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Stable and causal fluids with bulk viscosity



  

Shear viscosity:
(out of equilibrium distribution)
(electron VS nuclei, protons, impurities)
(binary collisions of phonons)

Bulk viscosity:
(out of equilibrium distribution)
(nuclear reactions)
(phonon-phonon collisions)

Vortex mediated friction:
(vortex motion in the superfluid)

Luminosity/radiation 
(photon/neutrino emission)

Dissipation in Neutron Stars
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What is hydrodynamics? 
Emergent (large-scale) effective theory for slow processes 

   → “large-scale” wrt some relevant microscopic length
   → “slow” wrt the microscopic timescales 

Slow evolution characterised by those few DOF (conserved and quasi-conserved quantities) 
that equilibrate over macroscopic time-scales

The “slow” DOF play the role of effective fields →  hydrodynamics is the low-frequency field theory for such DOF

Relativistic hydrodynamics: relativistic thermodynamics + relativistic classical field theory

Thermodynamic relaxation
Most DOF relax over the “micro” timescale
Local process (no need to “communicate”)

→ fast process ~ collision time

Conserved quantity out of equilibrium
A conserved charge can only be moved around

The only way to equilibrate is transfer across regions
→ slow process for large systems and small gradients

Irreversible dynamics
Final equilibrium state must be stable 

Causality & well-posedness 
of the initial value problem

Kundsen number Kn < 0.01O(Kn0) → Perfect fluidO(Kn1) → Navier Stokes



Three “steps” 

Ideally provided by some microscopic theory
They define the physical meaning of the model
If only 1 conserved curent → “simple fluid” 

Ideally consistent with:
Causality & well-posedness

Stability of the equilibrium state

II Law of Thermodynamics:
“=” non-dissipative

“>” dissipativeFor all the conserved quantities in (1)

Review: Gavassino & MA, (2021) 
Unified Extended Irreversible 

Thermodynamics and the stability 
of theories for dissipation 

Defining a hydrodynamic model is a 3-step procedure:

1 – Identify/choose the “slow” fields φ (one for each conservation law)
       Conservation of energy-momentum → e.g. velocity, temperature (4 quantities) 
       Conservation of baryon number → e.g. baryon chemical potential…
     
      Additional field φ for each quasi-conservation law (relaxation due to “rare” events):
        Chemical fractions in the presence of slow chemical reactions → reaction affinity
        Stresses in the presence of friction/viscosity → strains…

2 – The fields φ locally characterize the state of the system → we have to provide the constitutive relations

3 – Prescribe some equations of motion (EOM) 

Steps 2 & 3: How? You decide…  but they must be at least consistent with: 



Three “steps” 

Reaction 
“affinity”

 computed via 
chemical kinetics

Each conservation law can be used as EOM...

Defining a hydrodynamic model is a 3-step procedure:

1 – Identify/choose the “slow” fields φ (one for each conservation law)
       Conservation of energy-momentum → e.g. velocity, temperature (4 quantities)
       Conservation of baryon number → e.g. baryon chemical potential…
     
      Additional field φ for each quasi-conservation law (relaxation due to “rare” events):
        Chemical fractions in the presence of slow chemical reactions → reaction affinity
        Stresses in the presence of friction/viscosity → strains…

2 – The fields φ locally characterize the state of the system → we have to provide the constitutive relations

3 – Prescribe some equations of motion (EOM) 

… but if there are quasi-conserved currents then you need to supply a “model” for how the current is dissipated.

  Example: for a current affected by chemical reactions: 

       

Review: Gavassino & MA, (2021) 
Unified Extended Irreversible 

Thermodynamics and the stability 
of theories for dissipation 



The simplest example
Zero-order in the deviation from equilibrium → perfect fluid

Energy-momentum tensor and baryon current:

The “3 steps” are trivial: (1) choose your fields, (2) constitutive relations, (3) EOM
1) 4+1 conservation equations → need 5 DOF
     0 quasi-conservation equations → need 0 “extra” DOF
2) Constitutive relations: 
3) EOM: the 4+1 conservation laws are enough

(4+1 conservation equations)

Neutron stars are “conductive” → many flows happen at the same time!
Electric current in MHD, superfluidity, heat conduction, neutrino and photon radiation...
...we typically need more than 5 DOF. Where do we get enough equations of motion?

