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Introduction
● A lot of application gets unordered 3D point cloud as input
● Main application : robotics, self-driving cars, monitoring 

(rivers level, volcanoes, glacier…) from drone or satellite
● Need dedicated algorithms
● Question : how to transfer convolution revolution to this 

kind of data



  

Point Cloud Data



  

Input
● Extract information directly from a point cloud
● Points Pi in Rk (k≥3) Euclidian 3D coordinates + 

(k-3) « colors » 
● 4 main properties

– unordered : need for a permutation invariant operator
– Interaction among points : the metric distance 

defines meaningful neigbourings
– Invariance under transformation : rotation and 

translation should not modify the result
– Sparsity



  

Problematics
● Three problematics

– Classification
– Part segmentation
– Semantic segmentation



  

Input device: RGB-D Camera 
● color + depth
● Analysis of defocusing blur → distance
● Can be converted to partial 3D 

representation



  

Input device: Stereo Camera
● Take 2 images at the 

same time
● Stereoscopy : 

Calculate the distance 
from the shift



  

Input device: LIDAR
● LIDAR :  light detection and ranging
● Emitting visible laser light
● Analyse the return of the light
● Can also measure the speed by Doppler effect
● Used for advanced robotics



  

Input device : Particle 
detectors

● Hits : 3D point 
with energy 
measurement 
and timing → 5D 
points

● Different 
granularity

● Barycenter of 
sensors



  

ModelNet40
● CAD models in 40 

categories
● 1024/2048 point 

clouds
● Around 12k models
● Canonical dataset 

for point cloud 
classification

Wu & al, 3D ShapeNets: A 
Deep Representation for 
Volumetric Shapes, 2015



  

SHREC 15
● Non rigid shapes
● 1200 3d shapes 
● different poses of the same 3D model
● Classified in 50 categories

Lian & al, Non-rigid 3D 
Shape Retrieval, 2015



  

ScanNet
● RGB-D video 

dataset 
● 2.5 million views
● 1500 scans
●  annotated with 

– surface 
reconstructions

– instance-level 
semantic 
segmentations

Dai& al, Scannet: 
Richly-annotated 3d
reconstructions of 
indoor scenes, 2017



  

ShapeNet
● Part of object data from 50 different part 

denomination
● 16881 CAD models from 16 categories
● 2048 points samples

Yi & al, A scalable 
active framework for 
region annotation in 3D 
shape collections, 2016



  

Question
● How to transpose the 

tremendous success obtained 
with 2D image convolution to 
3D point cloud ?

● Before 2015 : handmade 
feature
– specific spatial configuration
– Dedicated to a specific problem
– unable to be transfered to 

similar problem
● A lot of work based on neural 

network from 2015 to now

?
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Point Cloud Neural Networks

Three main techniques
– Voxelization and 3D 

Convolution (2015-2016)
– Symmetric pooling (2017-

2018)
– Graph Convolution (2017-

now)
Precision



  

Convolution Recall



  

Convolution

● Apply kernel on image (like the convolution filter)
● kernel is learnable   (       )
● Filter is shared over the whole picture
● Idea : creating maps of features (one kernel per feature)



  

Pooling

● Reduce the dimensionality of the feature 
maps

● Move to higher level of abstraction
● Max pool is widely used



  

Convolutional network

● Network structure : 
– Alternance of convolution & pooling
– Flattering (sometimes called readout)
– Multi-layer perceptron



  

How it works ?

● Feature maps aggregates more and more 
details to converges to high level recognition 
patterns

● Flattened high-level feature map is input for  
multi-layer perceptron



  

Why it works ?
● The two operations derive naturally from local space  

Euclidian nature
– Euclidian space → translation-invariance (stationarity) → convolution
– Scale-separability (compositionality) → downsampling

● Dream complexity 
– O(1) parameters per filter (independant of image size)
– O(n) complexity in time per layer (n=#pixels) 

You see, I told you
my little Albert ...

Oh, shut up, Euclid !
And you too, Newton !!!!

LOL



  

3D Convolution Solutions



  

Data Voxelization
● From coordinates 

to boolean 3D 
tensor

● Voxel (volume 
pixel)

● Can be enriched to 
colored voxel

● Quantization 
artifact → potential 
degradation of the 
recognition



  

3D Convolution

Maturana & al, VoxNet: A 3D 
Convolutional Neural Network 
for Real-Time Object
Recognition, 2015

Wu & al, 3D ShapeNets: A 
Deep Representation for 
Volumetric Shapes, 2015

● Simple extension of 2D formula to  voxelized 
3D data

● Cubical complexity O(n3)
● Needs padding -> no exploitation of sparsity 
● Need a huge amount of computation
● Limit operations to 30x30x30 resolution
● Tradeoff to find between computation time and 

precision



  

Sparse 3D Convolution
● Try reduce the complexity 

of convolution by exploiting 
the data sparsity

● Reduce the number of 
input points by selecting 
the interesting/specific 
parts of the cloud 

● Interesting tracks but lower 
the complexity by reducing 
the precision...

