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What is “dilute” neutron matter?

I Upper layers of the inner crust (close to neutron-drip density ∼ 2.5× 10−4 fm−3)

ngas = 4× 10−5 fm−3 (14% of total nB)

ngas = 4.8× 10−4 fm−3 (54% of total nB)

[Negele and Vautherin, NPA 207 (1973); similar results by Baldo et al., PRC 76 (2007)]

I In spite of its “low” density (still ρ & 1011 g/cm3), the neutron gas is relevant
because it occupies a much larger volume than the clusters

I Deeper in the crust: ngas increases up to ∼ n0/2 = 0.08 fm−3

→ Fermi momentum kF = (3π2n)1/3 ∼ 0.1 . . . 1.3 fm−1



Ab-initio EoS vs. phenomenological energy functionals
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← (E/A)FG = 3
5 EF

I For n→ 0: E
EFG

= 1− 10
9πkFa+ · · · (a ≈ −18 fm = s-wave scattering length)

I Finite range (reff ≈ 2.5 fm) and higher partial waves are also important

I Above kF ∼ 1 fm−3: effects of 3-body force (two pion exchange)



Low-momentum interactions

Example: contact interaction V (k , k ′) = g

I Scattering length a for coupling constant g < 0 and cutoff Λ (εk = k2

2m )

4πa

m
= g + g

∫ Λ d3k

(2π)3

1

−2εk

4πa

m
= +

→ Relationship between g and Λ:
1

g
=

m

4πa
− mΛ

2π2

Vlow−k interactions

I Matrix elements V (k, k ′) = 0 for k or k ′ > Λ

I Not only a, but all phase shifts δ(k) for k < Λ are independent of Λ

Similarity renormalization group (SRG)

I Unitary transformation: phase shifts unchanged at all energies

I For k, k ′ � Λ: only diagonal matrix elements survive → decoupling

I In principle, one can compute “induced” 3- (and higher-) body forces that
are generated by the transformation when decreasing the cutoff



Hartree-Fock-Bogoliubov (HFB)

I Hard core of “realistic” potentials
requires resummations, and nuclei are
not bound in HF(B) approximation

I Soft interactions (Vlow-k , SRG) much
better suited for perturbative methods

I HFB with perturbative corrections can
give good results for open-shell nuclei
[e.g., Tichai et al. 2019]

I Scale Λ with kF
effectively resumming ladders in Uk

I gap ∆k and mean field Uk :

∆k = −
∫

d3p

(2π)3
V (k, p) upvp

Uk =

∫
d3p

(2π)3
V
(p− k
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Bogoliubov Many-Body Perturbation Theory (BMBPT)

I Express K̂ = Ĥ − µN̂ in terms of quasiparticle operators

βk↑ = uk ak↑ − vk a
†
−k↓ , βk↓ = uk ak↓ + vk a

†
−k↑

K̂ = EHFB +
∑
kσ

Ek β
†
kσβkσ+ :V̂ :

:V̂ : = V04 ββββ + V13 β
†βββ + V22 β

†β†ββ + V31 β
†β†β†β + V40 β

†β†β†β†

I BMBPT: treat :V̂ : as a perturbation

I Example: leading correction to ground-state energy is 2nd order
V

V

i j k l
E2 = − 1

4!

∑
ijkl

|〈ijkl |V̂40|HFB〉|2

Ei + Ej + Ek + El

with |ijkl〉 = β†i β
†
j β
†
kβ
†
l |HFB〉 (4-quasiparticle state)

I Very large number of terms at higher orders → Mathematica

I Summation over intermediate quasiparticle states → Monte-Carlo integration



HFB+BMBPT results with Vlow-k

I The correct low-density limit requires V → 4πa

m
, i.e., Λ→ 0

→ density dependent cutoff Λ ' 1.5− 3kF
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I With Vlow-k (Λ = 2kF ), BMBPT seems to converge rapidly

I Good agreement with QMC results at low densities

I Energies too low at high densities: missing (bare) 3BF?



