The Holographic Approach to Dense QCD Matter

Francesco Nitti

APC, U. ParisCité

GDR Ondes Gravitationnelles

GT étoiles à neutrons, supernovas et synthèse des éléments lourds

October 10 2024

The Holographic Approach to Dense QCD Matter - p.1

Introduction

- Gauge/gravity duality (aka Holographic Correspondence): a way to answer questions in strongly coupled QFTs theories by doing calculations in classical GR
- holographic models can provide a descriptions of many aspects of the non-perturbative physics and can in principle be used to study high-density QCD matter

Introduction

- Gauge/gravity duality (aka Holographic Correspondence): a way to answer questions in strongly coupled QFTs theories by doing calculations in classical GR
- holographic models can provide a descriptions of many aspects of the non-perturbative physics and can in principle be used to study high-density QCD matter

Outline

- What is the gauge/gravity duality?
- What good can it be for Neutron Star Physics?

The Gauge/Gravity Duality

Conjecture that some 4d quantum field theories have an equivalent description as gravitational theories in higher dimensions

- Well-grounded in the string theory context for SUSY QFTs.
- General features believed to be valid in the absence of SUSY (less under control).

The Gauge/Gravity Duality

Conjecture that some 4d quantum field theories have an equivalent description as gravitational theories in higher dimensions

- Equivalent means that the two theories describe the same physics in terms of different degrees of freedom, but arranged in differnt ways.
- Weak QFT coupling: QFT description is perturbative;
- Strong QFT coupling: gravity side captured by classical GR (for large *N* gauge theories)

The Gauge/Gravity Duality

Conjecture that some 4d quantum field theories have an equivalent description as gravitational theories in higher dimensions

• QFT is conformal \Leftrightarrow Gravity side is AdS spacetime

$$ds^{2} = \frac{\ell^{2}}{r^{2}}(dr^{2} + dx_{\mu}^{2})$$

- r = 0: boundary of AdS = spacetime where the QFT lives (hence *holography*).
- Broken conformal invariance \Leftrightarrow AdS deformed in the interior.

• QFT operator ⇔ Dynamical bulk field :

• QFT correlation functions $\langle O(x_1) \dots O(x_n) \rangle$ computed at strong coupling by solving classical equations for $\varphi(x, r)$.

Holographic models for QCD

• Dictionary:

4D Operator		5D Bulk field
TrF^2	\Leftrightarrow	Φ
$T_{\mu u}$	\Leftrightarrow	$g_{\mu u}$
Stress tensor		bulk metric
J^{μ}_L, J^{μ}_R	\Leftrightarrow	A^{μ}_L, A^{μ}_R
$U(N_f)_L \times U(N_f)_R$ flavor currents		$U(N_f)_L \times U(N_f)_R$ gauge fields
$\psi^{\imath}\psi_{j}$	\Leftrightarrow	T^i_j
quark bilinear		matrix of scalars

Holographic models for QCD

• Dictionary:

4D Operator		5D Bulk field
TrF^2	\Leftrightarrow	Φ
$T_{\mu u}$	\Leftrightarrow	$g_{\mu u}$
Stress tensor		bulk metric
J^{μ}_L, J^{μ}_R	\Leftrightarrow	A^{μ}_L, A^{μ}_R
$U(N_f)_L \times U(N_f)_R$ flavor currents		$U(N_f)_L \times U(N_f)_R$ gauge fields
$\psi^{\imath}\psi_{j}$	\Leftrightarrow	T^i_j
quark bilinear		matrix of scalars

- Bottom-up: Einstein-Scalar-Yang-Mills action depending on *phenomenological potentials* (functions of the scalars)
- State of the art: V-QCD model Järvinen, Kiritsis '11

Confinement

- UV of the QFT \Leftrightarrow near-boundary region
- IR of the QFT \Leftrightarrow interior

Conformal (AdS space)

Confinement

- UV of the QFT \Leftrightarrow near-boundary region
- IR of the QFT \Leftrightarrow interior

- Confinement is associated to properties of the interior geometry.
- Interior dynamically determined by bulk EOM.

