Le Projet ClearPET Etude et développement d'un tomographe à positons de haute résolution pour petits animaux

Christian MOREL Centre de Physique des Particules de Marseille

X-ray radiology X-ray Radiography Computed Tomography Tomo-Densitometry (DXA) Emission tomography Single Photon Emission Computerized R Tomography (SPECT) Positron Emission Tomography (PET)

Ultrasonic imaging

Magnetic Resonance (MR) Magnetic Resonance Imaging (MRI) Magnetic Resonance Spectroscopy (MRS) Functionnal MRI (fMRI)

Direct Space Representation

Projection Space Representation

Frequency Space Representation

Positron Emission Tomography

¹⁸F ¹⁵O ¹³N ¹¹C

Positron Emission Tomography

$\mathsf{P}(\gamma_1) \times \mathsf{P}(\gamma_2) = \varepsilon^2 e^{-\mu(\mathsf{L}+\mathsf{L})}$

$P(\gamma_2) = \varepsilon \times e^{-\mu L}$

Quantitation

Crystal Clear ClearPET Project

 $P(\gamma_1) = \varepsilon \times e^{-\mu L}$

Detection of random coincidences

Monte Carlo simulation

Combining both approaches

GATE : Geant4 Application for Tomographic Emission

- The main GATE features are :
- \checkmark modelling of time
 - decay kinetics, movement, randoms...
- ✓ ease-of-use, interactivity
 - ♥ use of a scripting language
- ✓ versatility
 - geometry and simulation fully scripted
- ✓ modular design
 - ✤ new extensions easily added
- ✓ shared development
 - 🔄 long-term support

QuickTime^a et un dŽcompresseur GIF sont requis pour visualiser cette image.

GATE : Geant4 Application for Tomographic Emission

Crystal Clear ClearPET Project

- The main GATE features are :
- \checkmark modelling of time
 - decay kinetics, movement, randoms...
- ✓ ease-of-use, interactivity
 ♦ use of a scripting language
- ✓ versatility
 - geometry and simulation fully scripted
- ✓ modular design
 - ✤ new extensions easily added
- ✓ shared development
 - 🗞 long-term support

OpenGATE Collaboration

Simulation of decaying sources

Detection of random coincidences

High Resolution in 3D PET

High spatial resolution & High signal-to-noise ratio

Noise Equivalent Count (NEC)

Inorganic scintillators for PET

	NaI	BGO	GSO:Ce	LSO:Ce	LuAP:Ce
Density (g/cm³)	3.67	7.13	6.71	7.40	8.34
Atomic number	51	75	59	66	65
Photofraction	0.17	0,35	0.25	0.32	0.30
Decay time (ns)	230	300	30-60	35-45	17
Light output (hv/MeV)	43000	8200	12500	27000	11400
Peak emission (nm)	415	480	430	420	365
Refraction index	1.85	2.15	1.85	1.82	1.97

Radial resolution of a line source

Line Spread Function (LSF)

Radial resolution of a line source

Radial resolution of a line source

LSO/LuyAP phoswich detector head

LSO/Luyap experimental spectra

Test of aluminium deposition by evaporation

Phoswich head with 30 nm Al on LSO crystals

Temperature control

Power constraints output high 99 output low	proportional gain (Kc) integral time (Ti, min) 0.4 derivative time (Td, min) 0.1	TtoleranceUpperLimit (β) TtoleranceLowerLimit (α)	0.1 (T-Tref)/T	ref $< \beta$ ref $> \alpha$
51.0 -			50.00 49.99 37.92	SetPoint C
50.8 50.6 50.4 50.2			Put a cold fing the head	er on
50.0				
49.2 49.0 1 50 100 150	200 250 300 350 400 450	500 550 600 650 70	00 750 800 850 9 20 250 800 850 9	00 950 1011
			<u>N7</u>	
ánnarrar 🗌 💅 💽 🛤 🕷	□ 〇C:IDocuments an [凤 C:IDocuments an		Sans titre - Paint	

CPPM

FÉDÉRALE DE LAUSANNE

- The crystal matrix is optically glued trough a grid
- The cap fits exactly in the grid
- The grid allows to positioned precisely the cap with regard to the crystals

The phoswich module is positioned by the cap

LSO/Luyap energy sprectra of 511 KeV y-rays

LSO, Luyap and Luap pulse comparison

Dispersion of photopeak position

The spread of the photopeak position is meanly due to the non uniformity of the PMT responses

Dispersion of energy resolution at 511 keV

Module M1,

Energy resolution:

- LSO: (27.9±2.3)%
- LuYAP: (24.6±2.4)%

Measured and simulated radial resolutions

Measured and simulated tangential resolutions

Absolute point source sensitivity for two heads

Simulations with GATE

Measurements 43.5 kBq ²²Na point source

LuYAP density 7.1 g/cm³ : 0.069% 6.6 g/cm³ : 0.066% 1 Head with high density (M1) 1 Head with low density (M3) 0.068%

Energy cut for both simulations and measurements : 350-750 keV

Extrapolation for a 4-ring ClearPET design with shifts 3.1 ± 0.5 % without shifts 4.4 ± 0.5 %

Growth of mixed LuyAP:Ce

Photoelectric absorption @ 511 keV for (Lu+Y)AlO₃ system

ClearPET design by GATE

4-ring ClearPET scanner specifications

Scanner	ClearPET (CIBM)	MicroPET FOCUS 120 (Siemens)	Mosaïc (Philips)	eXplore VISTA DR (GE)
Crustal type		150	650	GSO/IVSO
crystals size [mm]	2228	$15 \times 15 \times 10$	2×2×10	030/1730
Number of crystals	10'240	13'824	14'456	12'168
, Ring diameter [mm]	141	148	210	118
Axial FOV [mm]	120	76	116	46
Energy res. (511 keV)	25-28%	15-40%	21%	
Time res. [ns]	5	3	1	
Spatial res on axis [mm]	1.3	1.2	2.2	1.6
Radial res. at 1 cm [mm]	1.9	1.8	2.7	1.9
Radial res. at 2 cm [mm]	2.0	2.2	2.6	2.2
Radial res. at 4 cm [mm]	2.6	3.3	3.1	
Absolute sensitivtiy	4.4 ± 0.5 %	5.4%	1.4%	4%
(energy window [keV])	(350-750)	(350-750)	(410-665)	(250-700)

Uniform cylinder phantom ø 6 cm

Trues and Randoms

Sensitivity image estimated by randoms

Symmetrised sensitivity image

Preparation of the Mini-Derenzo phantom

Mini-Derenzo phantom 2.5 mio events

Effect of DOI information

With DOI

Without DOI

First rat experiment on the ClearPET demonstrator

Waiting for an image !

• 202

[18F]FDG rat brain scan

- •240 g female rat
- 47.7 MBq [18F]FDG

- 45 min post injection scan
- 16 min scan duration

ClearPET Development Team

Jean-François LOUDE, PhD Jean-Marc VIEIRA, PhD Daniel STRUL, PhD Giovanni SANTIN, PhD Stefania SALADINO, PhD Grégoire PASCHE Jean-Philippe HERTIG

Alumni Claude COMTAT, PhD Claire LABBE, PhD Luc SIMON Magalie KRIEGUER Jean-Baptiste MOSSET Martin REY Monica VIEIRA MARTINS Pierre-Alain BAEHLER

Matthias EGGER, PhD

SNSF, Grants No. 2153-063870 and 205320-100472 Fondation Agassiz, Université de Lausanne Programme Franco-Suisse d'Action Intégréee Germaine de Staël

Hybrid imaging modalities