Wang & al, Voting for Voting 
in Online Point Cloud Object
Detection, 2016



  

Multiple 2D Convolution 
(2.5D Convolution)

Qi & al, Volumetric and Multi-
View CNNs for Object 
Classification on 3D Data, 2016

Su & al, Multi-view Convolutional 
Neural Networks for 3D Shape 
Recognition, 2015

● Improve performance on classification (better resolution of images)
● Still requires huge amount of computation (3D reconstruction + plenty of CNN)
● Does not work for segmentation



  

Symmetric pooling solutions



  

Ideas of symmetric pooling
● As the main problem is the non-order of the points 

– Idea 1 : use a symmetric analysing function
● tends to loose the locality
● PointNet[++]

– Idea 2 : order them before analyse
● Theory : no order can be stable to point perturbation
● Reality : but could be stable enough to give interesting result
● PointCNN

– Idea 3 : treat the input as a sequence in a reccurent 
network, trained with shuffling to learn symmetry

● The approximation of the order is not stable either
● The performance are terrible



  

PointNet
● Idea : instead of sorting points, learn a symmetric 

function g over transformed points h(x)

● approximate h by a shared MLP and 2 shared 
learned linear transformations (normalization)

● Features are ordered by max pooling
● g = max_pool ○ MLP

Charles R. Qi



  

PointNet (2)
● Reach same overall accuracy as 3D convolution  with 

440MFlops/sample vs 62057 Mflops/sample for Multiview CNN
● Segmentation extension mixing local and global features 
● Drawback

– does not capture any local feature 
– Cant recognize fine grain patterns 

Qi & al, PointNet: Deep 
Learning on Point Sets for 
3D Classification and 
Segmentation, 2017



  

PointNet++
● Hierarchical version of PointNet
● Apply Pointnet recursively on the nested partitions → local features
● Combine learned feature from different scales
● Better perf but still does not understand the relationship between points
● Gain almost 3 % on global accuracy on ModelNet40 → 91.9 %

Qi & al, PointNet++: Deep 
Hierarchical Feature Learning on
Point Sets in a Metric Space, 
2017



  

PointCNN
● Convolution on the K proximate 

neighbours
● Problem : the neighbours are not 

ordered
● Try to learn a transformation X

– Weighting the inputs
– creating a canonical order

● Apply ordinary convolution on the 
result (X+Conv=XConv) 

● Apply pooling on the point set
● Obtain 92.2 % overall accuracy on 

ModelNet40 (very good)

Li & al, PointCNN: 
Convolution On X -
Transformed Points, 
2018



  

Graph convolution solutions



  

Idea of Graph convolution

● Build a graph 
structure with the 
point cloud

● Capture the locality in 
the graph adjacency

● Apply new techniques 
of graph convolution



  

Spectral vs Spatial
● Spectral method has been the first to be developped, 

based on algebraic / spectral  graph theory (80’s) 
● Contrary to spectral, spatial is stable to graph 

change
● Nowadays almost only spatial methods are used



  

Neural Message Passing Network
● Generic recipe for spatial graph 

convolution
● Convolves the central node xi 

with its neighbors xj in N(v)

● □ is a symmetric normalized 
operator like mean or max

● Nice complexity O(m) 
Gilmer & al, Neural 
message passing for 
quantum chemistry, 2017
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Formalism
● Every node has a feature vector changing at each 

iteration (convolutional step)
● xi

t is feature vector of node i at convolutional step t
● Xt is the feature map of all nodes at step t
● Every edge between xi and xj has a feature vector 

ei,j

● Convolution step which convolves the central 
node xi with its neighbors xj in N(v)

● □ is the aggregator function (commutative & 
normalized : max, average..)

● Φ is the message function (learnable parameters)
● γ is the update function (learnable parameters)
● Learnable parameters are θγ and θΦ 



  

This recipe includes 
Euclidian CNN

●

● □ = sum
● Regular graph (no weight)
● Every vertex is self looped

→ Euclidian CNN



  

Graph pooling

● Produce a sequence of coarsened graphs
● Graclus algorithm
● Fusion of vertices

– Connected by a common edge
– Max, sum or average pooling of collapsed vertices



  

Network inference 
architecture

● Successive feature maps induce a new graph
● Semi-supervised learning 



  

Graph classification 
architecture

● Non Euclidian convolution with pooling
● Readout to flatten the feature maps
● Multi-layer perceptron with softmax for classification
● Shape recognition (particle interactions)



  

Dynamic extension

● It is shown to work better if the 
graph is re-computed at every step

● The network learns how to build 
the graph

● Cluster similar features in the 
feature space

● Very resource demanding (multiple 
KNN)

Wang & al, Dynamic Graph 
CNN for Learning on Point 
Clouds, 2019
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