Stable and causal fluids with bulk viscosity

Marco Antonelli

antonelli@lpccaen.in2p3.fr CNRS & Laboratoire de Physique Corpusculaire, Caen

GANIL, 11 October 2024

Dissipation in Neutron Stars

cooling

Shear viscosity:

(out of equilibrium distribution) (electron VS nuclei, protons, impurities) (binary collisions of phonons)

Bulk viscosity: (out of equilibrium distribution) (nuclear reactions) (phonon-phonon collisions)

Vortex mediated friction: (vortex motion in the superfluid)

Luminosity/radiation (photon/neutrino emission)

What is hydrodynamics?

Emergent (large-scale) effective theory for **slow** processes

- \rightarrow "large-scale" wrt some relevant microscopic length
- \rightarrow "slow" wrt the microscopic timescales

Slow evolution characterised by those **few** DOF (**conserved** and **quasi-conserved** quantities) that equilibrate over macroscopic time-scales

Most DOF relax over the "micro" timescale Local process (no need to "communicate") \rightarrow **fast** process \sim collision time

Conserved quantity out of equilibrium

A conserved charge can only be moved around The only way to equilibrate is transfer across regions \rightarrow **slow** process for large systems and small gradients

The "slow" DOF play the role of effective fields \rightarrow hydrodynamics is the low-frequency field theory for such DOF

Relativistic hydrodynamics: relativistic **thermodynamics** + relativistic **classical field theory**

Irreversible dynamics Final equilibrium state must be **stable** **Causality** & **well-posedness** of the initial value problem

Three "steps"

Review: Gavassino & MA, (2021) *Unified Extended Irreversible Thermodynamics and the stability of theories for dissipation*

Defining a hydrodynamic model is a 3-step procedure:

1 – **Identify/choose the "slow" fields** φ (one for each **conservation** law) Conservation of *energy-momentum* \rightarrow e.g. velocity, temperature (4 quantities) Conservation of *baryon number* \rightarrow e.g. baryon chemical potential...

 Additional field φ for each **quasi-conservation** law (relaxation due to "rare" events): *Chemical fractions* in the presence of slow chemical reactions \rightarrow reaction affinity *Stresses* in the presence of friction/viscosity \rightarrow strains...

2 – The fields φ locally characterize the state of the system → we have to provide the **constitutive relations**

 $T^{\nu\rho} = T^{\nu\rho}(\varphi_i, \nabla_\sigma \varphi_i, \nabla_\sigma \nabla_\lambda \varphi_i, \ldots)$ $n^{\nu} = n^{\nu}(\varphi_i, \nabla_{\sigma} \varphi_i, \nabla_{\sigma} \nabla_{\lambda} \varphi_i, ...)$ $s^{\nu} = s^{\nu}(\varphi_i, \nabla_{\sigma} \varphi_i, \nabla_{\sigma} \nabla_{\lambda} \varphi_i, ...)$

3 – Prescribe some **equations of motion (EOM)**

 $\mathfrak{F}_h(\varphi_i, \nabla_\sigma \varphi_i, \nabla_\sigma \nabla_\lambda \varphi_i, \ldots) = 0$

Ideally provided by some microscopic theory They define the physical meaning of the model If only 1 conserved curent \rightarrow "simple fluid"

Ideally consistent with: Causality & well-posedness Stability of the equilibrium state

Steps 2 & 3: How? You decide… but they must be at least consistent with:

 $\nabla_{\nu}n^{\nu}=0$ $\nabla_{\nu}T^{\nu\rho}=0$ For all the conserved quantities in (1) $\nabla_{\nu} s^{\nu} \geq 0$ "=" non-dissipative">" dissipative">" dissipative

 φ_i Equilibrium

II Law of Thermodynamics: "**=**" non-dissipative

Three "steps"

Review: Gavassino & MA, (2021) *Unified Extended Irreversible Thermodynamics and the stability of theories for dissipation*

Defining a hydrodynamic model is a 3-step procedure:

1 – **Identify/choose the "slow" fields** φ (one for each **conservation** law) Conservation of *energy-momentum* \rightarrow e.g. velocity, temperature (4 quantities) Conservation of *baryon number* \rightarrow e.g. baryon chemical potential...

Additional field **φ** for each **quasi-conservation** law (relaxation due to "rare" events *Chemical fractions* in the presence of slow chemical reactions \rightarrow reaction affinity *Stresses* in the presence of friction/viscosity \rightarrow strains...

2 – The fields φ locally characterize the state of the system → we have to provide the **constitutive relations**

 $T^{\nu\rho} = T^{\nu\rho}(\varphi_i, \nabla_\sigma \varphi_i, \nabla_\sigma \nabla_\lambda \varphi_i, \ldots)$ $n^{\nu} = n^{\nu}(\varphi_i, \nabla_{\sigma} \varphi_i, \nabla_{\sigma} \nabla_{\lambda} \varphi_i, ...)$ $s^{\nu} = s^{\nu}(\varphi_i, \nabla_{\sigma} \varphi_i, \nabla_{\sigma} \nabla_{\lambda} \varphi_i, ...)$

3 – Prescribe some **equations of motion (EOM)**

 $\mathfrak{F}_h(\varphi_i, \nabla_\sigma \varphi_i, \nabla_\sigma \nabla_\lambda \varphi_i, \ldots) = 0$ Each conservation law can be used as EOM...

… but if there are **quasi-conserved** currents then you **need to supply a "model"** for how the current is dissipated.

