

Astrophysical Tau Neutrinos

The first high-significance measurement of the most energetic tau neutrino candidates ever observed

> Doug Cowen Penn State

Mainz May 2024

Neutrinos: The Basics

- Fundamental
- Light
- Ubiquitous
- Apparently stable
- Tri-flavored
- Penetrating

graphic: wikipedia

The large m_{τ} suppresses direct ν_{τ} production. ν_{τ} are even harder to see than your average super-shy neutrino. ν_{τ} mainly arise through neutrino oscillations.

https://www.particlezoo.net/collections/leptons

Detecting Neutrinos: Cherenkov Light

When a charged particle moves faster than light in a medium, it emits Cherenkov light.

Electromagnetic equivalent of a sonic boom.

This is the operating principle of many real-time neutrino detectors.

The IceCube Detector

(Yes, I have been to the South Pole.)

Neutrinos in IceCube

Many possible neutrino sources:

Neutrinos in IceCube: Sources

- Atmospheric neutrinos
 - cosmic rays (e.g., protons) interact in the earth's atmosphere
 - \bullet resulting particle showers include ν 's
 - See at ~1 GeV < E_{ν} < ~1 TeV in IceCube ($E_{\nu} \approx 10^{9-12}$ eV)

- Astrophysical high energy neutrinos
 - created in cosmic accelerators, e.g., in particle jets created by black holes
 - Evident at $E_{\nu} > \sim 50 \,\, {\rm TeV}$ in IceCube
 - Also seen: PeV-scale (10^{15} eV) ν 's (incl. Glashow Resonance)

$\nu^{\rm astro}$ in IceCube

- Motivations:
 - Uncover source production mechanism(s)

- Study ν properties at highest E_{ν} and longest baselines
- Gain sensitivity to new physics

readily distinguished—sometimes.

Late

Color shows time information:

Early

$\nu^{\rm astro}$ in IceCube

Event Size

~1 km

IceCube Discovery Timeline

IceCube and ν^{astro}

- Standard ν oscillations:
 - Predict ~1:1:1 flavor ratio for ν^{astro} at Earth
 - Numerous ν_{τ} should be in IceCube data
- Flavor ratio can be *somewhat* altered by production mechanism
- Flavor ratio can be *dramatically* altered by new physics (e.g., quantum gravity)

Importance of Flavor ID for ν^{astro}

At Earth, ν_e : ν_μ : ν_τ could tell us about the source...

Importance of Flavor ID for ν^{astro}

At Earth, ν_e : ν_μ : ν_τ could tell us about the source...

...while strong deviations from 1:1:1 could mean new physics

Example: Effect of quantum gravity.

Importance of Flavor ID for ν^{astro}

Measured flavor composition of IceCube HESE events. \star is best fit point, consistent with presence of all 3 flavors, but ν_{τ} flux only weakly constrained. Identification of ν_{τ} would:

 help shrink contour (and maybe reveal new physics);

-enable studies of ν_{τ} (and τ) behavior at ultrahigh energies;

-give access to very high astrophysical purity ν ;

-confer bragging rights for largest exclusive sample of ν_{τ} .

- • ν_{τ} identification
 - Exclusive channel: "Double Bang"
 - $L_{\tau} > \sim 50 \text{m}$ to distinguish two showers (*X* and $\tau \rightarrow (e, h)$)
 - But $L_{\tau} \simeq 50 \text{m} \cdot (E_{\tau} / \text{PeV})$:
 - So need high energy. And favorable interaction vertex. And direction. Etc.
 - Upshot: Very limited phase space. None found yet.

At lower energies, the two ν_{τ} cascades are closer together. Here's a spiffy custom animation to help visualize, made by yours truly in collaboration with Dr. Chat G.P.T. IV:

At lower energies, the two ν_{τ} cascades are closer together. Here's a spiffy custom animation to help visualize, made by yours truly in collaboration with Dr. Chat G.P.T. IV:

- • ν_{τ} identification
 - Inclusive channel: "Double Cascade"
 - 60 well-contained HESE* events
 - Classified as
 41 single cascades,
 2 double cascades,
 17 tracks
 - "Double-double" \rightarrow
 - 2.8 σ exclusion of no $\nu_{\tau}^{\rm astro}$

