
Liquid Neural Networks: an introduction

8th October 2024

S.Viret
IP2I Lyon

2 S. Viret

→ Disclaimer:

→ Based on my personal knowledge of LNN, which is basic for the moment

→ In most of the slides I tried to put some extra links providing deeper
insight on the topic, which I found useful to prepare this talk. I strongly
advise to look at them if you’re interested.

→ Liquid networks are a relatively young field, things are moving fast

S. Viret

→ Outline:

1. Neural networks: artificial vs brain-inspired

2. Building more brain-friendly ANNs

3. Liquid neural networks

4. Next steps

S. Viret

1. Neural networks: artificial vs brain-inspired

3 S. Viret

1. Neural networks: artificial vs brain-inspired

→ How is a biological neuron working ?

→ Neuron acts as an RC-circuit [1]: Leaky Integrate and Fire model (Lapicque, 1907):

𝐶
𝑑𝑉
𝑑𝑡

= −
𝑉
𝑅
+ 𝐼(𝑡)

→ The neuron emit a pulse whenever V gets
larger than a certain threshold. V then gets
reset.

→ This is the most standard version of Spiking Neural Networks [2], which are particularly attractive for
hardware-based approaches (eg. using neuromorphic chips)

[1] https://en.wikipedia.org/wiki/Biological_neuron_model
[2] https://en.wikipedia.org/wiki/Spiking_neural_network

→ V is the neuron output level, I the input
activity. C and R are neuron membrane
capacitance and resistance respectively.

https://en.wikipedia.org/wiki/Biological_neuron_model
https://en.wikipedia.org/wiki/Spiking_neural_network

4 S. Viret

1. Neural networks: artificial vs brain-inspired

→ Well, it’s slightly different [3]:

x

I1

I2

In

…

𝑥 = 𝑓 𝐼, 𝜃 = 𝜎 1
!

"

𝑤#𝐼# + 𝑏#

𝜃# = 𝑤# , 𝑏# : the weights to be trained

𝜎 : non-linear activation function

→ Synaptic and neuronal activity of a perceptron are far from the LIF model. They are lots of good
historical/technical reasons for that (universal approximation, gradient calculation, synchronous I/O
streams,…).

[3] https://en.wikipedia.org/wiki/Perceptron

→ How is an artificial neuron working ?

→ To put in a nutshell: artificial neural nets (ANN) are simpler, easier, and more adapted to computers.

https://en.wikipedia.org/wiki/Perceptron

5 S. Viret

1. Neural networks: artificial vs brain-inspired

→ Why brain-inspired neural networks are important?

→ ANNs represent the vast majority of today’s ML landscape. Artificial neurons [4] are getting more and
more complex over the years, but the idea is roughly always the same than for the perceptron node.

[4] https://en.wikipedia.org/wiki/Artificial_neuron
[5] https://www.humanbrainproject.eu/en/follow-hbp/news/2023/09/04/learning-
brain-make-ai-more-energy-efficient/

→ However we know that biological neural structures are much more efficient than ANNs. Our brain
uses ~20W to work, so slightly less than any GPU trying to deal with apparently simpler tasks [5].

→ A low power brain-inspired ANN architecture based on SNN dynamics could be a serious
game changer.

→ The field of brain-inspired NN is currently dominated by SNNs, but SNNs are difficult to adapt for
classic ML applications (synaptic activity is the main problem).

https://en.wikipedia.org/wiki/Artificial_neuron
https://www.humanbrainproject.eu/en/follow-hbp/news/2023/09/04/learning-brain-make-ai-more-energy-efficient/
https://www.humanbrainproject.eu/en/follow-hbp/news/2023/09/04/learning-brain-make-ai-more-energy-efficient/

S. Viret

2. Building more brain-friendly ANNs

6 S. Viret

→ Step 1: giving ANN some memory

→ Perceptron is a static network. The neural state of an hidden node depends only on learned weights
and input, and is insensitive to its previous value.

→ This is not a problem for many use cases (eg single image processing), but clearly not optimal in some
situations (eg speech analysis, anomaly detection in sequential data,…)

𝑥#

𝐼!#

… 𝑥$ = 𝑓 𝐼, 𝜃, 𝑥 = 𝜎 1
!

"

𝑤#𝐼# + 𝑏# + 𝑔(𝑥$%!)