The simplest example

Review: Gavassino & MA, (2021) *Unified Extended Irreversible Thermodynamics and the stability of theories for dissipation*

Zero-order in the deviation from equilibrium \rightarrow perfect fluid

$$
\nabla_{\alpha} \mathcal{T}_{\beta}^{\alpha} = 0 \qquad \nabla_{\alpha} J^{\alpha} = 0 \qquad (4+1 \text{ conservation equations})
$$

Energy-momentum tensor and baryon current:

$$
J_{\alpha} = nu_{\alpha} \qquad \qquad \mathcal{T}_{\alpha\beta} = (p+\varrho)u_{\alpha}u_{\beta} + pg_{\alpha\beta} \qquad p=p(\varrho, n)
$$

The "3 steps" are trivial: (1) choose your fields, (2) constitutive relations, (3) EOM 1) 4+1 conservation equations \rightarrow need 5 DOF $(\varphi_i) = (u^{\sigma}, \varrho, n)$ 0 quasi-conservation equations \rightarrow need 0 "extra" DOF 2) Constitutive relations: $J_{\alpha} = nu_{\alpha}$ $\mathcal{T}_{\alpha\beta} = (p + \varrho)u_{\alpha}u_{\beta} + pg_{\alpha\beta}$ $p = p(\varrho, n)$ 3) EOM: the 4+1 conservation laws are enough

Neutron stars are "conductive" \rightarrow many flows happen at the same time! Electric current in MHD, superfluidity, heat conduction, neutrino and photon radiation... ...we typically need **more than 5 DOF**. Where do we get enough equations of motion?

Carter multifluid approach addresses thee three steps (1,2,3) for an arbitrary number of fluid "species"

Dissipative hydrodynamics (Hiscock & Lindblom 1983)

$$
\Pi_{\alpha\beta} := g_{\alpha\beta} + u_{\alpha}u_{\beta}
$$

$$
\mathcal{T}_{\alpha\beta} := (\varrho + \mathcal{R}) u_{\alpha} u_{\beta} + (p + \mathcal{P}) \Pi_{\alpha\beta} + \pi_{\alpha\beta} + \mathcal{Q}_{\alpha} u_{\beta} + \mathcal{Q}_{\beta} u_{\alpha}
$$

Quantities as in the perfect fluid but there are additional "dissipative fluxes"

EoM: $\nabla_{\alpha} \mathcal{T}_{\beta}^{\alpha} = 0$

"First order" theories \rightarrow the "dissipative fluxes" functions of the "perfect fluid variables" & derivatives

 \rightarrow Philosophy is that of the **gradient expansion** \rightarrow 5 algebraic DOF (the same as the perfect fluid) Navier Stokes Fourier

Israel-Stewart hydrodynamics

"Second order" theories \rightarrow the "dissipative fluxes" are new DOF

 \rightarrow DOF: 5 (perfect fluid) + 1 (bulk) + 3 (heat flux) + 5 (traceless shear) = 14

- **→** Philosophy is that of **moments method**
- \rightarrow if only bulk & heat \rightarrow 9 algebraic DOF

EoM: $\nabla_{\alpha} \mathcal{T}_{\beta}^{\alpha} = 0$ $u^{\mu}\nabla_{\mu}\pi + \cdots = 0$ etc.

Dissipative hydrodynamics: bulk viscosity

Bulk viscosity = dissipative response to compression and expansion (thermal/chemical re-equilibration)

No shear, ho heat, no superfluidity
$$
T^{\mu\nu} = (\epsilon + p)u^\mu u^\nu + pg^{\mu\nu}
$$

 $\text{``Expansion around equilibrium'' approach} \rightarrow \text{from kinetic theory up to a certain order } \textit{O}(f\text{--}f_{o})$ departure from perfect fluid

Zero order \rightarrow relativistic perfect fluid: $\Pi = 0$

Equilibrium

 Π

First order \rightarrow Landau, Eckart (spurious gapped modes unstable, acausal) $\prod = -\zeta \nabla_{\lambda} u^{\lambda}$

Second order \rightarrow Israel-Stewart, Hiscock-Lindblom: stable and causal in the linear regime

$$
\nabla_{\mu}(\Pi u^{\mu}) = -\frac{\Pi}{\tau} - \left(\frac{1}{\chi} - \frac{\Pi}{2}\right) \nabla_{\mu} u^{\mu} - \frac{\Pi}{2} u^{\mu} \nabla_{\mu} \left(\log \frac{\chi}{T^{\text{eq}}}\right)
$$

As time passes, full evolution becomes "first order". *Lindblom relaxation effect*: tendency of dissipative fluids to lose DOF, by transforming dynamical equations into phenomenological constraints

Bulk viscosity (Navier-Stokes)

1 – Fields: 4-velocity (3 DOF)

s entropy density, n number density \rightarrow equilibrium reference state

2 - Constitutive relations: boil down to the perfect fluid for zero stress

$$
T^{\mu\nu} = (e + p + \Pi)u^{\mu}u^{\nu} + (p + \Pi)g^{\mu\nu}
$$
 EOS ref. state: $p(n,s)$ $e(n,s)$

$$
n^{\mu} = nu^{\mu}
$$

$$
s^{\mu} = \left(s - \frac{\beta_0 \Pi^2}{2T}\right)u^{\mu}
$$
 Definition: $\Pi = -\zeta \nabla_{\lambda} u^{\lambda}$

3 - Hydrodynamic equations:

$$
\nabla_{\mu} T^{\mu\nu} = 0
$$

$$
\nabla_{\mu} n^{\mu} = 0
$$

$$
\nabla_{\mu} s^{\mu} = \frac{\Pi^2}{T\zeta}
$$
 (B)

This theory is known to be **acausal** and **unstable** (Hiscock & Lindblom 1985)

- \rightarrow homogeneous equilibrium state "tends to expolde"
- \rightarrow PDE theory: the system is **not** hyperbolic
- \rightarrow Impossible to set up an initial value on space surface and evolve in time Why? Acausality \rightarrow initial condition is influenced by the future

5 DOF of the Non-barotropic perfect fluid

Bulk viscosity (Israel-Stewart)

2 - Constitutive relations: boil down to the perfect fluid for zero stress

$$
T^{\mu\nu} = (e+p+\Pi)u^{\mu}u^{\nu} + (p+\Pi)g^{\mu\nu}
$$

EOS of reference

eq. state:

$$
\frac{p(n,s)}{e(n,s)}
$$

$$
n^{\mu} = nu^{\mu} \qquad s^{\mu} = \left(s - \frac{\beta_0 \Pi^2}{2T}\right)u^{\mu}
$$

