Point Cloud Neural Networks

Frédéric Magniette - LLR

Introduction

- A lot of application gets unordered 3D point cloud as input
- Main application : robotics, self-driving cars, monitoring (rivers level, volcanoes, glacier...) from drone or satellite
- Need dedicated algorithms
- Question : how to transfer convolution revolution to this kind of data

Point Cloud Data

Input

- Extract information directly from a point cloud
- Points P_i in R^k (k≥3) Euclidian 3D coordinates + (k-3) « colors »
- 4 main properties
 - unordered : need for a permutation invariant operator
 - Interaction among points : the metric distance defines meaningful neigbourings
 - Invariance under transformation : rotation and translation should not modify the result
 - Sparsity

Problematics

- Three problematics
 - Classification
 - Part segmentation
 - Semantic segmentation

Input device: RGB-D Camera

- color + depth
- Analysis of defocusing blur \rightarrow distance
- Can be converted to partial 3D representation

3.5

з

2.5

1.5

0.5

Input device: Stereo Camera

- Take 2 images at the same time
- Stereoscopy : Calculate the distance from the shift

Input device: LIDAR

- LIDAR : light detection and ranging
- Emitting visible laser light
- Analyse the return of the light
- Can also measure the speed by Doppler effect
- Used for advanced robotics

Input device : Particle detectors

- Hits : 3D point with energy measurement and timing → 5D points
- Different granularity
- Barycenter of sensors

ModelNet40

- CAD models in 40 categories
- 1024/2048 point clouds
- Around 12k models
- Canonical dataset for point cloud classification

Wu & al, 3D ShapeNets: A Deep Representation for Volumetric Shapes, 2015

SHREC 15

• Non rigid shapes

Lian & al, Non-rigid 3D Shape Retrieval, 2015

- 1200 3d shapes
- different poses of the same 3D model
- Classified in 50 categories

ScanNet

- RGB-D video dataset
- 2.5 million views
- 1500 scans
- annotated with
 - surface reconstructions
 - instance-level
 semantic
 segmentations

Dai& al, Scannet: Richly-annotated 3d reconstructions of indoor scenes, 2017

ShapeNet

Yi & al, A scalable active framework for region annotation in 3D shape collections, 2016

- Part of object data from 50 different part denomination
- 16881 CAD models from 16 categories
- 2048 points samples

Question

- How to transpose the tremendous success obtained with 2D image convolution to 3D point cloud ?
- Before 2015 : handmade feature
 - specific spatial configuration
 - Dedicated to a specific problem
 - unable to be transferred to similar problem
- A lot of work based on neural network from 2015 to now

Point Cloud Neural Networks

Three main techniques

Voxelization and 3D
 Convolution (2015-2016)

- Symmetric pooling (2017-2018) $f(x_1,...,x_n) \approx g(h(x_1),...,h(x_n))$
- Graph Convolution (2017now)

Precision

Convolution Recall

Convolution

- Apply kernel on image (like the convolution filter)
- kernel is learnable $(k_{i,j})$
- Filter is shared over the whole picture
- Idea : creating maps of features (one kernel per feature)

Pooling

- Reduce the dimensionality of the feature maps
- Move to higher level of abstraction
- Max pool is widely used

Convolutional network

- Network structure :
 - Alternance of convolution & pooling
 - Flattering (sometimes called readout)
 - Multi-layer perceptron

How it works ?

- Feature maps aggregates more and more details to converges to high level recognition patterns
- Flattened high-level feature map is input for multi-layer perceptron

Why it works ?

- The two operations derive naturally from local space Euclidian nature
 - Euclidian space \rightarrow translation-invariance (stationarity) \rightarrow convolution
 - Scale-separability (compositionality) \rightarrow downsampling
- Dream complexity
 - O(1) parameters per filter (independant of image size)
 - O(n) complexity in time per layer (n=#pixels)

3D Convolution Solutions

Data Voxelization

- From coordinates to boolean 3D tensor
- Voxel (volume pixel)
- Can be enriched to colored voxel
- Quantization artifact → potential degradation of the recognition

3D Convolution

 Simple extension of 2D formula to voxelized 3D data

$$x'_{k,l,m} = \sigma(b + \sum_{i,j,k \in [-s..s]^2} x_{k+i,l+j,m+k} * k_{i,j,k})$$

- Cubical complexity O(n³)
- Needs padding -> no exploitation of sparsity
- Need a huge amount of computation
- Limit operations to 30x30x30 resolution
- Tradeoff to find between computation time and precision
- Maturana & al, VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition, 2015
- Wu & al, 3D ShapeNets: A Deep Representation for Volumetric Shapes, 2015

Sparse 3D Convolution

- Try reduce the complexity of convolution by exploiting the data sparsity
- Reduce the number of input points by selecting the interesting/specific parts of the cloud
- Interesting tracks but lower the complexity by reducing the precision...