Carter multifluid approach addresses thee three steps (1,2,3) for an arbitrary number of fluid “species”

Review: Gavassino & MA, (2021) 
Unified Extended Irreversible 

Thermodynamics and the stability 
of theories for dissipation 



Dissipative hydrodynamics (Hiscock & Lindblom 1983)

Quantities as in the perfect fluid but there are additional “dissipative fluxes”

“First order” theories → the “dissipative fluxes” functions of the “perfect fluid variables” & derivatives
                          

                          → Philosophy is that of the gradient expansion
                          → 5 algebraic DOF (the same as the perfect fluid)

“Second order” theories → the “dissipative fluxes” are new DOF
                            → DOF: 5 (perfect fluid) + 1 (bulk) + 3 (heat flux) + 5 (traceless shear) = 14
                            → Philosophy is that of moments method
                            → if only bulk & heat → 9 algebraic DOF 

Israel-Stewarthydrodynamics
NavierStokesFourier



“Expansion around equilibrium” approach → from kinetic theory up to a certain order O(f–fO) 
     
     
     Zero order → relativistic perfect fluid:  
     
     First order → Landau, Eckart (spurious gapped modes unstable, acausal)
     
    Second order → Israel-Stewart, Hiscock-Lindblom: stable and causal in the linear regime

departure from
perfect fluid

As time passes, full evolution becomes “first order”. 
Lindblom relaxation effect: tendency of dissipative fluids to lose DOF, by 

transforming dynamical equations into phenomenological constraints

Bulk viscosity = dissipative response to compression and expansion (thermal/chemical re-equilibration)

No shear, ho heat, no superfluidity 
→  isotropy

Dissipative hydrodynamics: bulk viscosity



Bulk viscosity (Navier-Stokes)
1 – Fields:  4-velocity (3 DOF) 

                 s entropy density, n number density → equilibrium reference state
                

2 - Constitutive relations: boil down to the perfect fluid for zero stress

3 - Hydrodynamic equations:   

This theory is known to be acausal and unstable (Hiscock & Lindblom 1985) 
      
      → homogeneous equilibrium state “tends to expolde”
      → PDE theory: the system is not hyperbolic
      → Impossible to set up an initial value on space surface and evolve in time
          Why? Acausality → initial condition is influenced by the future(B) 

5 DOF of the
Non-barotropic

perfect fluid

EOS ref. state:  p(n,s)  e(n,s)

Definition: 



Bulk viscosity (Israel-Stewart)
1 – Fields:  4-velocity 

                 s entropy density, n number density → equilibrium reference state
                 Additional field: bulk stress → genuine additional DOF (deviation from equilibrium)

2 - Constitutive relations: boil down to the perfect fluid for zero stress

3 - Hydrodynamic equations:   

Navier-Stokes

Maxwell-Cattaneo

(A) & (B) → “Telegraph” equation for the bulk stress
  Equation for the evolution of the bulk stress 

(A) 

(B) 

5 + 1 DOF
Non-barotropic

perfect fluid
+ bulk stress

EOS of 
reference 
eq. state:

p(n,s)
e(n,s)

(Hiscock & Lindblom 1983)

Relaxation timescale:
new “thermo” modes

(relaxation transients, no need 
for gradients to have dynamics)



Stability (entropy interpretation)
Entropy of a stable fluid

Maximum = equilibrium state (homogeneous perfect fluid state)
Blue line = states accessible in the relaxed limit (Navier-Stokes)

Any deviation from equilibrium reduces the entropy and
therefore must decay when the second law is imposed.

Entropy of relativistic Navier-Stokes
Saddle point = equilibrium state (homogeneous perfect fluid state)

Blue line = states accessible by non-rel limit
Hydro-modes → damped if we impose the validity of the II Law 

Spurious (gapped) modes → the  II Law forces
them to grow indefinitely, originating the instability.

