

Point Cloud Neural Networks

Frédéric Magniette - LLR

Introduction
● A lot of application gets unordered 3D point cloud as input
● Main application : robotics, self-driving cars, monitoring

(rivers level, volcanoes, glacier…) from drone or satellite
● Need dedicated algorithms
● Question : how to transfer convolution revolution to this

kind of data

Point Cloud Data

Input
● Extract information directly from a point cloud
● Points Pi in Rk (k≥3) Euclidian 3D coordinates +

(k-3) « colors »
● 4 main properties

– unordered : need for a permutation invariant operator
– Interaction among points : the metric distance

defines meaningful neigbourings
– Invariance under transformation : rotation and

translation should not modify the result
– Sparsity

Problematics
● Three problematics

– Classification
– Part segmentation
– Semantic segmentation

Input device: RGB-D Camera
● color + depth
● Analysis of defocusing blur → distance
● Can be converted to partial 3D

representation

Input device: Stereo Camera
● Take 2 images at the

same time
● Stereoscopy :

Calculate the distance
from the shift

Input device: LIDAR
● LIDAR : light detection and ranging
● Emitting visible laser light
● Analyse the return of the light
● Can also measure the speed by Doppler effect
● Used for advanced robotics

Input device : Particle
detectors

● Hits : 3D point
with energy
measurement
and timing → 5D
points

● Different
granularity

● Barycenter of
sensors

ModelNet40
● CAD models in 40

categories
● 1024/2048 point

clouds
● Around 12k models
● Canonical dataset

for point cloud
classification

Wu & al, 3D ShapeNets: A
Deep Representation for
Volumetric Shapes, 2015

SHREC 15
● Non rigid shapes
● 1200 3d shapes
● different poses of the same 3D model
● Classified in 50 categories

Lian & al, Non-rigid 3D
Shape Retrieval, 2015

ScanNet
● RGB-D video

dataset
● 2.5 million views
● 1500 scans
● annotated with

– surface
reconstructions

– instance-level
semantic
segmentations

Dai& al, Scannet:
Richly-annotated 3d
reconstructions of
indoor scenes, 2017

ShapeNet
● Part of object data from 50 different part

denomination
● 16881 CAD models from 16 categories
● 2048 points samples

Yi & al, A scalable
active framework for
region annotation in 3D
shape collections, 2016

Question
● How to transpose the

tremendous success obtained
with 2D image convolution to
3D point cloud ?

● Before 2015 : handmade
feature
– specific spatial configuration
– Dedicated to a specific problem
– unable to be transfered to

similar problem
● A lot of work based on neural

network from 2015 to now

?

15

Point Cloud Neural Networks

Three main techniques
– Voxelization and 3D

Convolution (2015-2016)
– Symmetric pooling (2017-

2018)
– Graph Convolution (2017-

now)
Precision

Convolution Recall

Convolution

● Apply kernel on image (like the convolution filter)
● kernel is learnable ()
● Filter is shared over the whole picture
● Idea : creating maps of features (one kernel per feature)

Pooling

● Reduce the dimensionality of the feature
maps

● Move to higher level of abstraction
● Max pool is widely used

Convolutional network

● Network structure :
– Alternance of convolution & pooling
– Flattering (sometimes called readout)
– Multi-layer perceptron

How it works ?

● Feature maps aggregates more and more
details to converges to high level recognition
patterns

● Flattened high-level feature map is input for
multi-layer perceptron

Why it works ?
● The two operations derive naturally from local space

Euclidian nature
– Euclidian space → translation-invariance (stationarity) → convolution
– Scale-separability (compositionality) → downsampling

● Dream complexity
– O(1) parameters per filter (independant of image size)
– O(n) complexity in time per layer (n=#pixels)

You see, I told you
my little Albert ...

Oh, shut up, Euclid !
And you too, Newton !!!!

LOL

3D Convolution Solutions

Data Voxelization
● From coordinates

to boolean 3D
tensor

● Voxel (volume
pixel)

● Can be enriched to
colored voxel

● Quantization
artifact → potential
degradation of the
recognition

3D Convolution

Maturana & al, VoxNet: A 3D
Convolutional Neural Network
for Real-Time Object
Recognition, 2015

Wu & al, 3D ShapeNets: A
Deep Representation for
Volumetric Shapes, 2015

● Simple extension of 2D formula to voxelized
3D data

● Cubical complexity O(n3)
● Needs padding -> no exploitation of sparsity
● Need a huge amount of computation
● Limit operations to 30x30x30 resolution
● Tradeoff to find between computation time and

precision

Sparse 3D Convolution
● Try reduce the complexity

of convolution by exploiting
the data sparsity

● Reduce the number of
input points by selecting
the interesting/specific
parts of the cloud

● Interesting tracks but lower
the complexity by reducing
the precision...