*HESE: High-Energy Starting Event

- Challenge: Grow $N_{\nu_{\tau}}$, reduce N_{bkgd} Leverage: $(\phi_{\nu}^{\text{astro.}} \cdot \sigma_{\nu N}) \propto E_{\nu}^{-1}$
 - Exclusive channel: "Double Pulse"
 - • $L_{\tau} \sim 10-50$ m to distinguish two showers in DOM waveform(s)
 - Identify DPs in one or more DOMs
 - Previous IceCube analyses
 - Looked for 1–2 modules with waveforms having clean DP signatures
 - \bullet Candidate ν_{τ} seen, but at low S/N

- Challenge: Grow $N_{\nu_{\tau}}$, reduce N_{bkgd} Leverage: $(\phi_{\nu}^{\text{astro.}} \cdot \sigma_{\nu N}) \propto E_{\nu}^{-1}$
 - Exclusive channel: "Double Pulse"
 - • $L_{\tau} \sim 10-50$ m to distinguish two showers in DOM waveform(s)
 - Identify DPs in one or more DOMs
 - Current analysis
 - Look for signature across 180 DOMs on 3 strings w/neural networks (spoiler alert: "Double Pulse" a bit of a misnomer)
 - High S/N achieved...

Searching for Astrophysical ν_{τ} : $Q_{\mathrm{str}}^{\mathrm{max}}$

- Initial ν_{τ} DP selection criteria
 - Require ≥ 2000 p.e. on highestcharge string and ≥ 10 p.e. on two neighbors
 - Require cascade topology

 After initial criteria, have ~300x more background than signal

- Trained 3 independent CNNs
 - $C_1 \ge 0.99$: ν_{τ}^{CC} vs. $\nu_e^{\text{CC}}, \nu_x^{\text{NC}}$
 - $C_2 \ge 0.98$: $\nu_{\tau}^{\rm CC}$ vs. μ_{\downarrow}
 - $C_3 \ge 0.85$: ν_{τ}^{CC} vs. ν_{μ}^{CC}
- Gives S/N \sim 14.
- Backgrounds
 - $\nu_{\rm astro.}$ and $\nu_{\rm atm.}$
 - Sub-dominant: μ_{\downarrow}
- Off-signal region Data-MC agreement is good for $C_{1,2,3}$

Searching for Astrophysical ν_{τ} : $E_{\nu_{\tau}}^{\text{true}}$

- After final (CNN) cuts, peaks at ~200 TeV
 - Lower $E_{\nu_{\tau}}$ threshold \rightarrow higher $N_{\nu_{\tau}}$
 - Peak signal efficiency at several PeV, but flux there is v. low

- Expected 4–8 ν_{τ} on a bkgd. of ~0.5 with 9.7 years of data
 - (S,B) levels depend on assumed astrophys. flux
 - Flavor ratio at Earth assumed to be 1:1:1
- Contributors to the \sim 0.5 background events:
 - ν^{astro} : IceCube has 4 flux measurements
 - Use flux giving least-significant exclusion of null hypothesis
 - (Conservative: Typically, we use most-significant exclusion & trials-correct)
 - • ν^{atm} : Conventional flux (Honda et al.; IceCube msmts.); possible prompt* flux (Bhattacharya et al.; IceCube exclusion)
 - μ_{\downarrow} : <u>Only</u> conventional (prompt* not yet definitively measured)
 - Other: ν^{astro} -induced charm; on-shell W; Earth-crossing $(\nu_e, \nu_\mu) \rightarrow \nu_\tau$

*From atmospheric charm decays.

Backgrounds

	$\nu_{\rm other}^{\rm astro}$	$ u^{ m atm}_{ m conventional} $	$ u_{ m prompt}^{ m atm}$	$\mu^{ m atm}$	all background
initial	$400 \pm 0.7 \; (490 \pm 0.8)$	580 ± 7	72 ± 0.1	8400 ± 110	$9450 \pm 110 \ (9540 \pm 110)$
final	$0.3 \pm 0.02 (0.2 \pm 0.01)$	0.1 ± 0.008	0.1 ± 0.001	0.005 ± 0.004	$0.5\pm 0.02~(0.4\pm 0.02)$

IceCube's *GlobalFit* (*HESE*) flux assumed.

Note: ν^{atm} can be rejected by accompanying μ_{\downarrow} .

This "self-veto" effect was *not* included in background estimates above.

Astrophysical ν_{τ} : Results

- Confidence intervals calculation (Feldman & Cousins)
 - Test statistic $TS(\lambda_{\tau}) = \ln L(\hat{\lambda}_{\tau}) \ln L(\lambda_{\tau})$

• where
$$\lambda_{\tau} = \frac{\phi_{\nu_{\tau}, \text{ astro.}}}{\phi_{\nu_{\tau}, \text{ astro.}}}$$
 and $\hat{\lambda}_{\tau}$ maximizes Poisson-based LLH

across 16 bins in (C_3, C_1) space:

Astrophysical ν_{τ} : Results

Opening the box, we saw 7 events!