Hot and dense thermodynamics states

• Finite *T* and/or $\mu_B \Leftrightarrow$ 5D Black Hole geometry

- Describes deconfined phase ;
- Dominates partition function over the confined phase at large T or large μ
- EoS obtained from 5D Black Hole Thermodynamics (standard GR)
- Can be used to model presence of a deconfined core in NS

Beyond thermodynamics

- Out-of-equilibrium evolution can be obtained by evolving bulk state
- Linear hydro \leftrightarrow linear perturbations around BHs in GR

• Can compute transport coefficients (viscosities) entering non-ideal hydro by a simple linearized GR calculation.

Holography applied to neutron stars

- Baryons
- EoS
- Hot phase
- Neutrino transport

(partial) list of contributors: P. Chesler, T. Demircik, C. Ecker,C. Hoyos, T. Ishii, M. Järvinen, N. Jokela, E. Kiritsis, A. Loeb,G. Nijs, D. Mateos, FN, E. Préau, J. Remes, D. RodríguezFernández, W. van der Schee, A. Vourinen...

Baryonic phase

• Single baryon \Leftrightarrow bulk instanton of non-abelian gauge fields.

Baryonic phase

• Single baryon \Leftrightarrow bulk instanton of non-abelian gauge fields.

- V-QCD Baryon constructed numerically Järvinen, Kiritsis, FN, Préau, '22
- In progress: multi-baryon fluid/solid (not a black hole)

Effective/hybrid models

• Effective holographic description of baryonic matter in V-QCD Ishii, Järvinen, Nijs, '19.

Baryon distribution realized in the bulk as a homogeneous thin layer.

Effective/hybrid models

• State of the art Hybrid model Demircik, Ecker, Järvinen, '21

Baryonic phase EoS at finite T described by a VdW model

Neutron Star EoS

• Zero and finite temperature EoS from low to high density (hadronic to deconfined) Demircik, Ecker, Järvinen, '21.

• Static EoS too stiff to support deconfined core. However...

BNS Mergers based on V-QCD

• Simulations based on V-QCD/hybrid EoS + ideal hydro

Tootle, Ecker, Topolski, Demircik, Järvinen, Rezzolla, 22

...quark matter may form in post-merger state

BNS Mergers based on V-QCD

• Simulations based on V-QCD/hybrid EoS + ideal hydro

Tootle, Ecker, Topolski, Demircik, Järvinen, Rezzolla, 22

Three quark production mechanisms (hot, warm, cold)

Neutrino transport from holography

To compute the in-medium neutrino diffusion: need strong-interaction contribution to EW gauge bosons self energies:

 $\Sigma^{\mu\nu}(p) = \Sigma^{\mu\nu}_{EW}(p) + \langle J^{\mu}(p) J^{\nu}(-p) \rangle_{QCD \ medium}$

Neutrino transport from holography

To compute the in-medium neutrino diffusion: need strong-interaction contribution to EW gauge bosons self energies:

Neutrino transport from holography

To compute the in-medium neutrino diffusion: need strong-interaction contribution to EW gauge bosons self energies:

 $\Sigma^{\mu\nu}(p) = \Sigma^{\mu\nu}_{EW}(p) + \langle J^{\mu}(p) J^{\nu}(-p) \rangle_{QCD \ medium}$

- Can compute real-time $\langle J^{\mu}J^{\nu}\rangle_{QCD}$ using holography at finite density and temperature, by a liner perturbation calculation in the bulk.
- Proof of principle calculation in the deconfined phase and in a simplified model Jarvinen, Kiritsis, FN, Préau, '23

Exotic phases

• Holography predicts *exotic phases* in the presnce of both baryon and isospin chemical potential: condensation of a vector order parameter

Jarvinen, Kiritsis, FN, Préau, '24

• Do these phases have a place in the NS phase diagram?