3 - Hydrodynamic equations:

$$
\nabla_{\mu}T^{\mu\nu} = 0
$$

$$
\nabla_{\mu}n^{\mu} = 0
$$

$$
\nabla_{\mu}s^{\mu} = \frac{\Pi^{2}}{T\zeta}
$$
 (B)

(A) $\&$ (B) \rightarrow "Telegraph" equation for the bulk stress Equation for the evolution of the bulk stress

$$
\Pi = -\zeta \left[\nabla_{\mu} u^{\mu} + \beta_0 u^{\mu} \nabla_{\mu} \Pi \right] + \frac{1}{2} \Pi T \nabla_{\mu} \left(\frac{\beta_0 u^{\mu}}{T} \right) \right]
$$

\nNavier-Stokes
\n
$$
\text{Maxwell-Cattaneo}
$$
Relaxation timescale: $\zeta \beta_0$

new "thermo" modes (relaxation transients, no need for gradients to have dynamics)

Stability (entropy interpretation)

Review: Gavassino & MA, (2021) *Unified Extended Irreversible Thermodynamics and the stability of theories for dissipation*

ပာ

 0.5

 $\mathbf 0$ $\mathbf{1}$

 Ω

Hydro-modes

 -1

 -1

 -0.5

 0.5

Spurious modes

 $\mathbf 0$

Entropy of a stable fluid

 $Maximum = equilibrium state (homogeneous perfect fluid state)$ Blue line = states accessible in the relaxed limit (Navier-Stokes) Any deviation from equilibrium reduces the entropy and therefore must decay when the second law is imposed.

Thermo-modes (gapped) \rightarrow Non-equilibrium thermodynamics

Hydro-modes (gapless) \rightarrow Navier-Stokes-Fourier approach

Entropy of relativistic Navier-Stokes

 $Saddle point = equilibrium state (homogeneous perfect fluid state)$ Blue line $=$ states accessible by non-rel limit Hydro-modes \rightarrow damped if we impose the validity of the II Law Spurious (gapped) modes \rightarrow the II Law forces them to grow indefinitely, originating the instability.

entropy

Bulk viscosity

Bulk viscosity = dissipative response to compression and expansion (thermal/chemical re-equilibration)

Maximum dissipation when:

entropy

entropy

(see Gabriele's talk)

Bulk viscosity: theoretical approaches

Camelio+ arXiv:2204.11809 arXiv:2204.11810

Bulk viscosity = dissipative response to compression and expansion (thermal/chemical re-equilibration)

No shear, ho heat, no superfluidity
$$
T^{\mu\nu} = (\epsilon + p)u^\mu u^\nu + pg^{\mu\nu}
$$

"Expansion around equilibrium" approach \rightarrow full "Israel-Stewart" by Hiscock-Lindblom (1983)

$$
p = p^{\text{eq}}(\rho, \epsilon) + \Pi \qquad \nabla_{\mu}(\Pi u^{\mu}) = -\frac{\Pi}{\tau} - \left(\frac{1}{\chi} - \frac{\Pi}{2}\right) \nabla_{\mu} u^{\mu} - \frac{\Pi}{2} u^{\mu} \nabla_{\mu} \left(\log \frac{\chi}{T^{\text{eq}}}\right)
$$

"Multifluid" approach \rightarrow no "expansion", only assumes "separation of timescales"

 $\mathbf d$

Meaning: each independent "reaction coordinate" that evolves slowly goes into the EOS

$$
p = p(\rho, \epsilon, \{Y_i\}_i)
$$

\n
$$
\nabla_{\mu}(\rho u^{\mu}) = 0
$$

\n
$$
u = \frac{p}{\rho^2} d\rho + \frac{T}{m_n} ds - \sum_{i} \frac{\mathbb{A}^i}{m_n} dY_i
$$

\n
$$
\mathbb{A}^i = 0 \quad \text{Chemical equilibrium}
$$

\n
$$
\nabla_{\mu}(\rho Y_i u^{\mu}) = m_n \mathcal{R}_i
$$

Viscous effects in neutron star mergers?

Duez+ PRD (2004), Shibata+ PRD (2017), Most+ PRL 2019, Hammond+ PRD 2021, Celora+ CQG 2022...

Previous understanding → viscous effects negligible

Based on the simulations/knowledge at that time: temperatures not so large, system very smooth, gradients too small

Example: Alford+ PRL (2018) \rightarrow rough estimates of the importance of dissipation channels Simulations (**ideal fluid!)**: estimates for macroscopic scale *L* of fluid variables gradients From microscopic arguments: estimate for the characteristic microscopic scales *l* in the system Knudsen number \sim *l/L* may not be small in some cases (viscosity may affect the GW signal)

Shear \rightarrow Relevant for trapped neutrinos if T > 10 MeV and gradients at small scales ~ 10 m (turbulence) Heat \rightarrow Relevant for trapped electron neutrinos if T > 10 MeV and gradients at scales ~ 100 m **Bulk** \rightarrow Should affect **density oscillations after merger!** Alford, Harris, PRC (2019)

"Effects of bulk viscosity should be consistently included in merger simulations. This has not been attempted before and requires a formulation of the relativistic-hydrodynamic equations that is hyperbolic and <i>stable["]

First attempt (postmerger): Camelio+ **arXiv:2204.11809** and **arXiv:2204.11810** (both PRD, 2023)

Hydro-bulk-1D

Camelio+ arXiv:2204.11809 arXiv:2204.11810

First simulation of a NS with the **complete Hiscock-Lindblom model** of bulk viscosity. One-dimensional, GR code, publicly available: Giovanni Camelio, hydro-bulk-1D (2022)

We include the **energy loss due to the luminosity of the reactions** in the bulk stress formulation. **Bulk & luminosity** should be consistent (the same reactions are responsible for both)

 $PF = perfect$ fluid

 $MF =$ multifluid out of beta equilibrium (npe matter)

