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The Liquid Argon calorimeter (LAr)
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e Measure the energy of (mainly) electromagnetic interacting

particles Fls ATLAS
o Liquid argon as active medium Tt
o Lead/copper/tungsten as absorber Samples
o 180000 channels o
e Electronicsignal amplitude proportional to the deposited oal
energy in the calorimeter
o Shaped and sampled at 40 MHz 02
e Trigger capabilities 0 [t
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RNN structure
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e Single cell architecture
o  Full history learned

o Lessrobust against intermittent problems such as
noise bursts

o Need large cells to handle full history
e Sliding window architecture (retained)
o Learnonly local effects (what we need)

o Intermittent problems have only short time effect
o  Suitable for small cells
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Single cell architecture
Continuous computation with a single cell
Takes into account full past info (from the

beginning of run)
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‘ ‘ *‘ ‘ Sliding windows architecture
t t t t Computation on a moving slice (fixed intervals)
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(1 sample in the past for this example)


https://link.springer.com/article/10.1007/s41781-021-00066-y

Events

RNN Performance

e Compare energy resolution between RNNs and OFMax
o RNNSs with increased size
o Keep size under control to fit FPGAs
e Second peakin resolution due to overlapping events
e Use Std. Dev. as metric (although the shape is not very gaussian)
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Optimisation of computational resources

RNN RNN > RNN

= Number of samples, N = Internal RNN dimension, MAC = Number of multiplications needed
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Dense layer : MAC o< SXN

e [ong sequences needed to efficiently correct for pileup
o Significant computational resources needed for RNN cells
e Replace RNN cells in the past by a dense layer
o Dense to correct to pileup, RNN to compute the amplitude
o Reduce the number of needed multiplications by a factor 4
m For a network with dimension 30 and sequence length 20
o No effect on performance
e Reduce number of bits needed for arithmetic computation
o Replace floating point with fixed point operation
o Train the network directly with fixed point (QAT)
o Quantization aware training (QAT) can reduce the number of needed
bits by a factor 2
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RNN layers : MAC oc S XN?

Simulation of the energie resolution in
firmware as function of the number of bits
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https://cds.cern.ch/record/2875588?ln=en

Two Stage Dense Architecture

e Dense architectures are the ones that need the least processing power
o Buttheir are concern about the latency
e Dividing the dense into two stages
o First to compute the corrections from the past
m Canbe done before the energy deposit
o Second compute the pulse amplitude (thus the energy) including the corrections from past events

e Preliminary results are encouraging
o Almost the same resolution at RNN with less MAC units
o  Fresh results that still need confirmation

Dense with samples on the pulse
Mixed with corrections from the
first dense

Dense with only samples _»
from the past
No impact on latency




Normalized Amplitude

From single cell to the full detector

e Training 180000 NNs is not a raisonnable task
o Notjust CPU/GPU but also need to validate then
Group cells with “similar” pulse shape into a single NN
Cells are grouped using an unsupervised clustering method
o t-SNE to reduce the dimensionality: from n samples on the pulse to 2 dimensions

o DBSCAN to cluster in two dimensions
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https://cds.cern.ch/record/2875588?ln=en
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From single cell to the full detector

Clusters manage to catch the geometric symmetries in the detector
o Symmetry in Phi (Azimuthal angle)
o Changing cell size (capacitance) and thus pulse shape in Eta (~ Polar angle)
Confirmed clustering does not degrade RNN performance
o Same resolution training on cells from the same clusters
o Dramatic degradation of resolution if training on a random cell outside the cluster
m Trainingon all clusters at once does not recover the performance
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