Review: Gavassino & MA, (2021) 
Unified Extended Irreversible 

Thermodynamics and the stability of 
theories for dissipation 



Bulk viscosity
Bulk viscosity = dissipative response to compression and expansion (thermal/chemical re-equilibration)

Maximum dissipation when:
  reaction time ~ perturbation period

dS>0dS=0 dS=0

dissipative

reversible

irreversible
reversible

Camelio+ arXiv:2204.11809

   Gavassino+ 2021 CQG
1) Every bulk viscous fluid can be mapped 
into a reacting mixture (not vice-versa)
2) It is easy to formulate causal & stable  
hydro for reacting mixtures
3) Simpler to find stability-causality criteria 
for the mixture rather than Israel-Stewart
    (see Gabriele’s talk)



Bulk viscosity: theoretical approaches
Bulk viscosity = dissipative response to compression and expansion (thermal/chemical re-equilibration)

No shear, ho heat, no superfluidity 
→  isotropy

“Expansion around equilibrium” approach → full “Israel-Stewart” by Hiscock-Lindblom (1983)

“Multifluid” approach → no “expansion”, only assumes “separation of timescales”
      Meaning: each independent “reaction coordinate” that evolves slowly goes into the EOS

Chemical equilibrium

Camelio+ 
arXiv:2204.11809
arXiv:2204.11810



Viscous effects in neutron star mergers?

Previous understanding → viscous effects negligible
Based on the simulations/knowledge at that time: temperatures not so large, system very smooth, gradients too small

Example: Alford+ PRL (2018) → rough estimates of the importance of dissipation channels
Simulations (ideal fluid!): estimates for macroscopic scale L of fluid variables gradients
    From microscopic arguments: estimate for the characteristic microscopic scales l in the system
    Knudsen number ~ l/L may not be small in some cases (viscosity may affect the GW signal)

Shear → Relevant for trapped neutrinos if T > 10 MeV and gradients at small scales ~ 10 m (turbulence)
Heat → Relevant for trapped electron neutrinos if T > 10 MeV and gradients at scales ~ 100 m
Bulk → Should affect density oscillations after merger! Alford, Harris, PRC (2019)

“Effects of bulk viscosity should be consistently included in merger simulations. This has not been attempted 
before and requires a formulation of the relativistic-hydrodynamic equations that is hyperbolic and stable”

First attempt (postmerger): Camelio+ arXiv:2204.11809 and arXiv:2204.11810 (both PRD, 2023) 

Duez+ PRD (2004), Shibata+ PRD (2017), Most+ PRL 2019, Hammond+ PRD 2021, Celora+ CQG 2022...



Hydro-bulk-1D 
First simulation of a NS with the complete Hiscock-Lindblom model of bulk viscosity. 
One-dimensional, GR code, publicly available:  Giovanni Camelio, hydro-bulk-1D (2022)
 
We include the energy loss due to the luminosity of the reactions in the bulk stress formulation. 
Bulk & luminosity should be consistent (the same reactions are responsible for both)

PF = perfect fluid
MF = multifluid out of beta equilibrium (npe matter) 
MF-Q = multifluid out of beta equilibrium (npe matter) + consistent neutrino luminosity
MC = “equivalent” Maxwell-Cattaneo 

Camelio+ 
arXiv:2204.11809
arXiv:2204.11810



mURCA & dURCA effect in NS-NS mergers

First simulation of NS-NS merger to quantify the effect of mURCA & dURCA mediated bulk viscosity:
  → Same theoretical “multicomponent” scheme of Camelio+ 2023 (i.e. same equations but different EOS & rates)
  → Gravitational wave strain extracted for two EOSs

The shift in the dominant GW frequency depends on the assumptions on neutrino transparency:
   → Neutrino transparent regime (Urca vs. frozen composition) feature characteristic shifts of f  40 Hz ∆ ≃

   → When including neutrino trapping above T > 1 MeV, overall shift of about 50 Hz

Most+ PRL 2024 (arXiv: 2207.00442v2)



Three “steps”: the multifluid approach 
Carter’s multifluid framework provides a simple solution when the #DOF > 5

1 – Identify/choose the “slow” fields φ 
    
    Assume that there is a set of currents which completely specify the macrostate of the system 

 
    ...the remaining ones depend on the non-equilibrium thermodynamic properties of the system.
    Some currents may be “locked” together, others can flow independently.
 