 $MF-Q$ = multifluid out of beta equilibrium (npe matter) + consistent neutrino luminosity

MC = "equivalent" Maxwell-Cattaneo

mURCA & dURCA effect in NS-NS mergers

Most+ PRL 2024 (arXiv: 2207.00442v2)

First simulation of NS-NS merger to quantify the effect of mURCA & dURCA mediated bulk viscosity:

- \rightarrow Same theoretical "multicomponent" scheme of Camelio + 2023 (i.e. same equations but different EOS & rates)
- \rightarrow Gravitational wave strain extracted for two EOSs

The shift in the dominant GW frequency depends on the assumptions on neutrino transparency:

- \rightarrow Neutrino transparent regime (Urca vs. frozen composition) feature characteristic shifts of $\Delta f \approx 40$ Hz
- \rightarrow When including neutrino trapping above T > 1 MeV, overall shift of about 50 Hz

Three "steps": the multifluid approach

Carter's multifluid framework provides a simple solution when the $\text{\#DOF} > 5$

1 – **Identify/choose the "slow" fields** φ

Assume that there is a set of currents which completely specify the macrostate of the system

$$
(\varphi_i) = (n_i^{\sigma})
$$
 Two can be taken to be: $n^{\sigma} s^{\sigma}$

 ...the remaining ones depend on the non-equilibrium thermodynamic properties of the system. Some currents may be "locked" together, others can flow independently.

2 – **Constitutive relations:** the only non-trivial one is the energy-momentum

- **...Carter assumes that it can be derived from a** $T^{\nu\rho} = T^{\nu\rho}(n_i^{\sigma})$ **"master function" with constitutive relation:** $\Lambda = \Lambda(n_i^{\sigma}, g_{\sigma \lambda})$
- 3 Prescribe some **equations of motion (EOM)**

...again, derived from the "master function" $\Lambda = \Lambda(n_i^{\sigma}, g_{\sigma \lambda})$

What is needed:

- Physically motivated identification of the set of currents (1)

- Constitutive relation for a single scalar function (2)

$$
\Lambda = \Lambda(n_i^{\sigma}, g_{\sigma \lambda})
$$

This has great practical value:

Energy-momentum is "derived" Full set of EOMs is "derived"

Review: Gavassino & MA, (2021) *Unified Extended Irreversible Thermodynamics and the stability of theories for dissipation*

Carter's multifluid (no dissipation)

Carter, *Covariant Theory of Conductivity in Ideal Fluids* (1987) → Relativistic Prix, *Variational description of multi-fluid hydrodynamics* $(2002) \rightarrow$ Newtonian

Variational approach based on Einstein-Hilbert+Matter action

$$
I_{EH} = \int_{\mathcal{M}} \frac{R}{16\pi} \sqrt{-g} \, d_4 x \qquad I_m = \int_{\mathcal{M}} \Lambda \sqrt{-g} \, d_4 x
$$

$$
T_{\nu \rho} = -\frac{2}{\sqrt{-g}} \frac{\delta I_m}{\delta g^{\nu \rho}}
$$

Seems reasonable to try with a tentative "Lagrangian" of the kind

$$
\Lambda(n_x^{\nu}) := \Lambda(-g_{\rho\nu}n_x^{\rho}n_y^{\nu})
$$

- \rightarrow simpler to prescribe a Lagrangian than the equations of motion or the energy-momoentum tensor
- \rightarrow easy to add extra macroscopic fields (e.g. MHD)
- \rightarrow straightforward to incorporate additional fluid components (useful for mixtures)
- → suitable for **conduction**

Basic requirements:

- \rightarrow Should reduce to the usual **perfect fluid** if 1 current
- \rightarrow Simple extensions of the perfect fluid (many constituents: "perfect multifluid") \rightarrow $\nabla_{\nu}n^{\nu}_{x}=0$
- \rightarrow Connection with superfluid thermodynamics: Gavassino & MA, CQG (2020)

The "hydro" of the homogeneous state is just "thermo"

 Equilibrium state with relativistic **persistent currents**

Carter's multifluid (no dissipation)

Tentative: proceed as in usual field theory (**unconstrained** variation)

 $\Lambda(n_x^{\nu}) := \Lambda(-q_{\alpha\nu}n_x^{\rho}n_y^{\nu})$ \rightarrow Lagrangian:

$$
\rightarrow \text{Canonical momenta:} \qquad \mu_{\nu}^{x} := \frac{\partial \Lambda}{\partial n_{x}^{\nu}} = \mathcal{B}^{x} n_{x\nu} + \sum_{y \neq x} \mathcal{A}^{xy} n_{y\nu}
$$

$$
\rightarrow {\rm Entrainment:}\qquad \qquad {\cal B}^x:=-2\frac{\partial \Lambda}{\partial n_{xx}^2}\qquad {\cal A}^{xy}:=-\frac{\partial \Lambda}{\partial n_{xy}^2}
$$

$$
\rightarrow
$$
 Energy-momentum:

$$
T^{\nu}_{\ \rho} = \Psi \delta^{\nu}_{\ \rho} + \sum_{x} n^{\nu}_{x} \mu^x_{\rho}
$$

$$
\Psi = \Lambda - \sum_{x} n^{\rho}_{x} \mu^x_{\rho}
$$

In short:

the usual variation of the action does not work: the action is minimized if there is no fluid at all (zero density everywhere)

Problem #1! Equations of motion (ignore surface terms in the action):

This goes with the "gravity" part

 Problem #2! No conservation laws!

$$
\nabla_{\nu}n_x^{\nu}=0
$$

Where is this? Nowhere! Not surprising since we used unconstrained variations of the currents

 $\delta\left(\sqrt{-g}\Lambda\right) = \sqrt{-g}\left[\sum_{\mathbf{x}}\mu_a^{\mathbf{x}}\delta n_{\mathbf{x}}^a + \frac{1}{2}\left(\Lambda g^{ab} + \sum_{\mathbf{x}}n_{\mathbf{x}}^a\mu_{\mathbf{x}}^b\right)\delta g_{ab}\right]$

Trivial & useless dynamics!

