\rm fm}]$	$\Delta E_{\rm SO}$
$^{208}\mathrm{Pb}$	$1636.4 \pm 2.0^{*}$	$5.50 \pm 0.05^{*}$	$2.02~\pm$
^{48}Ca	$416.0 \pm 2.0^{*}$	$3.48 \pm 0.05^{*}$	$1.72~\pm$
40 Ca	$342.1 \pm 2.0^{*}$	$3.48 \pm 0.05^{*}$	_
56 Ni	$484.0 \pm 2.0^{*}$	_	_
⁶⁸ Ni	$590.4 \pm 2.0^{*}$	_	_
^{100}Sn	$825.2 \pm 2.0^{*}$	_	_
$^{132}\mathrm{Sn}$	$1102.8 \pm 2.0^{*}$	$4.71 \pm 0.05^{*}$	_
$^{90}\mathrm{Zr}$	$783.9 \pm 2.0^{*}$	$4.27 \pm 0.05^{*}$	_

	Isoscalar reson	lances
	$E_{\rm GMR}^{\rm IS}$ [MeV]	$E_{\rm GQR}^{\rm IS}$ [MeV]
$^{208}\mathrm{Pb}$	$13.5 \pm 0.5^{*}$	$10.9 \pm 0.5^{*}$
90 Zr	$17.7 \pm 0.5^{*}$	_

"hfbcs-qrpa¹" code to compute observables from parameters

B.E. : Binding Energy R_{ch} : Charge radius ΔE_{SO} : Spin-orbit splitting E_{GMR}^{IS} : IsoScalar Giant monopole resonance excitation energy (constrained) E_{GOR}^{IS} : IsoScalar Giant quadrupole resonance excitation energy (centroid)

* Theoretical error

¹G. Colò, X. Roca-Maza, arXiv:2102.06562v1 [nucl-th]

MeV

0.50*

 0.50^{*}

(ppb)

 ± 18

 ± 113

	Ground-s	state properties	
	B.E. [MeV]	$R_{\rm ch} [{\rm fm}]$	$\Delta E_{\rm SO}$
$^{208}\mathrm{Pb}$	$1636.4 \pm 2.0^{*}$	$5.50 \pm 0.05^{*}$	$2.02 \pm$
^{48}Ca	$416.0 \pm 2.0^{*}$	$3.48 \pm 0.05^{*}$	$1.72~\pm$
^{40}Ca	$342.1 \pm 2.0^{*}$	$3.48 \pm 0.05^{*}$	-
56 Ni	$484.0 \pm 2.0^{*}$	_	-
⁶⁸ Ni	$590.4 \pm 2.0^{*}$	_	_
$^{100}\mathrm{Sn}$	$825.2 \pm 2.0^{*}$	_	_
$^{132}\mathrm{Sn}$	$1102.8 \pm 2.0^{*}$	$4.71 \pm 0.05^{*}$	_
$^{90}\mathrm{Zr}$	$783.9 \pm 2.0^{*}$	$4.27 \pm 0.05^{*}$	-

	Isoscalar reson	lances
	$E_{\rm GMR}^{\rm IS}$ [MeV]	$E_{\rm GQR}^{\rm IS}$ [MeV]
$^{208}\mathrm{Pb}$	$13.5 \pm 0.5^{*}$	$10.9 \pm 0.5^{*}$
$^{90}\mathrm{Zr}$	$17.7 \pm 0.5^{*}$	_

	Isove	ctor properties	
	$\alpha_{\rm D} [{\rm fm}^3]$	$m(1) \; [\text{MeV fm}^2]$	$A_{\rm PV}$
$^{208}\mathrm{Pb}$	19.60 ± 0.60	961 ± 22	550
^{48}Ca	2.07 ± 0.22	_	2668

"hfbcs-qrpa¹" code to compute observables from parameters

B.E.: Binding Energy R_{ch} : Charge radius ΔE_{SO} : Spin-orbit splitting E_{GMR}^{IS} : IsoScalar Giant monopole resonance excitation energy (constrained) E_{GOR}^{IS} : IsoScalar Giant quadrupole resonance excitation energy (centroid) α_D : Nuclear polarizability m(1) : EWSR of IVGDR A_{PV} : Parity violating asymmetry

* Theoretical error

¹G. Colò, X. Roca-Maza, arXiv:2102.06562v1 [nucl-th]

\rightarrow Computing all the observables \rightarrow ~2 hours!