Exotic phases

• Holography predicts *exotic phases* in the presnce of both baryon and isospin chemical potential: condensation of a vector order parameter

Jarvinen, Kiritsis, FN, Préau, '24

• Do these phases have a place in the NS phase diagram?

Exotic phases

• Holography predicts *exotic phases* in the presnce of both baryon and isospin chemical potential: condensation of a vector order parameter

• Do these phases have a place in the NS phase diagram?

Conclusion

- State-of-the-art holographic models give reasonable static EoS compatible with observations;
- Can describe various phases, at low and high temperture, in and out of equilibrium, all within the same model.
- Can go beyond ideal hydro at no additional (theoretical) cost.
- Currently most reliable: description of deconfined quark matter

Conclusion

- State-of-the-art holographic models give reasonable static EoS compatible with observations;
- Can describe various phases, at low and high temperture, in and out of equilibrium, all within the same model.
- Can go beyond ideal hydro at no additional (theoretical) cost.
- Currently most reliable: description of deconfined quark matter

Questions:

- Baryons Construct realistic holographic fluid for confined case
- Finite temperature Relevant for post-merger transient states?
- Go beyond ideal hydro in simulations?
- EW processes: neutrino transport in realistic models.
- where can holography be most helpful?

Conclusion

- State-of-the-art holographic models give reasonable static EoS compatible with observations;
- Can describe various phases, at low and high temperture, in and out of equilibrium, all within the same model.
- Can go beyond ideal hydro at no additional (theoretical) cost.
- Currently most reliable: description of deconfined quark matter

Questions:

- Baryons Construct realistic holographic fluid for confined case
- Finite temperature Relevant for post-merger transient states?
- Go beyond ideal hydro in simulations?
- EW processes: neutrino transport in realistic models.
- where can holography be most helpful?

In2p3 Master Project Xtreme Dyn (E. Kiritsis)

- QFT operator $O(x) \Leftrightarrow$ Bulk field $\Phi(x, r)$.
- $\Phi_0(x) = \Phi(x, 0)$ is a source for O(x) in the QFT:

- QFT operator $O(x) \Leftrightarrow$ Bulk field $\Phi(x, r)$.
- $\Phi_0(x) = \Phi(x, 0)$ is a source for O(x) in the QFT:

Dimension Δ of O determined by the mass of Φ : $m^2 = \Delta(\Delta - d).$

- QFT operator $O(x) \Leftrightarrow$ Bulk field $\Phi(x, r)$.
- $\Phi_0(x) = \Phi(x, 0)$ is a source for O(x) in the QFT:

Dimension Δ of O determined by the mass of Φ : $m^2 = \Delta(\Delta - d).$

in the large-N limit:

$$\mathcal{Z}_{QFT}[\Phi_0(x)] = \exp iS_{cl}[\Phi_0(x)]$$

 $S_{cl}[\Phi_0]$: classical bulk action evaluated on the solution of the field equations with fixed boundary condition $\Phi_0(x)$.

- QFT operator $O(x) \Leftrightarrow$ Bulk field $\Phi(x, r)$.
- $\Phi_0(x) = \Phi(x, 0)$ is a source for O(x) in the QFT:

Dimension Δ of O determined by the mass of Φ : $m^2 = \Delta(\Delta - d).$

in the large-N limit:

$$\mathcal{Z}_{QFT}[\Phi_0(x)] = \exp iS_{cl}[\Phi_0(x)]$$

 $S_{cl}[\Phi_0]$: classical bulk action evaluated on the solution of the field equations with fixed boundary condition $\Phi_0(x)$.

$$\langle O(x_1) \dots O(x_n) \rangle = \frac{\delta}{\delta \Phi_0(x_1)} \dots \frac{\delta}{\delta \Phi_0(x_n)} S_{cl}[\Phi_0]$$

Minimal holographic YM

- The bulk theory is five-dimensional $(x^{\mu} + \text{RG coordinate } r)$
- Include only lowest dimension YM operators ($\Delta = 4$)

4D Operator		Bulk field	Coupling
TrF^2	\Leftrightarrow	Φ	$N\int e^{-\Phi}TrF^2$
$T_{\mu u}$	\Leftrightarrow	$g_{\mu u}$	$\int g_{\mu u}T^{\mu u}$

 $\lambda = Ng_{YM}^2 = e^{\Phi}$ (finite in the large N limit).