4 events new. 3 events old (1 of which previous ν_{τ} candidate). Events tend to interact near strings.

Tau-ness: $P_{\tau}(i) = n_s(i)/(n_s(i) + n_b(i)) \rightarrow (0.90 - 0.92, 0.94 - 0.95)$

Astrophysical ν_{τ} : Results

- For IceCube's *GlobalFit* flux, exclude $\phi(\nu_{\tau}^{\text{astro}}) = 0$ at 5.1σ
 - Other fluxes: 5.2σ , 5.2σ , 5.5σ (Inelasticity, Diffuse, HESE)
- Also a 40%-level confirmation of the standard oscillation picture

•
$$\left(7 \pm \sqrt{7}\right) \nu_{\tau}$$
's

- \bullet Powerful confirmation of IceCube's 2013 $\nu^{\rm astro}$ discovery
 - $u_{\tau}^{\rm atm}$ negligible at these E_{ν}

Post-Unblinding Checks

- Event displays
- Saliency maps
- Reconstructed data vs. MC: $E_{\nu_{\tau}}$, $\cos(\theta_{\text{zen}})$, vertex
- Data-driven tests
 - $\mathscr{P}(S \leftrightarrow B)$ under forced lightlevel variations

- CNN scores' robustness
 - With 7 ν_{τ} candidates:
 - Adversarial attacks
 - Manually smooth DP waveforms
 - Forced arrival time shifts
 - Randomly
 - Dust band focused
 - With backgrounds:
 - Adversarial attacks on data
 - Adversarial attacks on $\nu_e^{\rm astro}$ MC

Summary \rightarrow

Post-Unblinding Checks: Summary

- CNNs sensitive to overall event structure, not just to a few DP waveforms
- Reconstructed distributions look fine
- Induced $S \leftrightarrow B$ migration probabilities small & consistent with MC estimates
- CNN scores very robust
 - Only alterations (e.g., using *DeepFool*) outside expected ranges produce noticeable change

Event Pics: Clear Double Pulse Signature

Here's "Double Double," an old event & prior ν_{τ} candidate:

time/ns

Gratifying to find this event again.

Event Pic: <u>Un</u>clear DP Signature

Here's "Barn Owl," another new event:

makes it a $\nu_{\tau}^{\rm astro}$ candidate.

Saliency Maps

Saliency maps "rank the pixels in an image based on their contribution to the final score from a CNN." Saliency = gradient of CNN score vs. pixel content.

https://usmanr149.github.io/urmlblog/cnn/2020/05/01/Salincy-Maps.html

Saliency Maps

Saliency maps "rank the pixels in an image based on their contribution to the final score from a CNN." Saliency = gradient of CNN score vs. pixel content.

https://usmanr149.github.io/urmlblog/cnn/2020/05/01/Salincy-Maps.html

Event Pics w/Saliency Maps

"BarnOwl," with log $Q_{\rm str}$ and saliency maps:

Large $S(C_1)$: where/when $\Delta(\text{light}) \rightarrow \Delta C_1$. (Bright pixels can have small $S(C_1)$.) Generally, $S(C_1)$ shows C_1 sensitive to overall event shape.

 10^{0}

numbers w/ grain of salt

Post-Unblinding Checks: $E_{\nu}^{\text{reco.}}$, $\cos \theta_{\text{zen.}}^{\text{reco.}}$

- Single-pulse reco.
- Good data–MC agreement...
 - ...but take

(IceCube's "GlobalFit" flux assumed above.)

Conclusions: What's Next?

- •Used just 3 (of 86) strings. Using more strings would:
 - Improve bkgd rejection \Rightarrow relax cuts, more signal
 - Possibly start excluding some source acceleration mechanisms
- Apply a dedicated reco. for direction, E,...
 - \bullet Study parameters of the ν_{τ} and τ themselves
 - Inelasticity, L_{τ} , energy asymmetry, ...
 - Look for $u_{ au}^{\mathrm{astro}}$ point sources
- • $\lambda_s^{\text{sea}} > \lambda_s^{\text{ice}}$:
 - KM3NeT, P-ONE,... should have larger effective volume per string

IceCube Collaboration

Spring 2022 Collaboration Meeting, Brussels, Belgium