- \rightarrow Computing all the observables \rightarrow ~2 hours!
- \rightarrow Bayesian inference $\rightarrow 10^{6-7}$ model evaluations!

- \rightarrow Computing all the observables \rightarrow ~2 hours!
- \rightarrow Bayesian inference $\rightarrow 10^{6-7}$ model evaluations!

- Computing all the observables $\longrightarrow \sim 2$ hours!
- \rightarrow Bayesian inference $\rightarrow 10^{6-7}$ model evaluations!

MADAI package¹ (Emulator for Bayesian inference)

¹https://madai.phy.duke.edu/

- Computing all the observables $\rightarrow \sim 2$ hours!
- Bayesian inference $\longrightarrow 10^{6-7}$ model evaluations!

MADAI package¹ (Emulator for Bayesian inference)

¹https://madai.phy.duke.edu/

Corner plot and mean values

Parame	eter	μ	σ
$ ho_0$	$[\mathrm{fm}^3]$	0.161	0.00
E_0	[MeV]	-15.938	0.10
K_0	[MeV]	219.483	10.0
J	[MeV]	29.378	1.62
L	[MeV]	16.136	14.7
G_0	$[MeV fm^5]$	125.470	10.2
G_1	$[MeV fm^5]$	9.439	35.7
W_0	$[MeV fm^5]$	128.719	14.8
m_{0}^{*}/m		0.913	0.07
m_1^*/m		0.712	0.02

Posterior observables means and uncertainties

$|\mu_{exp} - \mu_{theo}|$ in units of $\sigma_c = \sqrt{\sigma_{exp}^2 + \sigma_{theo}^2}$

Inference

Ground-state properties					
	B.E. [MeV]	$R_{\rm ch}$ [fm]	$\Delta E_{\rm SO} [{\rm MeV}]$		
$^{208}\mathrm{Pb}$	1636 ± 1.8	5.49 ± 0.03	2.34 ± 0.16		
48 Ca	417 ± 1.2	3.51 ± 0.02	1.92 ± 0.20		
40 Ca	342 ± 1.6	3.50 ± 0.02	_		
56 Ni	482 ± 1.4	_	_		
⁶⁸ Ni	590 ± 1.0	_	-		
100 Sn	826 ± 1.6	_	_		
132 Sn	1103 ± 1.7	4.71 ± 0.03	_		
$^{90}\mathrm{Zr}$	784 ± 1.3	4.27 ± 0.02	_		

¹Meng Wang *et al* 2021 *Chinese Phys. C* **45** 030003 ²Angeli et al., Atomic Data and Nuclear Data Tables 99 (2013)

$$: [1,2) \sigma_c$$
$$: [2,\infty) \sigma_c$$

Experiment

-		Ground-sta	ate properties	
•		$B.E.^1$ [MeV]	$R_{\rm ch}^2 [{\rm fm}]$	$\Delta E_{\rm SO}^{-3}$ [M
•	$^{208}\mathrm{Pb}$	$1636.4 \pm 1 \times 10^{-3}$	5.50 ± 0.001	$1.96 \pm 0.$
	^{48}Ca	$416.0 \pm 2 \times 10^{-5}$	3.48 ± 0.002	1.72 ± 0.0
	^{40}Ca	$342.1 \pm 4 \times 10^{-5}$	3.48 ± 0.002	_
	56 Ni	$484.0 \pm 1 \times 10^{-3}$	_	_
	⁶⁸ Ni	$590.4 \pm 4 \times 10^{-4}$	_	_
	100 Sn	825.2 ± 0.25	_	_
	^{132}Sn	$1102.8 \pm 1 \times 10^{-3}$	4.71 ± 0.002	_
	$^{90}\mathrm{Zr}$	$783.9 \pm 1 \times 10^{-4}$	4.27 ± 0.001	_

