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Why low energy electrons ? 

Our goal : improve statistics by better reconstruction

spallation
radioactive

Michel 
neutrinos
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Perceptron model : 

Which xi is important here ? 

How big this sum needs to be before the 
node becomes active ? 

Notions of machine learning
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Notions of machine learning
Multi perceptron model or Neural Network: 
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Notions of machine learning
Multi perceptron model or Neural Network: 

TruePredicted
Loss

Backpropagation

1

3

2 Gradient descent

learning rate 6



Anthi : 

Investigating variables for energy reconstruction

1

2

3
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Bayesian Neural Network
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Our simulation

Tank diameter = 6480cm
Tank height = 6575.1cm
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The variables 
and the models
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3 Layer

6 Layer

More 
Neurons

Last Layer

Dropout



Example Results (input variables)
nhits + sumW nhits + sumW + position variables1 2
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Adding input 
variables
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Example Results (set4/set5)

1 2nhits + sumW +position variables nhits + sumW + position variables + charge variables
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Example Results (input events)

Input events=204801 2 Input events=81920
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Example Results (neurons of the model)

21 8 neurons 128 neurons
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Example Results (All BNN/Last Layer)

21
All layers are BNN Only last layer BNN
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Best Results (More Neurons, set5, up to 60MeV)
All energy range Cut energy range1 2

zoom
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Best Results (More Neurons, set5, up to 60MeV)

Heatmaps of Statistical Metrics for Energy Predictions
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Best Results/uncertainty
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Perspectives

1 Investigate the peak 2 Make sure that the uncertainty  reflects the 
difference true-pred

Investigate the badly reconstructed events3

4 Add the n_eff variable 
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Clément : 

Graphic neural network for vertex reconstruction
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1 graph = 1 event
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Graphic neural network
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Model for vertex reconstruction (WatChMaL)

1 graph = 1 event

time
position

euclidean norm
PMTs hits

ResGatedConv layers

Linear layers

32 features per 
nodes

conv_in_channels: [32, 64]

64 features per 
nodes

linear_out_features: [128, 32, 4]

Pooling

128 nodes

32 nodes

position

4 nodes 
= 

output prediction

vertex 
coord

timeor



Resolution at 68% for: 
- on the position norm: 446.74 cm
- on the direction projection: 242.53 cm 
- orthogonal to the direction projection: 334.34 cm 
- on time: 11.14 ns 
Credible interval on time at 68%: -9.99 ns to 12.01 ns

Results
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No noise VS noise : 

357cm VS 672cm

Dropout 0 VS 0.1 : 

608 cm VS 619 cm

40 epochs VS 100 epochs : 

608 cm VS 495 cm

ResgatedConv VS Conv : 

783 cm VS 825 cm

MSE VS Weighted MSE :

452 cm/15ns VS 447 cm/11ns

Nohitc VS hitc : 

608 cm VS 571cm

Charge VS Max Charge VS Log Charge : 

783cm/16ns VS 781cm/63ns VS 1124cm/23ns

only 50k events

Parameters exploration

hitx

hity

hitz

hitt

1

1

1

weight
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Results

time
position
charge

euclidean norm
PMTs hits time

Resolution at 68% for: 
- on the position norm: 428.81 cm 
- on the direction projection: 252.55 cm 
- orthogonal to the direction projection: 324.52 cm 
- on time: 11.77 ns
Credible interval on time at 68%: -12.63 ns to 10.86 ns

Model : same than before 
Epochs : 40
Batchsize :  516
Loss : MSE
Dropout : 0

300k events

Configuration

Best results so far



Results
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Perspectives
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use 
DynamicEdgeConv

investigate different models and hyperparameters to 
improve upon traditional algorithm

implement Bayesian neural network 

merge Anthi’s work with mine to have a fully 
reconstructed vertex



Thank you for your attention !
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