LSTM Networks for gravitational waves detection Long Short Term Memory

Joubert Gaspard

Recurent Neural Networks

- RNN remembers past inputs due to an internal memory
- Unidirectional recurrent neural networks cannot account for future events in their predictions
- Vanishing Gradient Problem

https://www.ibm.com/topics/recurrent-neural-networks?mhsrc=ibmsearch_a&mhq=recurent%20neural%20network <https://plainenglish.io/community/vanishing-gradient-problem-in-rnns-9d8e14> <https://penseeartificielle.fr/comprendre-lstm-gru-fonctionnement-schema/gif-rnn-fonctionnement-cellule-rnn/>

Long Short Term Memory

Forget Gate

Determines which information from the previous cell state should be discarded or forgotten.

Determines which new information should be stored in the cell state.

Cell State

Output Gate

Input Gate

Determines what part of the cell state should be exposed as the output.

CNN-LSTM

 $\overline{\mathcal{F}}$ CNN encoder Extract the main features of th noisy signal

₹ Bi-LSTM decoder Reconstructs the denoised signal from the features

Extraction of Binary Black Hole Gravitational Wave Signals from Detector Data Using Deep Learning

<http://dx.doi.org/10.1103/PhysRevD.104.064046>

Chatterjee, Chayan and Wen, Linqing and Diakogiannis, Foivos and Vinsen, Kevin

Principle

Overlapping: 0.967, SNR: 12

Training efficiency

For each signal detected by the network, we plot its SNR as a function of its overlapping with the injection.

We look at the average overlapping for different SNR values to get an idea of the effectiveness of the training.

Testing on a long data frame

To test the effectiveness of the network training and show its strengths/weaknesses, we build a 10h reference frame with 500 signal injections (1st hour display here)

Frame modulation

Two-frequency problem

Tanimoto distance

$$
RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}
$$

 $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$ are predicted values y_1, y_2, \ldots, y_n are observed values

$$
L_{z,x} = \frac{(\mathbf{x}_i - \mathbf{z}_i)^2}{n} - r_{w,z,x}^d,
$$

- **x :** Expected signal
- **z :** Network output
- **w :** Weight
- **d :** Hardness parameter

 1.0

 0.8

 0.6

 0.4

 0.2

 0.0

 -0.2

 0.0

Overlapping

 $r_{w,z,x}^d = \frac{\sum_i^n w_i \mathbf{z}_i \mathbf{x}_i}{2^d {\sum_i^n w_i}.({\mathbf{z}_i}^2 + {\mathbf{x}_i}^2) - (2^{d+1} - 1) \sum_i^n w_i . \mathbf{z}_i . \mathbf{x}_i}$

Overlapping as a function of SNR

holesjoliplot

Nombre de faux positif par jour

Hyperparameters

- Batch size
- Numbers of epochs
- Percentage of signal
- Learning rate
- Weights in tanimoto
- SNR during training

Thank You