Wang & al, Voting for Voting
in Online Point Cloud Object
Detection, 2016

Multiple 2D Convolution
(2.5D Convolution)

Qi & al, Volumetric and Multi-
View CNNs for Object
Classification on 3D Data, 2016

Su & al, Multi-view Convolutional
Neural Networks for 3D Shape
Recognition, 2015

● Improve performance on classification (better resolution of images)
● Still requires huge amount of computation (3D reconstruction + plenty of CNN)
● Does not work for segmentation

Symmetric pooling solutions

Ideas of symmetric pooling
● As the main problem is the non-order of the points

– Idea 1 : use a symmetric analysing function
● tends to loose the locality
● PointNet[++]

– Idea 2 : order them before analyse
● Theory : no order can be stable to point perturbation
● Reality : but could be stable enough to give interesting result
● PointCNN

– Idea 3 : treat the input as a sequence in a reccurent
network, trained with shuffling to learn symmetry

● The approximation of the order is not stable either
● The performance are terrible

PointNet
● Idea : instead of sorting points, learn a symmetric

function g over transformed points h(x)

● approximate h by a shared MLP and 2 shared
learned linear transformations (normalization)

● Features are ordered by max pooling
● g = max_pool ○ MLP

Charles R. Qi

PointNet (2)
● Reach same overall accuracy as 3D convolution with

440MFlops/sample vs 62057 Mflops/sample for Multiview CNN
● Segmentation extension mixing local and global features
● Drawback

– does not capture any local feature
– Cant recognize fine grain patterns

Qi & al, PointNet: Deep
Learning on Point Sets for
3D Classification and
Segmentation, 2017

PointNet++
● Hierarchical version of PointNet
● Apply Pointnet recursively on the nested partitions → local features
● Combine learned feature from different scales
● Better perf but still does not understand the relationship between points
● Gain almost 3 % on global accuracy on ModelNet40 → 91.9 %

Qi & al, PointNet++: Deep
Hierarchical Feature Learning on
Point Sets in a Metric Space,
2017

PointCNN
● Convolution on the K proximate

neighbours
● Problem : the neighbours are not

ordered
● Try to learn a transformation X

– Weighting the inputs
– creating a canonical order

● Apply ordinary convolution on the
result (X+Conv=XConv)

● Apply pooling on the point set
● Obtain 92.2 % overall accuracy on

ModelNet40 (very good)

Li & al, PointCNN:
Convolution On X -
Transformed Points,
2018

Graph convolution solutions

Idea of Graph convolution

● Build a graph
structure with the
point cloud

● Capture the locality in
the graph adjacency

● Apply new techniques
of graph convolution

Spectral vs Spatial
● Spectral method has been the first to be developped,

based on algebraic / spectral graph theory (80’s)
● Contrary to spectral, spatial is stable to graph

change
● Nowadays almost only spatial methods are used

Neural Message Passing Network
● Generic recipe for spatial graph

convolution
● Convolves the central node xi

with its neighbors xj in N(v)

● □ is a symmetric normalized
operator like mean or max

● Nice complexity O(m)
Gilmer & al, Neural
message passing for
quantum chemistry, 2017

 37

Formalism
● Every node has a feature vector changing at each

iteration (convolutional step)
● xi

t is feature vector of node i at convolutional step t
● Xt is the feature map of all nodes at step t
● Every edge between xi and xj has a feature vector

ei,j

● Convolution step which convolves the central
node xi with its neighbors xj in N(v)

● □ is the aggregator function (commutative &
normalized : max, average..)

● Φ is the message function (learnable parameters)
● γ is the update function (learnable parameters)
● Learnable parameters are θγ and θΦ

This recipe includes
Euclidian CNN

●

● □ = sum
● Regular graph (no weight)
● Every vertex is self looped

→ Euclidian CNN

Graph pooling

● Produce a sequence of coarsened graphs
● Graclus algorithm
● Fusion of vertices

– Connected by a common edge
– Max, sum or average pooling of collapsed vertices

Network inference
architecture

● Successive feature maps induce a new graph
● Semi-supervised learning

Graph classification
architecture

● Non Euclidian convolution with pooling
● Readout to flatten the feature maps
● Multi-layer perceptron with softmax for classification
● Shape recognition (particle interactions)

Dynamic extension

● It is shown to work better if the
graph is re-computed at every step

● The network learns how to build
the graph

● Cluster similar features in the
feature space

● Very resource demanding (multiple
KNN)

Wang & al, Dynamic Graph
CNN for Learning on Point
Clouds, 2019

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42