Wang & al, Voting for Voting in Online Point Cloud Object Detection, 2016

- Improve performance on classification (better resolution of images)
- Still requires huge amount of computation (3D reconstruction + plenty of CNN)
- Does not work for segmentation

Su & al, Multi-view Convolutional Neural Networks for 3D Shape Recognition, 2015 Qi & al, Volumetric and Multi-View CNNs for Object Classification on 3D Data, 2016

Symmetric pooling solutions

Ideas of symmetric pooling

- As the main problem is the non-order of the points
 - Idea 1 : use a symmetric analysing function
 - tends to loose the locality
 - PointNet[++]
 - Idea 2 : order them before analyse
 - Theory : no order can be stable to point perturbation
 - Reality : but could be stable enough to give interesting result
 - PointCNN
 - Idea 3 : treat the input as a sequence in a reccurent network, trained with shuffling to learn symmetry
 - The approximation of the order is not stable either
 - The performance are terrible

PointNet

 Idea : instead of sorting points, learn a symmetric function g over transformed points h(x)

 $f(x_1,\ldots,x_n) \approx g(h(x_1),\ldots,h(x_n))$

- approximate h by a shared MLP and 2 shared learned linear transformations (normalization)
- Features are ordered by max pooling
- g = max_pool \circ MLP

Charles R. Qi

PointNet (2)

Qi & al, PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, 2017

- Reach same overall accuracy as 3D convolution with 440MFlops/sample vs 62057 Mflops/sample for Multiview CNN
- Segmentation extension mixing local and global features
- Drawback
 - does not capture any local feature
 - Cant recognize fine grain patterns

PointNet++

Qi & al, PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space, 2017

- Hierarchical version of PointNet
- Apply Pointnet recursively on the nested partitions \rightarrow local features
- Combine learned feature from different scales
- Better perf but still does not understand the relationship between points
- Gain almost 3 % on global accuracy on ModelNet40 $\,\rightarrow\,$ 91.9 %

PointCNN

Li & al, PointCNN: Convolution On X -Transformed Points, 2018

- Convolution on the K proximate neighbours
- Problem : the neighbours are not ordered
- Try to learn a transformation X
 - Weighting the inputs
 - creating a canonical order
- Apply ordinary convolution on the result (X+Conv=XConv)
- Apply pooling on the point set
- Obtain 92.2 % overall accuracy on ModelNet40 (very good)

Graph convolution solutions

Idea of Graph convolution

- Build a graph structure with the point cloud
- Capture the locality in the graph adjacency
- Apply new techniques of graph convolution

Spectral vs Spatial

- Spectral method has been the first to be developped, based on algebraic / spectral graph theory (80's)
- Contrary to spectral, spatial is stable to graph change
- Nowadays almost only spatial methods are used

Neural Message Passing Network

- Generic recipe for spatial graph convolution
- Convolves the central node x_i with its neighbors x_j in N(v)

$$x_{i}^{k} = \gamma(x_{i}^{k-1}, \bigcup_{j \in N(i)} \phi_{\theta}(x_{i}^{k-1}, x_{j}^{k-1}, e_{i,j}))$$

- is a symmetric normalized
 operator like mean or max
- Nice complexity O(m)

Gilmer & al, Neural message passing for quantum chemistry, 2017

Formalism

- Every node has a feature vector changing at each iteration (convolutional step)
- x_i^t is feature vector of node i at convolutional step t
- $\bullet X^t$ is the feature map of all nodes at step t
- Every edge between x_i and x_j has a feature vector e_{i,j}
- Convolution step which convolves the central node x_i with its neighbors x_j in N(v)

$$x_i^{t+1} = \gamma_{\theta_{\gamma}}(x_i^t, \underset{j \in N(i)}{\Box} \phi_{\theta_{\phi}}(x_i^t, x_j^t, e_{i,j}))$$

- is the aggregator function (commutative & normalized : max, average..)
- Φ is the message function (learnable parameters)
- y is the update function (learnable parameters)
- \bullet Learnable parameters are $\theta_{_{\rm V}}$ and $\theta_{_{\Phi}}$

This recipe includes Euclidian CNN

- $\Phi_{\theta}(x_i, x_j, e_{ij}) = x_j * \theta_{ij}$
- 🗆 = sum
- Regular graph (no weight)
- Every vertex is self looped

$$x_{k,l}^{t+1} = \sum_{i,j \in [-s..s]^2} x_{k+i,l+j}^t * \theta_{i,j}$$

→ Euclidian CNN

35	40	41	45	50
40	40	42	46	52
42	46	50	55	55
48	52	56	58	60
56	60	65	70	75

Graph pooling

- Produce a sequence of coarsened graphs
- Graclus algorithm
- Fusion of vertices
 - Connected by a common edge
 - Max, sum or average pooling of collapsed vertices

Network inference architecture

- Successive feature maps induce a new graph
- Semi-supervised learning

Graph classification architecture

- Non Euclidian convolution with pooling
- Readout to flatten the feature maps
- Multi-layer perceptron with softmax for classification
- Shape recognition (particle interactions)

Dynamic extension

- It is shown to work better if the graph is re-computed at every step
- The network learns how to build the graph
- Cluster similar features in the feature space
- Very resource demanding (multiple KNN)

Wang & al, Dynamic Graph CNN for Learning on Point Clouds, 2019