2 – Constitutive relations: the only non-trivial one is the energy-momentum

3 – Prescribe some equations of motion (EOM)

     ...again, derived from the “master function” 

...Carter assumes that it can be derived from a
“master function” with constitutive relation: 

Two can be taken to be:

What is needed:
- Physically motivated identification of the set of currents (1)

- Constitutive relation for a single scalar function (2)

This has great practical value:
Energy-momentum is “derived”
Full set of EOMs is “derived”

Review: Gavassino & MA, (2021) 
Unified Extended Irreversible 

Thermodynamics and the stability 
of theories for dissipation 



Carter’s multifluid (no dissipation)
Variational approach based on Einstein-Hilbert+Matter action

→ simpler to prescribe a Lagrangian than the equations of motion or the energy-momoentum tensor
→ easy to add extra macroscopic fields (e.g. MHD)
→ straightforward to incorporate additional fluid components (useful for mixtures)
→ suitable for conduction

Basic requirements:

→ Should reduce to the usual perfect fluid if 1 current 
→ Simple extensions of the perfect fluid (many constituents: “perfect multifluid”) → 
→ Connection with superfluid thermodynamics: Gavassino & MA, CQG (2020)
    The “hydro” of the homogeneous state is just “thermo”
    Equilibrium state with relativistic persistent currents 

Carter, Covariant Theory of Conductivity in Ideal Fluids (1987) → Relativistic
Prix, Variational description of multi-fluid hydrodynamics (2002) → Newtonian

Seems reasonable to try with a tentative 
“Lagrangian” of the kind



Carter’s multifluid (no dissipation)
Tentative: proceed as in usual field theory (unconstrained variation)

→ Lagrangian:

→ Canonical momenta: 

→ Entrainment:

→ Energy-momentum:

Problem #1! Equations of motion (ignore surface terms in the action):

Trivial & useless dynamics!

     Problem #2!
   No conservation laws!

Where is this? Nowhere! 
Not surprising since we used 

unconstrained variations of the currents

This goes with the “gravity” part

In short: 

the usual variation of the action does not 
work: the action is minimized if there is 
no fluid at all (zero density everywhere)



Carter’s multifluid (constrained)
Solution: we have to guarantee the identity of each fluid element’s worldline!
   ...keep the definitions:

→ Not a Lagrangian but “master function”:

→ Canonical momenta: 

→ Entrainment:

→ Energy-momentum:

   

...but modify the variation procedure (variations of the currents constrained to keep identity of worldlines) 

Where is this?
The domain of the action is 

restricted so that conservation is 
ensured both on-shell and off-shell

Each component has its own set of 
worldlines that it follows without 

losing its “identity”

The “real” Lagrangian is in terms of the “trajectories” (like for the point particle)



Carter’s multifluid: non-dissipative dynamics
In a nutshell: 

1) Variational procedure to ensure the conservation of the number density currents 
    Taub, PhysRev 94 (1954), Comer & Langlois CQG 10 (1993), Andersson & Comer, LRR (2007)

→ domain of the action restricted by imposing that                 both on-shell and off-shell:   
    variations of the currents are taken in the “Taub form”

→ Variation of the action produced by the ξx (ignoring the boundary terms)

Equations of motion:                         for each constituent (all coupled by entrainment!)

If all EOM satisfied →                    

Carter, Covariant Theory of Conductivity in Ideal Fluids (1987) 

ξx = trajectory displacements

 (so this may replace 1 EOM) 



Kelvin’s theorem
Consider the usual 1-component perfect fluid (at T=0 or “barotropic”)

Take                          and project orthogonally to the 4-velocity with                           

… ofc this is useful to model cold neutron stars interiors (you’d like to know how vortices move)

   → dissipation in superfluids: when vortices do NOT flow with the current!

   → This also tells us how to extend Carter’s perfect multifluid to include dissipation…

                                           ...the Lagrangian becomes a “generating function”

relativistic Kelvin theorem: vorticity is transported by the 4-velocity
4-momentumper baryon

Perfect multifluid → EOM are:
    …what’s their meaning?



Carter’s multifluid: “generating function”
The Lagrangian is downgraded to be just a “generating function” for the energy-momentumand the canonical momenta 

Equations of motion: just take the divergence 
of the energy-momentum and see...

                        does not give the EOM anymore!

