The Holographic Approach to Dense QCD Matter

Francesco Nitti

APC, U. Paris

GDR Ondes Gravitationnelles

GT étoiles à neutrons, supernovas et synthèse des éléments lourds

October 10 2024

The Holographic Approach to Dense QCD Matter – p.1

Introduction

- Gauge/gravity duality (aka Holographic Correspondence): ^a way to answer questions in strongly coupled QFTs theories by doing calculations in classical GR
- holographic models can provide a descriptions of many aspects of the non-perturbative physics and can in principle be used to study high-density QCD matter

Introduction

- Gauge/gravity duality (aka Holographic Correspondence): ^a way to answer questions in strongly coupled QFTs theories by doing calculations in classical GR
- holographic models can provide a descriptions of many aspects of the non-perturbative physics and can in principle be used to study high-density QCD matter

Outline

- What is the gauge/gravity duality?
- What good can it be for Neutron Star Physics?

The Gauge/Gravity Duality

Conjecture that some 4d quantum field theories have an equivalent description as gravitational theories in higher dimensions

- •Well-grounded in the string theory context for SUSY QFTs.
- General features believed to be valid in the absence of SUSY (less under control).

The Gauge/Gravity Duality

Conjecture that some 4d quantum field theories have an equivalent description as gravitational theories in higher dimensions

- Equivalent means that the two theories describe the same physics in terms of different degrees of freedom, but arranged in differnt ways.
- •Weak QFT coupling: QFT description is perturbative;
- Strong QFT coupling: gravity side captured by classical GR (for large N gauge theories)

The Gauge/Gravity Duality

Conjecture that some 4d quantum field theories have an equivalent description as gravitational theories in higher dimensions

• QFT is conformal \Leftrightarrow Gravity side is AdS spacetime

$$
ds^{2} = \frac{\ell^{2}}{r^{2}}(dr^{2} + dx^{2}_{\mu})
$$

- $r = 0$: *boundary* of $AdS =$ spacetime where the QFT lives (hence *holography*).
- •• Broken conformal invariance \Leftrightarrow AdS deformed in the interior.

• QFT operator \Leftrightarrow Dynamical bulk field :

• QFT correlation functions $\langle O(x_1) \dots O(x_n) \rangle$ computed at strong coupling by solving classical equations for $\varphi(x,r)$.

Holographic models for QCD

• Dictionary:

Holographic models for QCD

• Dictionary:

- Bottom-up: Einstein-Scalar-Yang-Mills action depending on *phenomenological potentials* (functions of the scalars)
- State of the art: V-QCD model Järvinen, Kiritsis '11

Confinement

- •UV of the QFT \Leftrightarrow near-boundary region
- IR of the QFT \Leftrightarrow interior

Conformal (AdS space)

Confinement

- UV of the QFT \Leftrightarrow near-boundary region
- IR of the QFT \Leftrightarrow interior

- Confinement is associated to properties of the interior geometry.
- Interior dynamically determined by bulk EOM.

Hot and dense thermodynamics states

• Finite T and/or $\mu_B \Leftrightarrow$ 5D Black Hole geometry

- Describes deconfined phase ;
- Dominates partition function over the confined phase at large T or large μ
- EoS obtained from 5D Black Hole Thermodynamics (standard GR)
- Can be used to model presence of a deconfined core in NS

Beyond thermodynamics

- Out-of-equilibrium evolution can be obtained by evolving bulk state
- Linear hydro \leftrightarrow linear perturbations around BHs in GR

• Can compute transport coefficients (viscosities) entering non-ideal hydro by ^a simple linearized GR calculation.

Holography applied to neutron stars

- Baryons
- EoS
- Hot phase
- Neutrino transport

(partial) list of contributors: P. Chesler, T. Demircik, C. Ecker, C. Hoyos, T. Ishii, M. Järvinen, N. Jokela, E. Kiritsis, A. Loeb, G. Nijs, D. Mateos, FN, E. Préau, J. Remes, D. Rodríguez Fernández, W. van der Schee, A. Vourinen...

Baryonic phase

• Single baryon \Leftrightarrow bulk instanton of non-abelian gauge fields.

Baryonic phase

•Single baryon \Leftrightarrow bulk instanton of non-abelian gauge fields.

- V-QCD Baryon constructed numerically Järvinen, Kiritsis, FN, Préau, '22
- In progress: multi-baryon fluid/solid (not ^a black hole)

Effective/hybrid models

• Effective holographic description of baryonic matter in V-QCD Ishii, Järvinen, Nijs, '19.

Baryon distribution realized in the bulk as ^a homogeneous thin layer.

