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Outline

» Dilute neutron matter

» Low-momentum interactions

» Hartree-Fock-Bogoliubov with perturbative corrections
» Effect of induced 3-body force

» Pairing with screening corrections

>

Summary and outlook
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What is “dilute” neutron matter?

» Upper layers of the inner crust (close to neutron-drip density ~ 2.5 x 10™* fm~3)
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[Negele and Vautherin, NPA 207 (1973); similar results by Baldo et al., PRC 76 (2007)]

> In spite of its “low” density (still p > 10" g/cm®), the neutron gas is relevant
because it occupies a much larger volume than the clusters

» Deeper in the crust: ng.s increases up to ~ ng/2 = 0.08 fm~3

— Fermi momentum kr = (372n)/3 ~0.1...1.3 fm™*



Ab-initio EoS vs. phenomenological energy functionals
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> Forn—0: E—EG =1-322kra+--- (a~ —18 fm = s-wave scattering length)

> Finite range (refr = 2.5 fm) and higher partial waves are also important
> Above kr ~ 1 fm~3: effects of 3-body force (two pion exchange)



Low-momentum interactions

Example: contact interaction V(k, k') =g
» Scattering length a for coupling constant g < 0 and cutoff A (e = £)
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View—k interactions
> Matrix elements V/(k, k") =0 for k or k' > A
> Not only a, but all phase shifts §(k) for k < A are independent of A

Similarity renormalization group (SRG)
» Unitary transformation: phase shifts unchanged at all energies
> For k, k' > A: only diagonal matrix elements survive — decoupling

» In principle, one can compute “induced” 3- (and higher-) body forces that
are generated by the transformation when decreasing the cutoff



Hartree-Fock-Bogoliubov (HFB)

» Hard core of “realistic” potentials
requires resummations, and nuclei are
not bound in HF(B) approximation

» Soft interactions (Viow-x, SRG) much
better suited for perturbative methods

» HFB with perturbative corrections can
give good results for open-shell nuclei
[e.g., Tichai et al. 2019]

» Scale A with kr
effectively resumming ladders in Uy

» gap A, and mean field Ux:
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Bogoliubov Many-Body Perturbation Theory (BMBPT)

» Express K=~HA- p/\AI in terms of quasiparticle operators
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> BMBPT: treat :V: as a perturbation
» Example: leading correction to ground-state energy is 2nd order  _______
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with |ijkl) = BIBIB]B]|HFB) (4-quasiparticle state) ~ \._2 __
» Very large number of terms at higher orders — Mathematica

» Summation over intermediate quasiparticle states — Monte-Carlo integration



HFB+BMBPT results with Vjo.«

4
» The correct low-density limit requires V — La, ie, N—0
m
— density dependent cutoff A ~ 1.5 — 3kf
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> With View-k (A = 2kg), BMBPT seems to converge rapidly
» Good agreement with QMC results at low densities
> Energies too low at high densities: missing (bare) 3BF?



Cutoff dependence of V|, .k results

» Physical results should be independent of the ratio A/kg
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» Varying A/kge in a reasonable range, we see that the BMBPT results show
much less cutoff dependence than the HFB results

» The residual cutoff dependence indicates the necessity of including higher
orders of BMBPT or induced many-body forces



NN and induced 3N SRG matrix elements

» Starting point: Viyy = chiral N4ALO potential, V35 =0 P, ok
» Basis of hyperspherical harmonics for the 3-body space 3q P,
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Cutoff dependence of SRG results

» Since induced 3N force is weak, we include it perturbatively &3y =~ (HFB|V3y|HFB)
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» BMBPT3(NN) with SRG has stronger cutoff dependence than with Vi«

» Cutoff dependence almost cancelled by the contribution of the induced 3N force
(maybe perturbative treatment not sufficient for the lowest cutoffs)



1S pairing: screening corrections (medium polarization)

» Screening can significantly reduce the BCS (or HFB) pairing gap

> Diagrams (analogous to screening of Coulomb interaction):
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(1) RPA bubble summation
Treat (a)+(b) (in static approx.) as correction 6V to V in the gap equation

(1) and (2) are non-perturbative, i.e., unlikely to work well in BMBPT
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Here: use Vigw.x with A = 2.5kg but take m* and particle-hole interaction
from a phenomenological Skyrme functional — to be improved. ..



Pairing in the low-density limit
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» Viow-k+ Skyrme RPA calculation can reproduce results from QMC (Quantum
Monte Carlo) and GMB [Gor'kov & Melik-Barkhudarov (1961)]
» Some problems of the calculation by Cao, Lombardo & Schuck (2006):
» No screening at low density? — Contradiction to GMB result

> Some arguable approximations (3plh matrix elements averaged over the Fermi
sphere, RPA in lowest-order Landau approximation, . ..)

> “Babu-Brown theory” which artificially reduces the Landau parameters
(suppressing the liquid-gas instability in symmetric matter)



Dependence on the Skyrme parametrization

» Compare results using different SLy and BSk functionals for m*
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and the RPA:

» Sizeable differences at BCS level (w/o screening) because of different m*
» Results with screening are surprisingly close to each other

» Density where the 1Sy gap disappears is uncertain



Summary

» Dilute neutron matter with densities 10~ fm—3 < n < 0.08 fm~3 relevant
for the inner crust (0.14 fm~! < kg < 1.33 fm™1)

» Low-momentum potentials with A o< kg are a powerful method, avoiding
the necessity to resum ladder diagrams

» EoS and pairing gap well under control up to n ~ 0.03 fm~3 (kg ~ 1 fm™1)

» Pairing beyond that density very sensitive to details of screening

Outlook

» Include genuine 3-body force (2-pion exchange) for EoS at higher densities

» Screening should be computed from the NN (and 3/N) interactions within
BMBPT (with appropriate resummations if needed)

> Extension to finite proton fraction (neutron-star core): 3-body force is
crucial