Cutoff dependence of Vlow-k results

I Physical results should be independent of the ratio Λ/kF
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I Varying Λ/kF in a reasonable range, we see that the BMBPT results show
much less cutoff dependence than the HFB results

I The residual cutoff dependence indicates the necessity of including higher
orders of BMBPT or induced many-body forces



NN and induced 3N SRG matrix elements
I Starting point: VNN = chiral N4LO potential, V3N = 0

I Basis of hyperspherical harmonics for the 3-body space
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k = K cosα , q = K sinα , YL`1m1`2m2 = Y`1m1 (k̂)Y`2m2 (q̂)P`2`1
L (α)

I So far, only 3-body force induced by 1S0 2-body interaction:
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Cutoff dependence of SRG results

I Since induced 3N force is weak, we include it perturbatively E3N ≈ 〈HFB|V3N |HFB〉
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I BMBPT3(NN) with SRG has stronger cutoff dependence than with Vlow-k

I Cutoff dependence almost cancelled by the contribution of the induced 3N force
(maybe perturbative treatment not sufficient for the lowest cutoffs)



1S0 pairing: screening corrections (medium polarization)

I Screening can significantly reduce the BCS (or HFB) pairing gap

I Diagrams (analogous to screening of Coulomb interaction):

−~q ′,−σ′ ~q ′, σ′

−~q,−σ ~q, σ

V1S0

bare −~q ′,−σ′ ~q ′, σ′

−~q,−σ ~q, σ

~p−~k
σ′1

~p
σ1

Ṽj1s1l1l ′1

Ṽj2s2l2l ′2

(a)
−~q ′,−σ′ ~q ′, σ′

−~q,−σ ~q, σ

~p1−~k
σ′1

~p1
σ1

~p2−~k
σ′2

~p3
σ2

RPA

Ṽj1s1l1l ′1

Ṽj2s2l2l ′2

(b)

(Ṽ = anti-
symmetrized
matrix
element)

(1) RPA bubble summation

(2) Treat (a)+(b) (in static approx.) as correction δV to V in the gap equation

I (1) and (2) are non-perturbative, i.e., unlikely to work well in BMBPT

I Here: use Vlow-k with Λ = 2.5kF but take m∗ and particle-hole interaction
from a phenomenological Skyrme functional → to be improved. . .



Pairing in the low-density limit
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I Vlow-k+ Skyrme RPA calculation can reproduce results from QMC (Quantum

Monte Carlo) and GMB [Gor’kov & Melik-Barkhudarov (1961)]

I Some problems of the calculation by Cao, Lombardo & Schuck (2006):
I No screening at low density? → Contradiction to GMB result

I Some arguable approximations (3p1h matrix elements averaged over the Fermi
sphere, RPA in lowest-order Landau approximation, . . . )

I “Babu-Brown theory” which artificially reduces the Landau parameters
(suppressing the liquid-gas instability in symmetric matter)



Dependence on the Skyrme parametrization

I Compare results using different SLy and BSk functionals for m∗ and the RPA:
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I Sizeable differences at BCS level (w/o screening) because of different m∗

I Results with screening are surprisingly close to each other

I Density where the 1S0 gap disappears is uncertain



Summary

I Dilute neutron matter with densities 10−4 fm−3 . n . 0.08 fm−3 relevant
for the inner crust (0.14 fm−1 . kF . 1.33 fm−1)

I Low-momentum potentials with Λ ∝ kF are a powerful method, avoiding
the necessity to resum ladder diagrams

I EoS and pairing gap well under control up to n ≈ 0.03 fm−3 (kF ≈ 1 fm−1)

I Pairing beyond that density very sensitive to details of screening

Outlook

I Include genuine 3-body force (2-pion exchange) for EoS at higher densities

I Screening should be computed from the NN (and 3N) interactions within
BMBPT (with appropriate resummations if needed)

I Extension to finite proton fraction (neutron-star core): 3-body force is
crucial