Effective/hybrid models

 \bullet State of the art Hybrid model Demircik, Ecker, Järvinen, '21

Baryonic phase EoS at finite T described by a VdW model

Neutron Star EoS

• Zero and finite temperature EoS from low to high density (hadronic to deconfined) Demircik, Ecker, Järvinen, '21.

•Static EoS too stiff to suppor^t deconfined core. However...

BNS Mergers based on V-QCD

 \bullet Simulations based on V-QCD/hybrid EoS ⁺ ideal hydro

Tootle, Ecker, Topolski, Demircik, Järvinen, Rezzolla, 22

•...quark matter may form in post-merger state

BNS Mergers based on V-QCD

• Simulations based on V-QCD/hybrid EoS + ideal hydro

Tootle, Ecker, Topolski, Demircik, Järvinen, Rezzolla, 22

Neutrino transport from holography

To compute the in-medium neutrino diffusion: need strong-interaction contribution to EW gauge bosons self energies:

> $\Sigma^{\mu\nu}$ $(p) = \Sigma$ $_{EW}^{\mu\nu}(p)+\langle J^\mu(p)J$ ν ($-p$) \rangle_{QCD} medium

Neutrino transport from holography

To compute the in-medium neutrino diffusion: need strong-interaction contribution to EW gauge bosons self energies:

Neutrino transport from holography

To compute the in-medium neutrino diffusion: need strong-interaction contribution to EW gauge bosons self energies:

> $\Sigma^{\mu\nu}$ $(p) = \Sigma$ $_{EW}^{\mu\nu}(p)+\langle J^\mu(p)J$ ν ($-p$) \rangle_{QCD} medium

- Can compute real-time $\langle J^{\mu}J \rangle$ ν \rangle_{QCD} using holography at finite density and temperature, by ^a liner perturbation calculation in the bulk.
- Proof of principle calculation in the deconfined phase and in a simplified model Jarvinen, Kiritsis, FN, Préau, '23

Exotic phases

• Holography predicts *exotic phases* in the presnce of both baryon and isospin chemical potential: condensation of ^a vector order parameter

• Do these phases have a place in the NS phase diagram?

Exotic phases

• Holography predicts *exotic phases* in the presnce of both baryon and isospin chemical potential: condensation of ^a vector order parameter

Jarvinen, Kiritsis, FN, Préau, '24

• Do these phases have a place in the NS phase diagram?

Exotic phases

• Holography predicts *exotic phases* in the presnce of both baryon and isospin chemical potential: condensation of ^a vector order parameter

• Do these phases have a place in the NS phase diagram?

Conclusion

- State-of-the-art holographic models give reasonable static EoS compatible with observations;
- Can descibe various phases, at low and high temperture, in and out of equilibrium, all within the same model.
- Can go beyond ideal hydro at no additional (theoretical) cost.
- Currently most reliable: description of deconfined quark matter

Conclusion

- State-of-the-art holographic models give reasonable static EoS compatible with observations;
- Can descibe various phases, at low and high temperture, in and out of equilibrium, all within the same model.
- Can go beyond ideal hydro at no additional (theoretical) cost.
- Currently most reliable: description of deconfined quark matter

Questions:

- Baryons Construct realistic holographic fluid for confined case
- Finite temperature Relevant for post-merger transient states?
- Go beyond ideal hydro in simulations?
- EW processes: neutrino transport in realistic models.
- where can holography be most helpful?

Conclusion

- State-of-the-art holographic models give reasonable static EoS compatible with observations;
- Can descibe various phases, at low and high temperture, in and out of equilibrium, all within the same model.
- Can go beyond ideal hydro at no additional (theoretical) cost.
- Currently most reliable: description of deconfined quark matter

Questions:

- Baryons Construct realistic holographic fluid for confined case
- Finite temperature Relevant for post-merger transient states?
- Go beyond ideal hydro in simulations?
- EW processes: neutrino transport in realistic models.
- where can holography be most helpful?

In2p3 Master Project Xtreme Dyn (E. Kiritsis) The Holographic Approach to Dense QCD Matter – p.19

- QFT operator $O(x) \Leftrightarrow$ Bulk field $\Phi(x, r)$.
- $\Phi_0(x) = \Phi(x,0)$ is a source for $O(x)$ in the QFT:

- QFT operator $O(x) \Leftrightarrow$ Bulk field $\Phi(x, r)$.
- $\Phi_0(x) = \Phi(x,0)$ is a source for $O(x)$ in the QFT:

Dimension Δ of O determined by the mass of Φ: $\,m$ $^{2}=\Delta(\Delta-d).$

- QFT operator $O(x) \Leftrightarrow$ Bulk field $\Phi(x, r)$.
- $\Phi_0(x) = \Phi(x,0)$ is a source for $O(x)$ in the QFT:

Dimension Δ of O determined by the mass of Φ: $\,m$ $^{2}=\Delta(\Delta-d).$

in the large- N limit:

$$
\mathcal{Z}_{QFT}[\Phi_0(x)] = \exp iS_{cl}[\Phi_0(x)]
$$

 $S_{cl}[\Phi_0]$: classical bulk action evaluated on the solution of the field equations with fixed boundary condition $\Phi_0(x).$

- QFT operator $O(x) \Leftrightarrow$ Bulk field $\Phi(x, r)$.
- $\Phi_0(x) = \Phi(x,0)$ is a source for $O(x)$ in the QFT:

Dimension Δ of O determined by the mass of Φ: $\,m$ $^{2}=\Delta(\Delta-d).$

in the large- N limit:

$$
\mathcal{Z}_{QFT}[\Phi_0(x)] = \exp iS_{cl}[\Phi_0(x)]
$$

 $S_{cl}[\Phi_0]$: classical bulk action evaluated on the solution of the field equations with fixed boundary condition $\Phi_0(x).$

$$
\langle O(x_1) \dots O(x_n) \rangle = \frac{\delta}{\delta \Phi_0(x_1)} \dots \frac{\delta}{\delta \Phi_0(x_n)} S_{cl}[\Phi_0]
$$

Minimal holographic YM

- •• The bulk theory is five-dimensional $(x^{\mu} + RG$ coordinate r)
- •• Include only lowest dimension YM operators ($\Delta = 4$)

 $\lambda = N g_{YM}^2 = e$ Φ (finite in the large N limit).

- Breaking of conformal symmetry, mass gap, confinement, and all non-perturbative dynamics driven by the dilaton dynamics (aka the Yang-Mills coupling).
- (Eventually: add axion field $a \Rightarrow Tr F\tilde{F}$)

Gursoy, Kiritsis, FN, 2007

$$
S_c = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R + \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} - V(\lambda) \right]
$$

Gursoy, Kiritsis, FN, 2007

$$
S_c = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R + \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} - V(\lambda) \right]
$$

- $V(\Phi)$ fixed phenomenologically. It should parametrize our ignorance of the "true" five-dimensional string theory
- Effective Planck scale $\sim N_c$ $\frac{2}{c}$ is large.

Gursoy, Kiritsis, FN, 2007

$$
S_c = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R + \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} - V(\lambda) \right]
$$

- $V(\Phi)$ fixed phenomenologically. It should parametrize our ignorance of the "true" five-dimensional string theory
- Effective Planck scale $\sim N_c$ $\frac{2}{c}$ is large.
- \bullet UV: e ${}^A \rightarrow \infty, \; \lambda \rightarrow 0, \hspace{1cm} V(\lambda)$ ∼ $\frac{12}{\ell^2}\left(1\right.+$ $v_0\lambda + v_1\lambda$ $^2\ldots\big)$
- IR: λ large, e $^{A}\rightarrow0;\qquad V(\lambda)$ $\sim \lambda$ $^{4/3}(\log\lambda)^{1/2}$

Gursoy, Kiritsis, FN, 2007

$$
S_c = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R + \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} - V(\lambda) \right]
$$

- $V(\Phi)$ fixed phenomenologically. It should parametrize our ignorance of the "true" five-dimensional string theory
- Effective Planck scale $\sim N_c$ $\frac{2}{c}$ is large.
- \bullet UV: e ${}^A \rightarrow \infty, \; \lambda \rightarrow 0, \hspace{1cm} V(\lambda)$ ∼ $\frac{12}{\ell^2}\left(1\right.+$ $v_0\lambda + v_1\lambda$ $^2\ldots\big)$
- IR: λ large, e $^{A}\rightarrow0;\qquad V(\lambda)$ $\sim \lambda$ $^{4/3}(\log\lambda)^{1/2}$
- Features: asymptotic freedom, confinement, discrete linear glueball spectrum, correct thermodynamics and phase diagram

Five dimensional setup: Yang-Mills

The Poincaré-invariant vacuum solution has the general form:

 $d\mathcal{s}$ $2 = e$ $^{2A(r)}(dr^{2}+dx_{\mu}dx^{\mu}),\quad\lambda$ $=\lambda(r),\quad 0 < r < +\infty$

Five dimensional setup: Yang-Mills

The Poincaré-invariant vacuum solution has the general form:

 $d\mathcal{s}$ $2 = e$ $^{2A(r)}(dr^{2}+dx_{\mu}dx^{\mu}),\quad\lambda$ $=\lambda(r),\quad 0 < r < +\infty$

- \bullet e $\displaystyle {\it A}$ (r) \propto 4D energy scale
- $\lambda(r) \propto$ running 't Hooft coupling
- $A(r)$, $\lambda(r)$ determined by solving bulk Einstein's equations.