³Zalewski et al., Phys. Rev. C 77, 024316 (2008)

Posterior observables means and uncertainties

$|\mu_{exp} - \mu_{theo}|$ in units of $\sigma_c =$

Inference

Isoscalar resonances					
	$E_{\rm GMR}^{\rm IS}$ [MeV]	$E_{\rm GQR}^{\rm IS}$ [MeV]			
208 Pb	13.5 ± 0.3	10.8 ± 0.4			
$^{90}\mathrm{Zr}$	17.8 ± 0.4	_			

¹D. Patel et al., Physics Letters B 726 (2013)

760 (2016)

$$\sqrt{\sigma_{exp}^2 + \sigma_{theo}^2}$$

$$: [1,2) \sigma_c$$
$$: [2,\infty) \sigma_c$$

Experiment

Isoscalar resonances					
	$E_{\rm GMR}^{\rm IS}$ ^{1,2} [MeV]	$E_{\rm GQR}^{\rm IS} {}^3 [{\rm MeV}]$			
$^{208}\mathrm{Pb}$	13.5 ± 0.1	10.9 ± 0.3			
$^{90}\mathrm{Zr}$	17.7 ± 0.07	_			

²Y.K. Gupta et al., Physics Letters B

³Youngblood et al., Phys. Rev. C 69, 034315 (2004)

Posterior observables means and uncertainties

$|\mu_{exp} - \mu_{theo}|$ in units of $\sigma_c =$

Inference

¹Tamii et al., PRL ²Birkhan et al., PRL ³S. GORIELY et al., Phys. ⁴PREX Collaboration, Phys. ⁵CREX Collaboration, Phys. 118, 252501 (2017) 107, 062502 (2011) Rev. C 102, 064309 (2020) Rev. Lett. 126, 172502 (2021) Rev. Lett. 129, 042501 (2022) 7

$$\sqrt{\sigma_{exp}^2 + \sigma_{theo}^2}$$

$$: [1,2) \sigma_c$$
$$: [2,\infty) \sigma_c$$

Experiment

	Isove	ctor properties	
	$\alpha_{\rm D} [{\rm fm}^3]$	$m(1) \; [\text{MeV fm}^2]$	$A_{\rm PV}$ (pp
$^{208}\mathrm{Pb}$	19.60 ± 0.60	961 ± 22	550 ± 1
^{48}Ca	2.07 ± 0.22	_	2668 ± 1

Structure of the presentation

- First Part: constraints on EoS from nuclear experiments
 - Bayesian inference - Skyrme Interaction
- Second Part: constraints on EoS from Neutron Stars observations - Second Bayesian inference

Nuclear equation of state from nuclear experiments and neutron stars observations

Meta-Model nuclear equation of state

<u>Meta-Model</u> (M.M.): Taylor expansion of the nuclear equation of state around saturation¹

M.M. **Neutron star EoS Neutron star observables!**

¹Margueron et al., Phys. Rev. C **97**, 025805 (2018)

 $\rho_0, E_0, K_0, J, L, m_0^*/m, m_1^*/m$ K_{sym} $Q_0, Z_0, Q_{sym}, Z_{sym}$

Parameters and prior distribution:

Parameters and prior distribution:

 $\rho_0, E_0, K_0, J, L, m_0^*/m, m_1^*/m$ K_{sym} $Q_0, Z_0, Q_{sym}, Z_{sym}$

Previous Posterior distribution

Parameters and prior distribution:

 $\rho_0, E_0, K_0, J, L, m_0^*/m, m_1^*/m$ K_{sym} $Q_0, Z_0, Q_{sym}, Z_{sym}$

Previous Posterior distribution

 $K_{svm} = K_{svm}(\rho_0, E_0, K_0, ...)$

Parameters and prior distribution:

 $\rho_0, E_0, K_0, J, L, m_0^*/m, m_1^*/m$ K_{sym} $Q_0, Z_0, Q_{svm}, Z_{svm}$

Previous Posterior distribution

 $K_{sym} = K_{sym}(\rho_0, E_0, K_0, ...) \longrightarrow \text{Not a free parameter!}$

Parameters and prior distribution:

 $\rho_0, E_0, K_0, J, L, m_0^*/m, m_1^*/m$ K_{sym} $Q_0, Z_0, Q_{svm}, Z_{svm}$

- **Previous Posterior distribution**
- $K_{sym} = K_{sym}(\rho_0, E_0, K_0, ...) \longrightarrow \text{Not a free parameter!}$ Uniform distribution

Parameters and prior distribution:

 $\rho_0, E_0, K_0, J, L, m_0^*/m, m_1^*/m$ K_{sym} $Q_0, Z_0, Q_{svm}, Z_{svm}$

Observational constraints:

- Maximum observed mass of Neutron Star; Ligo-Virgo-Collaboration tidal deformability results; - NICER mission simultaneous mass-radius
- measurements
- Ab-initio computations of neutron matter at low density

- **Previous Posterior distribution**
- $K_{sym} = K_{sym}(\rho_0, E_0, K_0, ...) \longrightarrow \text{Not a free parameter!}$ Uniform distribution

Marginalized posteriors

Conclusions

- experiments :
 - Skyrme ansatz

 - with A_{PV} of ²⁰⁸Pb
- observations:

- Final distribution of parameters informed by both nuclear physics and neutron star observations!

- Bayesian statistical analysis on nuclear matter parameters with nuclear

- Fit with observables of different types (ground state, giant resonances,...) - Result: a robust posterior distribution of the (nuclear matter) parameters - Our protocol could describe the observables we chose; the only tension is

- Bayesian statistical analysis on nuclear matter parameters with neutron star

12

Gaussian process (GP) emulator

The MADAI package:

- was built for GP applied to bayesian inference
- given the parameters prior distributions, it automatically builds the grid
- it does a MCMC to estimate the posterior distribution
- it extracts parameters sample following the posteriors

Validation

	Ground-state properties						
	Dis	screpa	ancy	Corr. coefficient			
	B.E.	$R_{ m ch}$	$\Delta E_{\rm SO}$	B.E.	$R_{ m ch}$	$\Delta E_{\rm SO}$	
$^{208}\mathrm{Pb}$	0 %	0 %	0 %	0.993	1.000	0.997	
^{48}Ca	0~%	0 %	0~%	0.998	0.999	0.998	
40 Ca	$0 \ \%$	0 %	-	0.999	0.999	-	
56 Ni	0~%	-	-	0.996	-	-	
⁶⁸ Ni	$0 \ \%$	-	-	0.994	-	-	
$^{100}\mathrm{Sn}$	$0 \ \%$	_	-	0.994	_	-	
$^{132}\mathrm{Sn}$	$0 \ \%$	0 %	-	0.992	1.000	-	
$^{90}\mathrm{Zr}$	$0 \ \%$	0 %	_	0.996	1.000	-	

Isoscalar resonances						
	Discrepancy Corr. coefficient					
	$E_{\rm GMR}^{\rm IS}$	$E_{\rm GQR}^{\rm IS}$	$E_{\rm GMR}^{\rm IS}$	$E_{\mathrm{GQR}}^{\mathrm{IS}}$		
208 Pb	0~%	1.0~%	1.000	0.904		
$^{90}\mathrm{Zr}$	$0 \ \%$	-	1.000	-		

	Isovector properties					
	Discrepancy Corr. coefficient					
$lpha_D m(1) A_{PV} lpha_D m(1) A_{PV}$						A_{PV}
208 Pb	0 %	0 %	$0 \ \%$	0.988	0.9999	0.998
^{48}Ca	0~%	-	0~%	0.990	_	0.9992

$B.E., R_{ch}$ only corner plot

 m_1^*/m

Effect of A_{PV}

Equation of state and sound speed posterior distributions

B6