→ Recurrent neural networks [6] introduce some time
dependencies. Hidden state at step t depends on the
previous steps.

𝐼&#

𝐼"#

[6] https://en.wikipedia.org/wiki/Recurrent_neural_network

2. Building more brain-friendly ANNs

https://en.wikipedia.org/wiki/Recurrent_neural_network

7 S. Viret

→ The training of such networks is based on the same technique than standard ANNs: backpropagation.
Just have to unfold the network in time dimension: backpropagation trough time (BPTT) [7]

→ BPTT involves a lot of gradient products, thus leading divergence problems (Vanishing gradient [8]).
Standard RNN cannot properly learn long term dependencies (static ANNs with large number of hidden
layers have the same problem BTW).

𝑥$ = 𝑓 𝐼, 𝜃, 𝑥$%!, 𝑐$%!

→ Our brain is obviously solving this problem by sorting the info between what deserves to be kept (long
term), and what is useful only for a short time scale (short term).

[7] https://en.wikipedia.org/wiki/Backpropagation_through_time
[8] https://arxiv.org/pdf/1211.5063
[9] https://colah.github.io/posts/2015-08-Understanding-LSTMs/

2. Building more brain-friendly ANNs

→ Step 2: Making RNN memory more realistic

→ This is the main idea behind the Long Short Term
Memory (LSTM) cell [9]. The hidden state x depends now
also on memory cells c, which have the ability to forget only
useless info along time.

https://en.wikipedia.org/wiki/Backpropagation_through_time
https://arxiv.org/pdf/1211.5063
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

8 S. Viret

→ Vanishing gradient in static ANNs:

→ Gradient problem also occurs for very deep static network. Skipping nodes was a solution
proposed since quite a while, but was first used after the AI boom with residual neural network [10]

2. Building more brain-friendly ANNs

[10] https://arxiv.org/abs/1512.03385
[11] https://www.mdpi.com/2078-2489/9/3/56

𝑥#'! = 𝑥# + 𝜎 1
!

"

𝑤#𝑥# + 𝑏#

𝑥#'! = 𝑥# + 𝑓 𝑥# , 𝜃#

→ Recurrent version of the residual NN also exists [11], tough much less used than LSTM/GRU units:

x 𝑡 + 1 = 𝑓 𝑥 𝑡 , 𝜃, 𝐼(𝑡) + 𝑥(𝑡)

https://arxiv.org/abs/1512.03385
https://www.mdpi.com/2078-2489/9/3/56

9 S. Viret

→ From dicrete to continuous state:

→ The variation of the hidden state in a residual network share some similarities with the Euler
method, which is the oldest ordinary diff. equation (ODE) solving technique [12]:

ResNet: 𝑥 𝑡 + 1 = 𝑓 𝐼 𝑡 , 𝜃, 𝑥(𝑡) + 𝑥(𝑡)
Euler: 𝑥 𝑡 + ℎ = ℎ ⋅ 𝑓 𝑡, 𝑥(𝑡) + 𝑥(𝑡)

𝑥̇ = 𝑓 𝐼 𝑡 , 𝜃, 𝑥 𝑡 , 𝑡

→ Led to the development of Neural ODE network [13]:
hidden state is defined continuously as the solution of an
ODE.

→ Proposal came with new and efficient training techniques
which revived the continuous time networks field

2. Building more brain-friendly ANNs

[12] https://en.wikipedia.org/wiki/Euler_method
[13] https://arxiv.org/pdf/1806.07366

→ Neural ODE opened the door to the modelisation of
continuously varying neural activity in ANNs. Important
point for the liquid networks

https://en.wikipedia.org/wiki/Euler_method
https://arxiv.org/pdf/1806.07366

10 S. Viret

→ Neural activity is provided by an ODE:

[14] https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model
[15] https://www.tqmp.org/RegularArticles/vol13-2/p105/p105.pdf

→ Step 3: continuous time and synaptic activity with ANNs

2. Building more brain-friendly ANNs

𝐶
𝑑𝑉
𝑑𝑡 = −

𝑉
𝑅 + 𝑆(𝑡)

→ But synaptic activity (S(t)) is rather complex to modelize, it depends on many parameters.
Current consensus in the Hodgkin-Huxley model [14], where we can write S as:

S 𝑡 = 𝑆(𝑉, 𝑡) = 𝑓(𝑡, 𝐼(𝑡))(𝐴 − 𝑉 𝑡)