- Breaking of conformal symmetry, mass gap, confinement, and all non-perturbative dynamics driven by the dilaton dynamics (aka the Yang-Mills coupling).
- (Eventually: add axion field $a \Rightarrow TrF\tilde{F}$)

Gursoy, Kiritsis, FN, 2007

$$S_c = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R + \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} - V(\lambda) \right]$$

Gursoy, Kiritsis, FN, 2007

$$S_c = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R + \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} - V(\lambda) \right]$$

- $V(\Phi)$ fixed phenomenologically. It should parametrize our ignorance of the "true" five-dimensional string theory
- Effective Planck scale $\sim N_c^2$ is large.

Gursoy, Kiritsis, FN, 2007

$$S_c = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R + \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} - V(\lambda) \right]$$

- $V(\Phi)$ fixed phenomenologically. It should parametrize our ignorance of the "true" five-dimensional string theory
- Effective Planck scale $\sim N_c^2$ is large.
- UV: $e^A \to \infty, \ \lambda \to 0, \qquad V(\lambda) \sim \frac{12}{\ell^2} \left(1 + v_0 \lambda + v_1 \lambda^2 \dots \right)$
- IR: λ large, $e^A \to 0$; $V(\lambda) \sim \lambda^{4/3} (\log \lambda)^{1/2}$

Gursoy, Kiritsis, FN, 2007

$$S_c = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R + \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} - V(\lambda) \right]$$

- $V(\Phi)$ fixed phenomenologically. It should parametrize our ignorance of the "true" five-dimensional string theory
- Effective Planck scale $\sim N_c^2$ is large.
- UV: $e^A \to \infty, \ \lambda \to 0, \qquad V(\lambda) \sim \frac{12}{\ell^2} \left(1 + v_0 \lambda + v_1 \lambda^2 \dots \right)$
- IR: λ large, $e^A \to 0$; $V(\lambda) \sim \lambda^{4/3} (\log \lambda)^{1/2}$
- Features: asymptotic freedom, confinement, discrete linear glueball spectrum, correct thermodynamics and phase diagram

Five dimensional setup: Yang-Mills

The Poincaré-invariant vacuum solution has the general form:

 $ds^2 = e^{2A(r)}(dr^2 + dx_\mu dx^\mu), \quad \lambda = \lambda(r), \quad 0 < r < +\infty$

Five dimensional setup: Yang-Mills

The Poincaré-invariant vacuum solution has the general form:

 $ds^2 = e^{2A(r)}(dr^2 + dx_\mu dx^\mu), \quad \lambda = \lambda(r), \quad 0 < r < +\infty$

- $e^A(r) \propto 4 \mathrm{D}$ energy scale
- $\lambda(r) \propto$ running 't Hooft coupling
- $A(r), \lambda(r)$ determined by solving bulk Einstein's equations.

Five dimensional setup: Yang-Mills

The Poincaré-invariant vacuum solution has the general form:

 $ds^2 = e^{2A(r)}(dr^2 + dx_\mu dx^\mu), \quad \lambda = \lambda(r), \quad 0 < r < +\infty$

- $e^A(r) \propto 4 \mathrm{D}$ energy scale
- $\lambda(r) \propto$ running 't Hooft coupling

Adding Flavor: V-QCD

Jarvinen, Kiritsis 2011

 N_f quark flavors $\Leftrightarrow N_f$ space-filling branes-antibranes.

