

Astrophysical Tau Neutrinos

The first high-significance measurement of the most energetic tau neutrino candidates ever observed

> Doug Cowen Penn State

Mainz May 2024

Neutrinos: The Basics

- Fundamental
- Light
- Ubiquitous
- Apparently stable
- Tri-flavored
- Penetrating

 \rightarrow 42.3 MeV/c² =1.275 GeV/c² ≅173.07 GeV/c² -126 GeV/ c^2 mass g н u C snin $1/2$ Higgs
boson gluon charm top up =4.8 MeV/c² =95 MeV/c² =4.18 GeV/c² $-1/3$ γ s $1/2$ $1/2$ **NBOIC** down strange bottom photon 0.511 MeV/c² 105.7 MeV/c² 1.777 GeV/c² 91.2 GeV/c² е τ **SONS** $1/2$ Z boson electron muon tau ရွ <2.2 eV/c² <0.17 MeV/c² <15.5 MeV/c² 80.4 GeV/c² u NOL
5 ٣ $\mathcal{V}_{\mathfrak{u}}$ ₹ electron muon tau W boson neutrino neutrino neutrino

graphic: wikipedia

The large m_{τ} suppresses direct ν_{τ} production. ν_{τ} are even harder to see than your average super-shy neutrino. ν_τ mainly arise through neutrino oscillations.

Detecting Neutrinos: Cherenkov Light

When a charged particle moves faster than light in a medium, it emits Cherenkov light.

Electromagnetic equivalent of a sonic boom.

This is the operating principle of many real-time neutrino detectors.

The IceCube Detector

(Yes, I have been to the South Pole.)

Neutrinos in IceCube

Many possible neutrino sources:

Neutrinos in IceCube: Sources

- Atmospheric neutrinos
	- cosmic rays (e.g., protons) interact in the earth's atmosphere
	- resulting particle showers include ν 's
	- See at \sim 1 GeV < E_ν < \sim 1 TeV in ${\rm IceCube}~(E_\nu \approx 10^{9-12}~{\rm eV})$

- Astrophysical high energy neutrinos
	- created in cosmic accelerators, e.g., in particle jets created by black holes
	- Evident at E_{ν} $>$ \sim 50 TeV in IceCube
		- •Also seen: PeV-scale $(10^{15}$ eV) ν 's (incl. Glashow Resonance)

$ν$ astro in IceCube

•Motivations:

• Uncover source production mechanism(s)

- Study ν properties at highest E_{ν} and longest baselines
- Gain sensitivity to new physics

readily distinguished—sometimes.

Late

Color shows time information:

Early

$ν$ astro in IceCube

Event Size

 -1 km

<https://youtu.be/vTya9hoKsfM>

Doug Cowen/Penn State/dfc13@psu.edu

IceCube Discovery Timeline

IceCube and $ν$ ^{astro}

- Standard ν oscillations:
	- Predict ~1:1:1 flavor ratio for ν^{astro} at Earth
		- Numerous ν_{τ} should be in IceCube data
- Flavor ratio can be *somewhat* altered by production mechanism
- Flavor ratio can be *dramatically* altered by new physics (e.g., quantum gravity)

Importance of Flavor ID for ν^{astro}

At Earth, ν_e : ν_μ : ν_τ could tell us about the source...

Importance of Flavor ID for ν^{astro}

At Earth, $\nu_e : \nu_\mu : \nu_\tau$ could
 while strong tell us about the source...

deviations from 1:1:1 could mean new physics

Example: Effect of quantum gravity.

Importance of Flavor ID for ν^{astro}

Measured flavor composition of IceCube HESE events. \star is best fit point, consistent with presence of all 3 flavors, but *ντ* flux only weakly constrained.

Identification of ν_{τ} would:

-help shrink contour (and maybe reveal new physics);

-enable studies of ν_{τ} (and τ) behavior at ultrahigh energies;

-give access to very high astrophysical purity ν ;

-confer bragging rights for largest exclusive sample of ν_{τ} .

- ν_{τ} identification
	- · Exclusive channel: "Double Bang"
		- $L_τ$ > ∼50m to distinguish two showers $(X \text{ and } \tau \to (e, h))$
			- But $L_{\tau} \simeq 50$ m · $(E_{\tau}$ /PeV):
				- So need high energy. And favorable interaction vertex. And direction. Etc.
			- Upshot: Very limited phase space. None found yet.

At lower energies, the two ν_{τ} cascades are closer together. Here's a spiffy custom animation to help visualize, made by yours truly in collaboration with Dr. Chat G.P.T. IV:

At lower energies, the two ν_{τ} cascades are closer together. Here's a spiffy custom animation to help visualize, made by yours truly in collaboration with Dr. Chat G.P.T. IV:

- ν_{τ} identification
	- •Inclusive channel: "Double Cascade"
		- •60 well-contained HESE* events
		- Classified as 41 single cascades, 2 double cascades, 17 tracks
			- •"Double-double" →
		- 2.8*σ* exclusion of no $\nu_{\tau}^{\text{astro}}$

*HESE: High-Energy Starting Event

- Challenge: Grow N_{ν_τ} , reduce $N_{\rm bkgd}$ Leverage: $(\boldsymbol{\phi}_{\nu}^{\mathrm{astro.}}\cdot \boldsymbol{\sigma}_{\nu N})\propto E_{\nu}^{-1}$
	- Exclusive channel: "Double Pulse"
		- • $L_τ$ ~ 10−50 m to distinguish two showers in DOM waveform(s)
			- Identify DPs in one or more DOMs
		- Previous IceCube analyses
			- Looked for 1–2 modules with waveforms having clean DP signatures
			- Candidate ν_{τ} seen, but at low S/N