→ Where f is a gating function describing the synaptic transmission, depending on input signal and
neuron potential, usually modeled by a sigmoid [15].

https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model
https://www.tqmp.org/RegularArticles/vol13-2/p105/p105.pdf

11 S. Viret

→ Continuous time RNN were proposed initially in 1993 [16], with a simplified synaptic activity:

[16] https://doi.org/10.1016/S0893-6080(05)80125-X
[17] https://arxiv.org/pdf/1907.03907
[18] https://arxiv.org/pdf/2307.05126

→ Step 3: continuous time and synaptic activity with ANNs

2. Building more brain-friendly ANNs

→ The time constant t helps to regulate state level, preventing it to diverge. It acts as a pseudo-forget
gate

→ ODE-LSTM and ODE-GRU mechanisms were proposed to sort that [18], but those leads to rather
complex architectures and learning processes.

𝑥̇ = −
𝑥
𝜏 + 𝑓 𝐼 𝑡 , 𝜃, 𝑥 𝑡 , 𝑡

→ Neural ODE development, in particular their RNN extension [17], put this model back into light.
ODE RNN indeed show great expressivity, but are still prone to gradient issue because of the lack of
forgeting mechanism.

https://doi.org/10.1016/S0893-6080(05)80125-X
https://arxiv.org/pdf/1907.03907
https://arxiv.org/pdf/2307.05126

S. Viret

3. Liquid neural networks

12 S. Viret

→ C.Elegans is a small nematode, which is able to do smart things with a pretty scarce neural
architecture (only 302 neurons) [19]

→ It’s behaviour was extensively studied and modelized, in particular it’s synaptic activity S(t)

[19] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6578605/

→ C.Elegans, an interesting case study:

3. Liquid neural networks

𝑓 𝑡, 𝐼 =
𝑤

1 + 𝑒%() $ '* = 𝑤𝜎(𝐼)

𝐶
𝑑𝑉
𝑑𝑡 = −

𝑉 𝑡
𝑅 + 𝑤𝜎(𝐼(𝑡))(𝐴 − 𝑉 𝑡)

→ C.Elegans neural activity can therefore be modelled as:

S 𝑡 = 𝑆(𝑉, 𝑡) = 𝑓(𝑡, 𝐼(𝑡))(𝐴 − 𝑉 𝑡)

→ Or:

𝑑𝑉
𝑑𝑡 = −

1
𝑅𝐶 +

𝑤
𝐶 𝜎 𝐼 𝑉(𝑡) +

𝑤
𝐶 𝐴𝜎(𝐼(𝑡))

→ CT RNN with input dependent time constant…

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6578605/

13 S. Viret

→ Liquid time constant:

→ The C.Elegans neural activity can be summarized by the following ODE:

→ The time constant of the equation depends on the initial state, providing much more flexibility to the
neuron than a standard CT-RNN.

𝑥̇ = −
𝑥

𝜏@(𝑡, 𝐼, 𝑥, 𝜃)
+ 𝐴 . 𝑓(𝑥 𝑡 , 𝐼 𝑡 , 𝜃, 𝑡)

3. Liquid neural networks

[20] https://arxiv.org/pdf/1811.00321
[21] https://repositum.tuwien.at/handle/20.500.12708/1068

→ Moreover, a network defined from this new liquid time constant (LTC) cell fulfills the universal
approximation theorem and has its states bound. LTC is a brain-inspired NN with ANN properties
[20],[21].

https://arxiv.org/pdf/1811.00321
https://repositum.tuwien.at/handle/20.500.12708/1068

14 S. Viret

→ Why are liquid neural networks attractive?

→ Many articles, videos, explains in details the pro and cons of LNN (the best I found so far are [22]
(talk from the main LNN model author) and [23])

3. Liquid neural networks

[22] https://www.youtube.com/watch?v=IlliqYiRhMU
[23] https://deepgram.com/learn/liquid-neural-networks

→ The take home message is that LNN, thanks to non
linear synaptic activity are much more expressive
than other type of recurrent networks.

→ As in the brain, you use the neurons more
efficiently and therefore need rather more compact
architectures

https://www.youtube.com/watch?v=IlliqYiRhMU
https://deepgram.com/learn/liquid-neural-networks

15 S. Viret

→ Why are liquid neural networks attractive?