Dissipation → entropy is not conserved… we have to break currents’s 
conservation without falling into the useless “unconstrained” model  
Keep the central postulate: there is a function

Energy-momentum obtained as

Baryonconservation II Law
Is this a viable scheme for dissipation in relativity? 
Is it more or less universal than “Israel-Stewart”?
Causality, stability?  → difficult question but linearly stable & causal for “simple” forces



  

Shear viscosity:
(out of equilibrium distribution)
(electron VS nuclei, protons, impurities)
(binary collisions of phonons)

Bulk viscosity:
(out of equilibrium distribution)
(nuclear reactions)
(phonon-phonon collisions)

Vortex mediated friction:
(vortex motion in the superfluid)

Luminosity/radiation 
(photon/neutrino emission)

Dissipation in Neutron Stars

NS 
oscillations

Pulsar rotation

Merger       

“Generating function” approach good for… ? 

Simple fluid + non-conserved ultra-relativistic fluid 
      → M1 radiation hydrodynamics (arXiv:2007.09481) 

This is what Carter’s multifluid does and others can not (arXiv:2012.10288)

Can be “better” than Israel-Stewart
→ can evolve multiple independent chemical fractions (arXiv:2003.04609)
→ upgrade Israel-Stewart to superfluid matter (arXiv:2110.05546) 

Maybe yes but NO 
(need to introduce a “flux of a flux” together with the other currents)

Cooling



Superfluid + bulk viscosity + heat
How to combine superfluidity with dissipation? Two different languages are used:
    Relativistic theory for superfluidity → Carter’s perfect multifluid 
    Relativistic theory for dissipation → “Israel-Stewart” / “second-order”

They do not seem to have anything in common → how to merge the two consistently? 
 

Close to equilibrium: Carter(N+1) = Carter(N) + Israel-Stewart dissipation (bulk viscosity & heat)
 → If Carter(N) is non-dissipative, in Carter(N+1) we have to unlock the II Law 
 → Advantage: easy to derive causality & stability conditions for Carter(N+1)
 → II Law valid both on and off-shell: the equations can be solved!

Message: How to include bulk & heat dissipation in a superfluid? → Add 1 non-conserved current! 
Which current depends on microphysics (phonons, rotons, photons, non-superfluid baryons in NS crust)

ArXiv: 2110.05546

Carter(1) Carter(2)

Heat conduction: Carter(1+1) Carter(2+1)



Superfluid + bulk viscosity + heat
Carter’s dissipative multifluid with 3 currents: 

Equilibrium: non-dissipative 2-fluid of Tisza-Landau (persistent current of entropy wrt particles)
                  We only need density and entropy to define the state →  

Out-of-equilibrium:
Israel-Stewart is “perturbative”: dissipative fluxes (Π,Q) are defined as deviations from equilibrium.
Expand around                                               and find:

Generating function formalism:

Need to find                        from quasiparticle kinetics →                          

ArXiv: 2110.05546

Non-conserved 
quasiparticle number

12 algebraic DOF = 9 (I&S heat+bulk) + 3 (superflow)

Equations of motion



Final considerations
From the general considerations in arXiv:2003.04609 (also, arXiv:2110.05546) 

→ Dissipative Carter’s multifluid can encore heat and bulk viscosity
→ Theoretically identical to Israel-Stewart close to equilibrium 
→ Far from equilibrium: Israel-Stewart is pertubative, Carter is not
→ “Carter” = non perturbative generalization of “Israel-Stewart” without shear 

Hydro-Bulk-1D: First simulation of proto-NS with the complete Hiscock-Lindblom model of bulk 
viscosity and neutrino luminosity. Comparison with Carter’s formalism for bulk viscosity. 
One-dimensional, GR code, publicly available:  Giovanni Camelio, hydro-bulk-1D (2022)

Numerical check of the theoretical result (arXiv:2204.11810):
    Israel-Stewart is a good approximations of the multi-component fluid when:
    → small perturbations
    → the equation of state of the fluid depends on only one independent particle fraction
    For more than one independent particle fraction and for large perturbations (e.g. muons)
    → the bulk stress approximation is still valid but less accurate

Message: in mergers, isolated NS (cold and hot), supernovae… just use “Carter” for bulk viscosity!
   → arXiv:2003.04609 (general theory),  arXiv:2204.11810 (comparison of 3 approaches to bulk and numerics)