Five dimensional setup: Yang-Mills

The Poincaré-invariant vacuum solution has the general form:

 $d\mathcal{s}$ $2 = e$ $^{2A(r)}(dr^{2}+dx_{\mu}dx^{\mu}),\quad\lambda$ $=\lambda(r),\quad 0 < r < +\infty$

- \bullet e $\displaystyle {\it A}$ (r) \propto 4D energy scale
- $\lambda(r) \propto$ running 't Hooft coupling

Adding Flavor: V-QCD

Jarvinen, Kiritsis 2011

 N_f quark flavors $\Leftrightarrow N_f$ space-filling branes-antibranes.

Adding Flavor: V-QCD

Jarvinen, Kiritsis 2011

Flavor brane worldvolume fields:

• $U(N_f)_L \times U(N_f)_R$ gauge fields

$$
A_B^{a;L}, A_B^{a;R} \Leftrightarrow J_\mu^{a;L,R} \equiv \bar{q}^i \gamma_\mu (\tau^a)_i^j (1 \pm \gamma_5) q_j
$$

a = 1... N_f^2 , $i, j = 1...N_f$
 $U_B(1)$ current \Leftrightarrow abelian vector $A_\mu^{(L)} + A_\mu^{(R)}$

Adding Flavor: V-QCD

Jarvinen, Kiritsis 2011

Flavor brane worldvolume fields:

• $U(N_f)_L \times U(N_f)_R$ gauge fields

$$
A_B^{a;L}, A_B^{a;R} \iff J_{\mu}^{a;L,R} \equiv \bar{q}^i \gamma_{\mu} (\tau^a)_i^j (1 \pm \gamma_5) q_j
$$

 $a=1\ldots N_f^2, \; i,j=1\ldots N_f$

 $U_B(1)$ current \Leftrightarrow abelian vector $A_{\mu}^{(L)} + A_{\mu}^{(R)}$

• Bi-fundamental scalars Scalars

$$
\mathcal{T}_j^i \Leftrightarrow \bar{q}^i q_j \qquad m^2 = -3 \Leftrightarrow \Delta = 3
$$

Adding Flavor: V-QCD

Jarvinen, Kiritsis 2011

Flavor brane worldvolume fields:

• $U(N_f)_L \times U(N_f)_R$ gauge fields

$$
A_B^{a;L}, A_B^{a;R} \iff J_\mu^{a;L,R} \equiv \bar{q}^i \gamma_\mu (\tau^a)_i^j (1 \pm \gamma_5) q_j
$$

$$
a = 1 \dots N_f^2, i, j = 1 \dots N_f
$$

 $U_B(1)$ current \Leftrightarrow abelian vector $A_{\mu}^{(L)} + A_{\mu}^{(R)}$

• Bi-fundamental scalars Scalars

$$
\mathcal{T}_j^i \Leftrightarrow \bar{q}^i q_j \qquad m^2 = -3 \Leftrightarrow \Delta = 3
$$

$$
S_{VQCD} = S_c + S_{DBI} + S_{CS}
$$

Action: DBI term

$$
S_{DBI} = -M_p^3 N_c Tr \int d^5x V_f(\lambda, \mathcal{T}^{\dagger} \mathcal{T}) \left[\sqrt{-\det \mathbf{A}^{(L)}} + \sqrt{-\det \mathbf{A}^{(R)}} \right]
$$

$$
\mathbf{A}_{ab} = g_{ab} + w(\lambda, \mathcal{T}^{\dagger} \mathcal{T}) F_{ab} + \kappa(\lambda, \mathcal{T}^{\dagger} \mathcal{T}) (D_a \mathcal{T})^{\dagger} D_b \mathcal{T} + h.c.
$$

To quadratic order:

$$
S_{DBI} \simeq M_p^3 N_c \int d^5x V_f w^2 \Big(Tr F_L^2 + Tr F_R^2 \Big)
$$

Phase transitions in BNS mergers

Hot/Compressed spots in post-merger state

Prakash, Radice, Logoteta *et al.*; '22, Tootle, Ecker, Topolski, *et al.* '22...

Phase transitions in BNS mergers

Hot/Compressed spots in post-merger state

Prakash, Radice, Logoteta *et al.*; '22, Tootle, Ecker, Topolski, *et al.* '22...

investigate phase transitions and bubble nucleation / collisions

Casalderey-Solana, Mateos, Sanchez-Garitaonandia '22

Potential signals in the MHz range from bubble collisions Approach to Dense QCD Matter – p.17