Carter's multifluid (constrained)

Solution: we have to guarantee the identity of each fluid element's worldline! ...keep the **definitions**:

...but modify the variation procedure (variations of the currents constrained to keep identity of worldlines)

 $\nabla_{\nu}n^{\nu}_{x}=0$

Each component has its own set of

Where is this? The **domain of the action is restricted** so that conservation is ensured both on-shell and off-shell

The "real" Lagrangian is in terms of the "trajectories" (like for the point particle)

$$
\mathcal{L}[g, X_s^{\alpha}, X_i^{\alpha}] = \Lambda(-g_{\rho\nu} n_x^{\rho}[g, X_x^{\alpha}] n_y^{\nu}[g, X_y^{\alpha}])
$$

Carter's multifluid: non-dissipative dynamics

Carter, *Covariant Theory of Conductivity in Ideal Fluids* (1987)

In a nutshell:
$$
\Lambda = \Lambda(n_{xy}^2)
$$
 $n_{xy}^2 := -n_x^{\nu} n_{y\nu}$ $I = \int \left(\frac{R}{16\pi} + \Lambda\right) \sqrt{-g} d^4x$

- 1) Variational procedure to ensure the conservation of the number density currents Taub, PhysRev 94 (1954), Comer & Langlois CQG 10 (1993), Andersson & Comer, LRR (2007)
- \rightarrow domain of the action restricted by imposing that $\nabla_{\nu} n_x^{\nu} = 0$ both on-shell and off-shell: variations of the currents are taken in the "Taub form"

$$
\delta n_x^{\nu} = \xi_x^{\rho} \nabla_{\rho} n_x^{\nu} - n_x^{\rho} \nabla_{\rho} \xi_x^{\nu} + n_x^{\nu} \left(\nabla_{\rho} \xi_x^{\rho} - \frac{1}{2} g^{\rho \sigma} \delta g_{\rho \sigma} \right) \qquad \xi_x = \text{trajectory displacements}
$$

 \rightarrow Variation of the action produced by the ξ_{x} (ignoring the boundary terms)

$$
\delta I = \int \left(\sum_x f_\nu^x \xi_x^\nu \right) \sqrt{-g} \, d^4 x \qquad \qquad f_\nu^x := 2n_x^\rho \nabla_{\left[\rho \right.} \mu_{\nu}^x
$$

Equations of motion: $n_x^{\rho} \nabla_{[\rho} \mu_{\nu]}^x = 0$ for each constituent (all coupled by entrainment!)

$$
\mu_\nu^x:=\frac{\partial\Lambda}{\partial n_x^\nu}={\cal B}^x n_{x\nu}+\sum_{y\neq x}{\cal A}^{xy}n_{y\nu}
$$

(so this may replace 1 EOM)

If all EOM satisfied $\rightarrow \nabla_{\nu} T^{\nu \rho} = 0$

Kelvin's theorem

Perfect multid
$$
\rightarrow
$$
 EOM are: $n_x^a \nabla_{[a} \mu_{b]}^x = 0$
...what's their meaning?

Consider the usual 1-component perfect fluid (at $T=0$ or "barotropic")

Take $\nabla_{\alpha} T^{\alpha\beta} = 0$ and project orthogonally to the 4-velocity with $\perp_{\alpha\beta} = g_{\alpha\beta} + u_{\alpha} u_{\beta}$

$$
\left(2n^{\mu}\nabla_{\left[\mu\mu_{\nu}\right]}\right) + \left(\nabla_{\mu}n^{\mu}\right)\mu_{\nu} = 0 \qquad \mu_{\mu} = \mu u_{\mu} \quad \text{{\tiny 4-momentum}}_{\text{per baryon}}
$$

relativistic Kelvin theorem: vorticity is transported by the 4-velocity

… ofc this is useful to model cold neutron stars interiors (you'd like to know how vortices move)

- \rightarrow **dissipation in superfluids:** when vortices do **NOT** flow with the current!
- \rightarrow This also tells us how to extend Carter's perfect multifluid to include dissipation...

...the Lagrangian becomes a "generating function"

Carter's multifluid: "generating function"

Dissipation \rightarrow **entropy is not conserved...** we have to break currents's conservation without falling into the useless "unconstrained" model Keep the central postulate: there is a function $\Lambda = \Lambda(n_i^{\sigma}, g_{\sigma \lambda})$

The Lagrangian is $T^{\nu\rho}=\frac{2}{\sqrt{|g|}}\frac{\partial(\sqrt{|g|}\Lambda)}{\partial g_{\nu\rho}}\bigg|_{\sqrt{|g|}\,n_q^\sigma}$ downgraded to be just a Energy-momentum obtained as "generating function" for the energy-momentum and the canonical momenta $T^{\mu}{}_{\nu} = \Psi \delta^{\mu}{}_{\nu} + \sum_{\Psi = \Lambda -} n^{\mu}_{\rm x} \mu^{\rm x}_{\nu}$ $\mu_\nu^h := \frac{\partial \Lambda}{\partial n_h^\nu}\bigg|_{n^\sigma_i, g_{\sigma \lambda}}$ $\nabla_{\nu}T^{\nu}_{\ \rho}=\sum\left(\mu^{h}_{\rho}\nabla_{\nu}n^{\nu}_{h}+2n^{\nu}_{h}\nabla_{[\nu}\mu^{h}_{\rho]}\right)$ **Equations of motion:** just take the divergence of the energy-momentum and see... $\Lambda = \Lambda(n_i^{\sigma}, g_{\sigma \lambda})$ does not give the EOM anymore! $\mu_\rho^h \nabla_\nu n_h^\nu + 2n_h^\nu \nabla_{[\nu} \mu_{\rho]}^h \neq \mathfrak{R}_\rho^h$ Baryon II Law conservation

Is this a viable scheme for dissipation in relativity? Is it more or less universal than "Israel-Stewart"? Causality, stability? \rightarrow difficult question but linearly stable & causal for "simple" forces

Dissipation in Neutron Stars

"Generating function" approach good for… ?