Adding Flavor: V-QCD

Jarvinen, Kiritsis 2011

Flavor brane worldvolume fields:

• $U(N_f)_L \times U(N_f)_R$ gauge fields

$$A_B^{a;L}, A_B^{a;R} \iff J_{\mu}^{a;L,R} \equiv \bar{q}^i \gamma_{\mu} (\tau^a)_i^j (1 \pm \gamma_5) q_j$$
$$a = 1 \dots N_f^2, \ i, j = 1 \dots N_f$$
$$U_B(1) \text{ current} \Leftrightarrow \text{abelian vector } A_{\mu}^{(L)} + A_{\mu}^{(R)}$$

Adding Flavor: V-QCD

Jarvinen, Kiritsis 2011

Flavor brane worldvolume fields:

• $U(N_f)_L \times U(N_f)_R$ gauge fields

$$A_B^{a;L}, A_B^{a;R} \quad \Leftrightarrow \quad J_\mu^{a;L,R} \equiv \bar{q}^i \gamma_\mu \, (\tau^a)_i^j \, (1 \pm \gamma_5) q_j$$

 $a = 1 \dots N_f^2, i, j = 1 \dots N_f$ $U_B(1)$ current \Leftrightarrow abelian vector $A_{\mu}^{(L)} + A_{\mu}^{(R)}$

• Bi-fundamental scalars Scalars

$$\mathcal{T}_j^i \Leftrightarrow \bar{q}^i q_j \qquad m^2 = -3 \Leftrightarrow \Delta = 3$$

Adding Flavor: V-QCD

Jarvinen, Kiritsis 2011

Flavor brane worldvolume fields:

• $U(N_f)_L \times U(N_f)_R$ gauge fields

$$A_B^{a;L}, A_B^{a;R} \quad \Leftrightarrow \quad J_\mu^{a;L,R} \equiv \bar{q}^i \gamma_\mu \, (\tau^a)_i^j \, (1 \pm \gamma_5) q_j$$

 $a = 1 \dots N_f^2, \ i, j = 1 \dots N_f$ $U_B(1)$ current \Leftrightarrow abelian vector $A_{\mu}^{(L)} + A_{\mu}^{(R)}$

• Bi-fundamental scalars Scalars

$$\mathcal{T}_j^i \Leftrightarrow \bar{q}^i q_j \qquad m^2 = -3 \Leftrightarrow \Delta = 3$$

$$S_{VQCD} = S_c + S_{DBI} + S_{CS}$$

Action: DBI term

$$S_{DBI} = -M_p^3 N_c Tr \int d^5 x \, V_f(\lambda, \mathcal{T}^{\dagger} \mathcal{T}) \left[\sqrt{-\det \mathbf{A}^{(L)}} + \sqrt{-\det \mathbf{A}^{(R)}} \right]$$

$$\mathbf{A}_{ab} = g_{ab} + w(\lambda, \mathcal{T}^{\dagger}\mathcal{T})F_{ab} + \kappa(\lambda, \mathcal{T}^{\dagger}\mathcal{T})(D_{a}\mathcal{T})^{\dagger}D_{b}\mathcal{T} + h.c.$$

To quadratic order:

$$S_{DBI} \simeq M_p^3 N_c \int d^5 x \, V_f \, w^2 \Big(Tr F_L^2 + Tr F_R^2 \Big)$$

Phase transitions in BNS mergers

Hot/Compressed spots in post-merger state

Prakash, Radice, Logoteta et al.; '22, Tootle, Ecker, Topolski, et al. '22...

Phase transitions in BNS mergers

Hot/Compressed spots in post-merger state

Prakash, Radice, Logoteta et al.; '22, Tootle, Ecker, Topolski, et al. '22...

investigate phase transitions and bubble nucleation / collisions

Casalderey-Solana, Mateos, Sanchez-Garitaonandia '22

Potential signals in the MHz range from bubble collisions