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Neutrinos: a quick introduction

❏ Neutrinos are elementary
particles.

❏ They are subject only to the weak
force and gravity.

❏ The discovery of neutrino 
oscillations sheds light on their
non zero mass.

❏ It is still not clear how, in their
massive form, neutrinos can be
inserted in the Standard Model.



What are neutrino oscillations?
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Elements of Neutrino oscillations

❑ Mass states are different from flavour states

❑ Flavour states are not conserved by free hamiltonian evolution

❑ Oscillation is quantitatively described by a unitary matrix called
the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix)

10



PMNS Matrix Unitary Parametrization 

❑ In the most general case, PMNS is parametrized by 3 independent mixing
angles and 6 independent complex phases.

❑We can rephase fields to absorb some complex phases which are not 
physical.
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PMNS Matrix Unitary Parametrization 

❑ Without going into the details, we can generally obtain this form, retaining 1 complex phase and a 
matrix P which we ignore for the purposes of neutrino oscillations.
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What do these parameters correspond to?
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Atmospheric neutrinos

Is fixed by the considered experiment, which determines the 
regime of oscillation.
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Atmospheric neutrinos Reactor and accelerator Solar neutrinos
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Atmospheric neutrinos Reactor and accelerator Solar neutrinos Majorana Phase matrix

Is fixed by the considered experiment, which determines the 
regime of oscillation.



Probability of neutrino oscillation
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Given an initial flavor state alpha

The probability that we will observe a flavor state beta is

Extending the calculation we have



2. What we know about PMNS parameters
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Goal of neutrino oscillation experiments: determine the oscillation 
parameters with high accuracy

Besides getting better precision on parameters, there are still mysteries
to be unraveled

● : CP-violation phase.
● Mass hierarchy: Normal Ordering (NO) or Inverted Ordering (IO)
● Octant degeneracy of 



2. What we know about PMNS parameters

19

According to recent results from PDG:

https://pdg.lbl.gov/2024/reviews/contents_sports.html



2. What we know about PMNS parameters
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Speculation: Did Nature 
throw dice when
choosing values of these
parameters, or is there
an underlying pattern?

https://pdg.lbl.gov/2024/reviews/contents_sports.html
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Do oscillation parameters follow a 
certain pattern?



3. Patterns of PMNS
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Petcov et al. explored extending the standard group model by a discrete non-abelian 
group that has a 3-dimensional unitary irreducible representation. 
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Petcov et al. explored extending the standard group model by a discrete non-abelian 
group that has a 3-dimensional unitary irreducible representation. 

https://inspirehep.net/literature/1639463
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Petcov et al. explored extending the standard group model by a discrete non-abelian 
group that has a 3-dimensional unitary irreducible representation. 

❏ Unify the three fermions generations
❏ Each symmetry group should produce a mixing matrix that we can compare to our PMNS

https://inspirehep.net/literature/1639463



3. Patterns of PMNS
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Symmetry group
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Test statisticSymmetry group



3. Patterns of PMNS
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Test statisticSymmetry group

→ Each model predicts that its T-function is zero
→ The null hypothesis is T=0



Patterns of PMNS: The A4 model
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❏ We use BF value of the 
remaining angle

❏ We plot T as a function of 
and



Patterns of PMNS: The S4 model
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❏ We use BF value of the 
remaining angle

❏ We plot T as a function of 
and



Testing the hypothesis using T2K data and P-Theta Framework
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Neutrino beam
production

Measures muon 
neutrinos count 
and estimate
relative flux

Detects cherenkov radiation 
produced by neutrino 
interactions with matter

https://t2k-experiment.org/t2k/
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P-theta: a framework to perform far detector fit and make inference on neutrino 
oscillation parameters.

It relies on a frequentist approach using neutrino events gathered by SK as data

Testing the hypothesis using T2K data and P-Theta Framework
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Testing the null hypothesis using T2K data
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A4 model S4 model



Testing the null hypothesis using HK data
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https://www-sk.icrr.u-tokyo.ac.jp/en/hk/about/outline/



Testing the null hypothesis using HK data
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SK



Testing the null hypothesis using HK data
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SK



Testing the null hypothesis using HK data

38
SK



Testing the null hypothesis using HK data
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SK HK (to be revisited)
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How to break unitarity?
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If U is non-unitary, then without any
constraints, the parameter space
explodes.

Non-Unitarity and first principles:
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If U is non-unitary, then without any
constraints, the parameter space
explodes.

Doing the same trick of rephasing fields, 
we get:
9 amplitudes. (versus 3 for Uni.)
4 complex phases. (versus 1 for Uni.)

“Conservation of probability” gives 6 
upper bounds for the sum of the 
amplitudes.

Non-Unitarity and first principles:
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As there is no universally agreed upon parametrization for non-unitarity, we
will spare you this technical part.

For our part, we have developed a parametrization based on QR 
decomposition for its interpretability.

Non-Unitarity parameterization(s)
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What constraints on non-unitarity?
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Assuming Non-Unitarity of PMNS, and other additional hypothesis, one 
can put bounds on the normalization coefficients from purely charged
lepton decays! 

LFU-WMA bounds

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.055006
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Assuming Non-Unitarity of PMNS, and other additional hypothesis, one 
can put bounds on the normalization coefficients from purely charged
lepton decays! 

These bounds, which we dub, LFU-WMA put normalization of PMNS up to 
1e-3. 

Which, by simple inequalities, show that departures in matrix elements
from unitarity can go no farther than 1e^-3.

LFU-WMA bounds

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.055006
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Bounds on Non-Unitarity: recap

❑ Non-Unitarity adds a total of 9 free parameters to the unitary model.



49

Bounds on Non-Unitarity: recap

❑ Non-Unitarity adds a total of 9 free parameters to the unitary model.

❑ The amplitudes are constrained by conservation of probability and Cauchy-Schwarz 
inequality



50

Bounds on Non-Unitarity: recap

❑ Non-Unitarity adds a total of 9 free parameters to the unitary model.

❑ The amplitudes are constrained by conservation of probability and Cauchy-Schwarz 
inequality

❑ An argument can be made that the normalization factors: Are 
equal to 1 up to 1e-3, from lepton decays and weak mixing angle measurements.

We assume the last bounds hold in our consequent study.
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Bounds on Non-Unitarity: recap
❑ Taking BF values and assuming unitarity, we compute maximum deviations.
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Avenues for future work

❏ Find necessary sample size to test models more 
accurately.
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Avenues for future work

❏ Find necessary sample size to test models more 
accurately.

❏ Continue the implementation of a general PMNS 
within the P-theta framework

❏ Test the non-unitarity case on HK event rate
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Thanks for your attention