Shear viscosity:

(out of equilibrium distribution) (electron VS nuclei, protons, impurities) (need to introduce a "flux of a flux" together with the other currents) (binary collisions of phonons) Maybe yes but NO

Bulk viscosity: (out of equilibrium distribution) (nuclear reactions) (phonon-phonon collisions)

Vortex mediated friction: (vortex motion in the superfluid)

Luminosity/radiation (photon/neutrino emission)

Can be "better" than Israel-Stewart

- \rightarrow can evolve multiple independent chemical fractions (a **x**iv:2003.04609)
- → upgrade Israel-Stewart to superfluid matter **(arXiv:2110.05546)**

This is what Carter's multifluid does and others can not **(arXiv:2012.10288)**

Simple fluid + non-conserved ultra-relativistic fluid → **M1 radiation hydrodynamics** (**arXiv:2007.09481**)

Superfluid $+$ bulk viscosity $+$ heat

How to combine **superfluidity** with **dissipation**? Two different languages are used:

Relativistic theory for **superfluidity** \rightarrow **Carter's perfect multifluid**

Relativistic theory for **dissipation** \rightarrow "Israel-Stewart" / "second-order"

They do not seem to have anything in common \rightarrow how to merge the two consistently?

Close to equilibrium: $Carter(N+1) = Carter(N) + Israel-Stewart dissipation$ (bulk viscosity & heat) \rightarrow If *Carter(N)* is non-dissipative, in *Carter(N+1)* we have to unlock the II Law \rightarrow Advantage: easy to derive causality & stability conditions for *Carter(N+1)*

 \rightarrow II Law valid both on and off-shell: the equations can be solved!

Message: How to include bulk & heat dissipation in a superfluid? \rightarrow Add 1 non-conserved current! Which current depends on microphysics (phonons, rotons, photons, non-superfluid baryons in NS crust)

Superfluid $+$ bulk viscosity $+$ heat

Carter's dissipative multifluid with 3 currents: $\Lambda = \Lambda(n^2, s^2, z^2, n_{ns}^2, n_{nz}^2, n_{sz}^2)$

Non-conserved $\nabla_{\nu}n^{\nu}=0$ $\nabla_{\nu} s^{\nu} \geq 0$ $\nabla_{\nu}z^{\nu}\neq 0$ *quasiparticle number* $z + z \rightleftharpoons z + z + z$

Equilibrium: non-dissipative 2-fluid of Tisza-Landau (persistent current of entropy wrt particles) We only need density and entropy to define the state $\rightarrow z^{\nu} = z_{\text{eq}}^{\nu}(n^{\rho}, s^{\rho})$

Out-of-equilibrium: $z^{\nu} = z^{\nu} (n^{\rho}, s^{\rho}, \Pi, Q^{\rho})$ Israel-Stewart is "perturbative": dissipative fluxes *(Π,Q)* are defined as deviations from equilibrium. Expand around $z^{\nu}(n^{\rho}, s^{\rho}, 0, 0) = z_{\text{eq}}^{\nu}(n^{\rho}, s^{\rho})$ and find: $Q^{\nu} = Q^{\nu}(n^{\rho}, s^{\rho}, z^{\rho})$ $\Pi = \Pi(n^{\rho}, s^{\rho}, z^{\rho})$ $(n^{\rho}, s^{\rho}, \Pi, Q^{\rho}) \longleftrightarrow (n^{\rho}, s^{\rho}, z^{\rho})$ 12 algebraic DOF = 9 (I&S heat+bulk) + 3 (superflow)

Generating function formalism:

$$
T^{\nu}_{\ \rho} = \Psi \delta^{\nu}_{\ \rho} + n^{\nu} \mu_{\rho} + s^{\nu} \Theta_{\rho} - z^{\nu} A_{\rho}
$$

$$
\Psi = \Lambda - n^{\nu} \mu_{\nu} - s^{\nu} \Theta_{\nu} + z^{\nu} A_{\nu}
$$

Equations of motion
\n
$$
\mathcal{R}_{\rho}^{n} = 2n^{\nu} \nabla_{\nu} \mu_{\rho} = 0
$$
\n
$$
\mathcal{R}_{\rho}^{s} = 2s^{\nu} \nabla_{\nu} \Theta_{\rho} + \Theta_{\rho} \nabla_{\nu} s^{\nu}
$$
\n
$$
\mathcal{R}_{\rho}^{z} = -2z^{\nu} \nabla_{\nu} \mathbb{A}_{\rho} - \mathbb{A}_{\rho} \nabla_{\nu} z^{\nu}
$$

Need to find $\mathcal{R}^z_\rho = -\mathcal{R}^s_\rho$ from quasiparticle kinetics $\rightarrow \nabla_\nu T^\nu_{\rho} = \mathcal{R}^n_{\rho} + \mathcal{R}^s_{\rho} + \mathcal{R}^z_{\rho} = 0$

Final considerations

From the general considerations in **arXiv:2003.04609** (also, arXiv:2110.05546)

- \rightarrow Dissipative Carter's multifluid can encore heat and bulk viscosity
- \rightarrow Theoretically identical to Israel-Stewart close to equilibrium
- \rightarrow Far from equilibrium: Israel-Stewart is pertubative, Carter is not
- **→ "Carter" = non perturbative generalization of "Israel-Stewart" without shear**

Hydro-Bulk-1D: First simulation of proto-NS with the **complete Hiscock-Lindblom model** of bulk viscosity and neutrino luminosity. Comparison with Carter's formalism for bulk viscosity. One-dimensional, GR code, publicly available: Giovanni Camelio, hydro-bulk-1D (2022)

Numerical check of the theoretical result (arXiv:2204.11810):

Israel-Stewart is a good approximations of the multi-component fluid when:

- \rightarrow small perturbations
- \rightarrow the equation of state of the fluid depends on only one independent particle fraction
- For more than one independent particle fraction and for large perturbations (e.g. muons)
- \rightarrow the bulk stress approximation is still valid but less accurate

Message: in mergers, isolated NS (cold and hot), supernovae… just use "Carter" for bulk viscosity! \rightarrow arXiv:2003.04609 (general theory), arXiv:2204.11810 (comparison of 3 approaches to bulk and numerics)

Non-conserved

 \boldsymbol{z}

Superfluid $+$ bulk viscosity $+$ heat

Carter's dissipative multifluid with 3 currents: $\Lambda = \Lambda(n^2, s^2, z^2, n_{ns}^2, n_{nz}^2, n_{sz}^2)$

$$
\nabla_{\nu} n^{\nu} = 0 \qquad \nabla_{\nu} s^{\nu} \ge 0 \qquad \nabla_{\nu} z^{\nu} \ne 0 \qquad \text{quasiparticle number} \n12 algebraic DOF \qquad (n^{\rho}, s^{\rho}, \Pi, Q^{\rho}) \longleftrightarrow (n^{\rho}, s^{\rho}, z^{\rho})
$$

We have "Carter" from the "generating functional" \rightarrow **expand to find "superfluid Israel-Stewart"**

Eckart frame of the "excitation gas" $u^{\nu} := z^{\nu}/\sqrt{-z^{\rho}z_{\rho}}$

Dissipation is mediated by collisions between quasiparticles: local thermodynamic equilibrium = collinearity between *s* and *z*

$$
\text{Heat: } s^{\nu} = s^{E} u^{\nu} + \frac{Q^{\nu}}{\Theta_{E}} \qquad Q^{\nu} u_{\nu} = 0
$$

Telegraph-type evolution for heat & bulk \rightarrow consistent with non relativistic hydrodynamics of Khalatnikov

Entropy and dissipative force $(k =$ heat conduction coefficient):

 $\text{Bulk: } \Psi = \Psi_{\text{eq}} + \Pi \ \rightarrow \ \Pi = \mathbb{A}_E \, \frac{\partial \Psi}{\partial \mathbb{A}_F} \quad \text{ where } \quad \mathbb{A}_E = - \mathbb{A}_\nu u^\nu$

$$
[\nabla_{\nu} s^{\nu}]_{\text{bulk}} = \frac{\Xi \mathbb{A}_{E}^{2}}{\Theta_{E}} \qquad [\nabla_{\nu} s^{\nu}]_{\text{heat}} = \frac{Q_{\nu} Q^{\nu}}{k \Theta_{E}^{2}} \qquad \mathcal{R}_{\rho}^{s} = \Xi \mathbb{A}_{E}^{2} u_{\rho} - \frac{s^{E}}{k} Q_{\rho}
$$

Superfluid $+$ bulk viscosity $+$ heat

Carter's dissipative multifluid with 3 currents: $\Lambda = \Lambda(n^2, s^2, z^2, n_{ns}^2, n_{nz}^2, n_{sz}^2)$

Non-conserved $\nabla_{\nu}n^{\nu}=0$ $\nabla_{\nu} s^{\nu} \geq 0$ $\nabla_{\nu}z^{\nu}\neq 0$ *quasiparticle number* $z + z \rightleftharpoons z + z + z$

Equilibrium: non-dissipative 2-fluid of Tisza-Landau (persistent current of entropy wrt particles) We only need density and entropy to define the state $\rightarrow z^{\nu} = z_{\text{eq}}^{\nu}(n^{\rho}, s^{\rho})$

Out-of-equilibrium: $z^{\nu} = z^{\nu} (n^{\rho}, s^{\rho}, \Pi, Q^{\rho})$ Israel-Stewart is "perturbative": dissipative fluxes *(Π,Q)* are defined as deviations from equilibrium. Expand around $z^{\nu}(n^{\rho}, s^{\rho}, 0, 0) = z_{\text{eq}}^{\nu}(n^{\rho}, s^{\rho})$ and find: $Q^{\nu} = Q^{\nu}(n^{\rho}, s^{\rho}, z^{\rho})$ $\Pi = \Pi(n^{\rho}, s^{\rho}, z^{\rho})$ $(n^{\rho}, s^{\rho}, \Pi, Q^{\rho}) \longleftrightarrow (n^{\rho}, s^{\rho}, z^{\rho})$ 12 algebraic DOF = 9 (I&S heat+bulk) + 3 (superflow)

Generating function formalism:

$$
T^{\nu}_{\ \rho} = \Psi \delta^{\nu}_{\ \rho} + n^{\nu} \mu_{\rho} + s^{\nu} \Theta_{\rho} - z^{\nu} A_{\rho}
$$

$$
\Psi = \Lambda - n^{\nu} \mu_{\nu} - s^{\nu} \Theta_{\nu} + z^{\nu} A_{\nu}
$$

Equations of motion
\n
$$
\mathcal{R}_{\rho}^{n} = 2n^{\nu} \nabla_{\nu} \mu_{\rho} = 0
$$
\n
$$
\mathcal{R}_{\rho}^{s} = 2s^{\nu} \nabla_{\nu} \Theta_{\rho} + \Theta_{\rho} \nabla_{\nu} s^{\nu}
$$
\n
$$
\mathcal{R}_{\rho}^{z} = -2z^{\nu} \nabla_{\nu} \mathbb{A}_{\rho} - \mathbb{A}_{\rho} \nabla_{\nu} z^{\nu}
$$

Need to find $\mathcal{R}^z_\rho = -\mathcal{R}^s_\rho$ from quasiparticle kinetics $\rightarrow \nabla_\nu T^\nu_{\rho} = \mathcal{R}^n_{\rho} + \mathcal{R}^s_{\rho} + \mathcal{R}^z_{\rho} = 0$