→ Based on C.Elegans again, LNN proponents also proposed a new procedure to build small networks
based on LTC cells: Neural Circuit Policies [23]

3. Liquid neural networks

→ Using this algorithm and LTC-
based networks they were able to get
similar performance wrt state of the
art RNN networks, with much less
free parameters.

[23] https://publik.tuwien.ac.at/files/publik_292280.pdf
[24] https://ncps.readthedocs.io/en/latest/quickstart.html
[25] https://github.com/mlech26l/ncps/

→ Code available in PyTorch and Keras,
along with examples [24][25]

https://publik.tuwien.ac.at/files/publik_292280.pdf
https://ncps.readthedocs.io/en/latest/quickstart.html
https://github.com/mlech26l/ncps/

16 S. Viret

→ Closed form solution for easier training

→ In 2021, LNN developers released a simplified version of their cell, using a closed-form
approximation of the neuron potential x(t) [26].

→ Keep the continuous time behavior and non-linear synaptic stimuli, but get rid of the ODE
solving part. CF cells are also available in the NCP code [24] . They also added the possibility
to get long-term memory (CfCmm model).

3. Liquid neural networks

[26] https://arxiv.org/pdf/2106.13898

https://arxiv.org/pdf/2106.13898

17 S. Viret

→ LNN limitations:

→ LNN are can have vanishing gradient problem (long-term dependencies). Hybrids architectures
have been proposed (eg LTC based-state fed to an LSTM cell [27]). Need further studies (LTCmm,
CfCmm model is a first potential solution tough).

→ The main code development is now done within a private company [29]. I suspect that the public
code available is not maintained anymore. It makes it not always easy to understand,… Not sure there
will be a lot of effort in that sector…

3. Liquid neural networks

[27] https://pub.aimind.so/combining-the-power-of-liquid-neural-networks-a-hybrid-approach-with-lstm-c360b560361a
[28] https://arxiv.org/abs/2304.08691
[29] https://www.liquid.ai/

→ LNN are difficult to tune (there are a lot of hyperparameters): here also some interesting studies
were conducted (see eg [28])

https://pub.aimind.so/combining-the-power-of-liquid-neural-networks-a-hybrid-approach-with-lstm-c360b560361a
https://arxiv.org/abs/2304.08691
https://www.liquid.ai/

18 S. Viret

→ Playing with LNN:

→ On the THINKII github page you will find some ‘working’ examples based on the ncps package.
Those examples are in Keras:

• Simple example with LTC
• Simple example with CfC
• Denoising example

3. Liquid neural networks

→ Good starting point to see how to implement those cells into your prefered network, but keep in mind
there are many hyperparameters requiring tuning here, this is the really complicated part, as usual

https://gitlab.in2p3.fr/think2/models/-/blob/main/LNNs/README.md

https://gitlab.in2p3.fr/think2/models/-/blob/main/LNNs/README.md

S. Viret

4. Next steps

19 S. Viret

→ Liquid neural net on hardware platforms:

[30] https://arxiv.org/pdf/2112.11231
[31] https://github.com/michaelkhany/liquid_time_constant_networks/tree/main
[32] https://arxiv.org/pdf/2407.20590

→ A simplified version of the liquid network named LTC-SE was recently presented [28],
claimed to have the same level of perf.

→ The code [31] looks indeed much simpler, looks more like an LIF neural model, but didn’t
had too much time to look into it.

→ The idea behind this simplification is to facilitate usage of LTC networks on hardware platform.
Found at least one paper where this approach has been implemented on a neuromorphic chip
(LoiHi2) [32] . Fast training technique have also been proposed (see eg [30])

→ If confirmed this could open a large domain of possibilities. To be followed up…

4. Next steps

https://arxiv.org/pdf/2112.11231
https://github.com/michaelkhany/liquid_time_constant_networks/tree/main
https://arxiv.org/pdf/2407.20590

S. Viret

Conclusion

20 S. Viret

→ Brain inspired neural networks and artificial neural networks are
conceptually and technically very different

Conclusion

→ Liquid neural networks could mark the beginning of the end for this
quest. They are the first ‘brain-inspired RNNs’.

→ Bringing together both fields has been a long standing quest over the
past decades

→ Basic LNN are complex objects with a lot of hyperparams, but new
simplers models, more adapted to an hardware implementation, start to
appear.

→ Coming years will be important: as the gradient, this field will either
explode or vanish