Superfluid + bulk viscosity + heat
Carter’s dissipative multifluid with 3 currents: 

            
We have “Carter” from the “generating functional” → expand to find “superfluid Israel-Stewart”

Eckart frame of the “excitation gas” 

Heat:

Bulk:                            →                                where 

Entropy and dissipative force (k = heat conduction coefficient): 

ArXiv: 2110.05546

Non-conserved 
quasiparticle number

12 algebraic DOF

Dissipation is mediated by collisions between 
quasiparticles: local thermodynamic 

equilibrium = collinearity between s and z

Telegraph-type evolution
for heat & bulk

→ consistent with non
relativistic hydrodynamics 

of Khalatnikov



Superfluid + bulk viscosity + heat
Carter’s dissipative multifluid with 3 currents: 

Equilibrium: non-dissipative 2-fluid of Tisza-Landau (persistent current of entropy wrt particles)
                  We only need density and entropy to define the state →  

Out-of-equilibrium:
Israel-Stewart is “perturbative”: dissipative fluxes (Π,Q) are defined as deviations from equilibrium.
Expand around                                               and find:

Generating function formalism:

Need to find                        from quasiparticle kinetics →                          

ArXiv: 2110.05546

Non-conserved 
quasiparticle number

12 algebraic DOF = 9 (I&S heat+bulk) + 3 (superflow)

Equations of motion



Superfluid + bulk viscosity + heat
Carter’s dissipative multifluid with 3 currents: 

            
We have “Carter” from the “generating functional” → expand to find “superfluid Israel-Stewart”

Eckart frame of the “excitation gas” 

Heat:

Bulk:                            →                                where 

Entropy and dissipative force (k = heat conduction coefficient): 

ArXiv: 2110.05546

Non-conserved 
quasiparticle number

12 algebraic DOF

Dissipation is mediated by collisions between 
quasiparticles: local thermodynamic 

equilibrium = collinearity between s and z

Telegraph-type evolution
for heat & bulk

→ consistent with non
relativistic hydrodynamics 

of Khalatnikov



Viscous effects in neutron star mergers?

Rarefaction/compression of the fluid elements → Chemical abundances are pushed out of chemical equilibrium. 
Possibly relevant for: CC superovae, NS mergers, NS oscillations

Most+ PRL (2019) Density

Temperature

“The effects of bulk viscosity should be 
consistently included in future merger simulations. 
This has not been attempted before and requires a 

formulation of the relativistic-hydrodynamic 
equations that is hyperbolic and stable”

Alford et al. PRL (2018)

Duez et al PRD (2004), Shibata et al. PRD (2017), Alford et al. PRL (2018)

Hammond + 2022



Perfect multifluid in relativity
We have seen the perfect fluid:
- local equilibrium (equilibrium thermodynamic variables defined in the local rest frame) 
- 5 DOF:                                        are enough to define the dynamics

Neutron stars are conductive!
Many flows are possible at the same time (electric current in MHD, superfluidity, heat conduction…)
...we typically need more DOF. Where do we get enough equations of motion?

Carter multifluid approach solves the problem of deriving the equations of motion for a conductive 
mixture of an arbitrary number of fluid species (“species”: abstract concept, e.g. “entropy”). 

Important: Carter’s approach gives the equations of motion in the inviscid limit (non dissipative).
Why? It is a variational approach → Liouville theorem is incompatible with relaxation to equilibrium.
Dissipative variational approaches exist but are of different nature (often they need a “DOF doubling”).

Equations of motion
Single perfect fluid partSingle perfect fluid partTransfusion between species gives rise to a force Hydro force (e.g, friction, not specidied by the model, must be supplied)



Hydrodynamics as a derivative expansion
Hydrodynamics may also be seen as a macroscopic treatment based on:

- Separation of length scales (Kundsen number)

  Kn ~ “mean free path”/“system length scale” ~ Mach/Reynolds
  Kn ~ 0.01 or smaller → continuum approximation 

- Conservation laws 
    energy-momentum, charges + possibly external symmetries

Example: Navier Stokes equation for a viscous fluid 
  → conservation of mass + Newton’s II law + local isotropy  

Note: at every order you always have the 5 DOF of the perfect fluid!
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