

Machine learning for low energy event reconstruction in HyperKamiokande

Summary

Introduction

Why low energy electrons ?

Notions of machine learning

	Anthi Our work -		
Investigating variables for energy reconstruction Bayesian neural network			Clément
	Our simulation		
	Variables and models		
	Results		
	Graph	ic neural network for vertex reconstruction	
		Graphic neural	network
		Models	
		Hyperparamete	ers optimization
		Results and per	rspectives

Why low energy electrons?

Our goal : improve statistics by better reconstruction

Notions of machine learning

Perceptron model :

Which x_i is important here?

Notions of machine learning

Multi perceptron model or Neural Network:

Notions of machine learning

Multi perceptron model or Neural Network:

Anthi:

Investigating variables for energy reconstruction

Bayesian Neural Network

 $y = f(\beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots + \beta_n x_n)$ $\beta_i \sim \mathcal{N}(0, 1^2)$

hidden layer 2

output layer

Our simulation

Tank diameter = 6480cm Tank height = 6575.1cm

The variables and the models

Example Results (input variables)

Adding input variables

Example Results (set4/set5)

Example Results (input events)

Example Results (neurons of the model)

Example Results (All BNN/Last Layer)

Best Results (More Neurons, set5, up to 60MeV)

Best Results (More Neurons, set5, up to 60MeV)

18

Best Results/uncertainty

Perspectives

3 Investigate the badly reconstructed events

Make sure that the uncertainty reflects the difference true-pred

Clément :

Graphic neural network for vertex reconstruction

Graphic neural network

Graphic neural network

Model for vertex reconstruction (WatChMaL)

128 nodes

Results

Resolution at 68% for:

- on the position norm: 446.74 cm
- on the direction projection: 242.53 cm
- orthogonal to the direction projection: 334.34 cm
- on time: 11.14 ns

Credible interval on time at 68%: -9.99 ns to 12.01 ns

Parameters exploration

Nohitc VS hitc :

608 cm VS 571cm

Charge VS Max Charge VS Log Charge :

783cm/16ns VS 781cm/63ns VS 1124cm/23ns

Results

300k events euclidean norm Configuration PMTs hits time time position Model: same than before charge Epochs: 40 Batchsize: 516 Loss : MSE Dropout:0 Best results so far Resolution at 68% for: on the position norm: 428.81 cm on the direction projection: 252.55 cm orthogonal to the direction projection: 324.52 cm on time: 11.77 ns -

Credible interval on time at 68%: -12.63 ns to 10.86 ns

Results

Perspectives

investigate different models and hyperparameters to improve upon traditional algorithm

implement Bayesian neural network

merge Anthi's work with mine to have a fully reconstructed vertex

Thank you for your attention !