Non-conserved

 \boldsymbol{z}

Superfluid $+$ bulk viscosity $+$ heat

Carter's dissipative multifluid with 3 currents: $\Lambda = \Lambda(n^2, s^2, z^2, n_{ns}^2, n_{nz}^2, n_{sz}^2)$

$$
\nabla_{\nu} n^{\nu} = 0 \qquad \nabla_{\nu} s^{\nu} \ge 0 \qquad \nabla_{\nu} z^{\nu} \ne 0 \qquad \text{quasiparticle number} \n12 algebraic DOF \qquad (n^{\rho}, s^{\rho}, \Pi, Q^{\rho}) \longleftrightarrow (n^{\rho}, s^{\rho}, z^{\rho})
$$

We have "Carter" from the "generating functional" \rightarrow **expand to find "superfluid Israel-Stewart"**

Eckart frame of the "excitation gas" $u^{\nu} := z^{\nu}/\sqrt{-z^{\rho}z_{\rho}}$

Dissipation is mediated by collisions between quasiparticles: local thermodynamic equilibrium = collinearity between *s* and *z*

$$
\text{Heat: } s^{\nu} = s^{E} u^{\nu} + \frac{Q^{\nu}}{\Theta_{E}} \qquad Q^{\nu} u_{\nu} = 0
$$

Telegraph-type evolution for heat & bulk \rightarrow consistent with non relativistic hydrodynamics of Khalatnikov

Entropy and dissipative force $(k =$ heat conduction coefficient):

 $\text{Bulk: } \Psi = \Psi_{\text{eq}} + \Pi \ \rightarrow \ \Pi = \mathbb{A}_E \, \frac{\partial \Psi}{\partial \mathbb{A}_F} \quad \text{ where } \quad \mathbb{A}_E = - \mathbb{A}_\nu u^\nu$

$$
[\nabla_{\nu} s^{\nu}]_{\text{bulk}} = \frac{\Xi \mathbb{A}_{E}^{2}}{\Theta_{E}} \qquad [\nabla_{\nu} s^{\nu}]_{\text{heat}} = \frac{Q_{\nu} Q^{\nu}}{k \Theta_{E}^{2}} \qquad \mathcal{R}_{\rho}^{s} = \Xi \mathbb{A}_{E}^{2} u_{\rho} - \frac{s^{E}}{k} Q_{\rho}
$$

Viscous effects in neutron star mergers?

Duez et al PRD (2004), Shibata et al. PRD (2017), Alford et al. PRL (2018)

Rarefaction/compression of the fluid elements \rightarrow Chemical abundances are pushed out of chemical equilibrium. Possibly relevant for: CC superovae, NS mergers, NS oscillations

"The effects of bulk viscosity should be consistently included in future merger simulations. This has not been attempted before and requires a formulation of the relativistic-hydrodynamic equations that is hyperbolic and stable" Alford et al. PRL (2018)

$$
n \to p + e^- + \bar{\nu}_e
$$

\n
$$
p + e^- \to n + \nu_e
$$

\n
$$
n + X \to p + X + e^- + \bar{\nu}_e
$$

\n
$$
p + e^- + X \to n + X + \nu_e
$$

Perfect multifluid in relativity

We have seen the perfect fluid:

- local equilibrium (equilibrium thermodynamic variables defined in the local rest frame)

- 5 DOF: $\nabla_{\nu}n_n^{\nu} = 0$ $\nabla_{\rho}T_{\nu}^{\rho} = 0$ are enough to define the dynamics

Neutron stars are conductive!

Many flows are possible at the same time (electric current in MHD, superfluidity, heat conduction…) ...we typically need **more DOF**. Where do we get enough equations of motion?

Carter multifluid approach solves the problem of deriving the **equations of motion** for a **conductive mixture** of an arbitrary number of fluid species ("species": abstract concept, e.g. "entropy").

Important: *Carter's approach gives the equations of motion in the <i>inviscid* limit (non dissipative). Why? It is a variational approach \rightarrow Liouville theorem is incompatible with relaxation to equilibrium. Dissipative variational approaches exist but are of different nature (often they need a "DOF doubling").

Equations of motion

 $\mu_\rho^h \nabla_\nu n_h^\nu + 2n_h^\nu \nabla_{[\nu} \mu_{\rho]}^h = \left(\mathfrak{R}_\rho^h\right)$

Transfusion between species gives rise to a force Single perfect fluid part

Hydro force (e.g, friction, not specidied by the model, must be supplied)

Hydrodynamics as a derivative expansion

Hydrodynamics may also be seen as a macroscopic treatment based on:

- **Separation of length scales** (Kundsen number)

 $Kn \sim "mean free path"$ /"system length scale" \sim Mach/Reynolds $Kn \sim 0.01$ or smaller \rightarrow continuum approximation

- **Conservation laws**

energy-momentum, charges + possibly external symmetries

Example: Navier Stokes equation for a viscous fluid \rightarrow conservation of mass + Newton's II law + local isotropy

 ρ, u_{i} , T Primary variables

References

Work done with: L. Gavassino (Vanderbilt University), G. Camelio, B. Haskell (CAMK, Warsaw)

General theory:

Equilibrium thermodynamics of a multifluid \rightarrow arXiv:1906.03140 Stability and causality of Carter's multifluid \rightarrow arXiv:2202.06760 Multicomponent fluid with bulk viscosity \rightarrow arXiv:2003.04609 Dissipation in superfluids \rightarrow arXiv:2012.10288 (vortices), arXiv:2110.05546 (heat & bulk viscosity) Radiation hydrodynamics (M1) as a Carter's multifluid \rightarrow arXiv:2007.09481

Some applications:

Glitches in pulsars \rightarrow arXiv:1710.05879 (glitch amplitude), arXiv:2001.08951 (glitch timescale) Effect of bulk viscosity due to chemical reactions in neutron star oscillations \rightarrow arXiv:2204.11809 (formalism) \rightarrow arXiv:2204.11810 (simualtions)

Reviews:

Andersson & Comer "Relativistic Fluid Dynamics" arXiv:gr-qc/0605010 Gavassino & Antonelli "Unified Extended Irreversible Thermodynamics and the stability of theories for dissipation"