Detection of magnetic fields in the intergalactic medium

Matthis Maupas, levgen Vovk, Jia Liu

Intergalactic magnetic fields

Magnetic field generated during early stages of the universe

Survived until today due to high conductivity of the medium

Origin of fields in galaxies or in clusters

Previous work

Vernstrom et al. 2019: Analyzing a dataset of galaxies

• Upper limit on the magnetic field: 37 nG

Pomakov et al. 2022: Monte Carlo simulation of galaxies

• Best-fitting result: 2 nG

Faraday rotation effect

Polarized light propagating in magnetized plasma causes a rotation of the polarization plane.

The rotation depends on the wavelength.

$$RM = \frac{\Delta(\kappa)}{\Delta(\lambda^2)} \propto \int_0^{z_s} n_e B_{\parallel} (1+z)^{-2} \frac{dl}{dz} dz$$

Method

We consider random pairs of galaxies in the same line of sight:

 $\Delta RM = \Delta RM_{gal_{12}} + RM_{IGM_2} + \Delta RM_{MW} + RM_{1 \to 2}$

Data

Sloan Digital Sky Survey (SDSS):

Optical telescopes, redshift measurements

5M spectra

NRAO VLA Sky Survey (NVSS):

Radio observatory, rotation measures

4000 galaxies

Calculating redshifts

Galactic contribution

$$\langle \Delta R M_{extragalactic}^2 \rangle \le 69.34 \text{ rad}^2 \text{m}^{-4}$$

With 1- σ uncertainty

Milky Way model

Jansson, Farrar, 2012: Magnetic field model

Cordes et al. 2003: Electron distribution model

Contribution of the nearest galaxy

Galactic halo of the order of ~1-10 μ G

Intracluster field: ~100 nG

Estimate the impact parameter: harder for low redshift