- Challenge: Grow N_{ν_τ} , reduce $N_{\rm bkgd}$ Leverage: $(\boldsymbol{\phi}_{\nu}^{\mathrm{astro.}}\cdot \boldsymbol{\sigma}_{\nu N})\propto E_{\nu}^{-1}$
	- Exclusive channel: "Double Pulse"
		- • $L_τ$ ~ 10−50 m to distinguish two showers in DOM waveform(s)
			- Identify DPs in one or more DOMs
		- Current analysis
			- Look for signature across 180 DOMs on 3 strings w/neural networks (spoiler alert: "Double Pulse" a bit of a misnomer)
			- High S/N achieved...

Searching for Astrophysical $ν_τ$: CNNs

Searching for Astrophysical ν_{τ} : $Q_{\text{str}}^{\text{max}}$

- Initial ν_{τ} DP selection criteria
	- Require ≥ 2000 p.e. on highestcharge string and ≥ 10 p.e. on two neighbors
	- Require cascade topology

• After initial criteria, have \sim 300x more background than signal

Searching for Astrophysical *ν*_{*τ*}: CNNs

- Trained 3 independent CNNs
	- $C_1 \ge 0.99$: ν_{τ}^{CC} vs. $\nu_e^{\text{CC}}, \nu_x^{\text{NC}}$
	- $C_2 \geq 0.98$: ν_{τ}^{CC} *vs.* μ_{\downarrow}
	- $\bullet C_3 \geq 0.85$: ν_{τ}^{CC} *vs.* ν_{μ}^{CC}
- \bullet Gives S/N \sim 14.
- •Backgrounds
	- ν_{astro} and ν_{atm} .
		- Sub-dominant: μ_\downarrow
- Off-signal region Data-MC agreement is good for $C_{1,2,3}^{}$

Searching for Astrophysical $ν$ _τ: $E_ν^{\text{true}}$ *ντ*

- After final (CNN) cuts, peaks at \sim 200 TeV
	- Lower E_{ν_τ} threshold \to higher N_{ν_τ}
	- Peak signal efficiency at several PeV, but flux there is v. low

- Expected 4–8 ν_{τ} on a bkgd. of ${\sim}0.5$ with 9.7 years of data
	- (S,B) levels depend on assumed astrophys. flux
	- Flavor ratio at Earth assumed to be 1:1:1
- Contributors to the \sim 0.5 background events:
	- ν^{astro} : IceCube has 4 flux measurements
		- Use flux giving least-significant exclusion of null hypothesis
		- (Conservative: Typically, we use most-significant exclusion & trials-correct)
	- ν^{atm} : Conventional flux (Honda et al.; IceCube msmts.); possible prompt* flux (Bhattacharya et al.; IceCube exclusion)
	- $\cdot \mu_{\downarrow}$: <u>Only</u> conventional (prompt* not yet definitively measured)
	- Other: ν^{astro} -induced charm; on-shell W; Earth-crossing $(\nu_e, \nu_\mu) \rightarrow \nu_\tau$

*From atmospheric charm decays.

Backgrounds

IceCube's *GlobalFit* (*HESE*) flux assumed.

Note: $\nu^{\rm atm}$ can be rejected by accompanying μ_\downarrow .

This "self-veto" effect was *not* included in background estimates above.

Astrophysical *ν*_τ: Results</sub>

- Confidence intervals calculation (Feldman & Cousins)
	- Test statistic $TS(\lambda_\tau) = \ln L(\lambda_\tau) \ln L(\lambda_\tau)$ ̂

• where $\lambda_{\tau} = \frac{\lambda_{\tau} P_{\tau}^2}{\Delta p_{\tau}}$ and λ_{τ} maximizes Poisson-based LLH $\phi_{\nu_\tau\text{, astro.}}$ *ϕ*nominal *ντ*, astro. ̂ λ_τ

across 16 bins in (C_3, C_1) space:

Astrophysical *ν*_{*τ*}: Results</sub>

Opening the box, we saw 7 events!

 4 events new. 3 events old (1 of which previous ν_{τ} candidate). Events tend to interact near strings.

Tau-ness: $P_{\tau}(i) = n_s(i)/(n_s(i) + n_b(i)) \rightarrow (0.90 - 0.92, 0.94 - 0.95)$

Astrophysical *ν*_{*_τ*: Results}

- For IceCube's *GlobalFit* flux, exclude $\phi(\nu_\tau^{\rm astro}) = 0$ at 5.1*σ*
	- Other fluxes: 5.2σ , 5.2σ , 5.5σ (*Inelasticity*, *Diffuse*, *HESE*)
- Also a 40%-level confirmation of the standard oscillation picture

$$
\bullet \left(7 \pm \sqrt{7}\right) \, \nu_{\tau} \text{'s}
$$

- Powerful confirmation of IceCube's 2013 ν^{astro} discovery
	- ν_τ^{atm} negligible at these E_ν

Accepted for publication by PRL. https://arxiv.org/abs/2011.03561

Post-Unblinding Checks

- Event displays
- Saliency maps
- Reconstructed data vs. MC: $E_{\nu_{\tau}}$, cos(θ_{zen}), vertex
- •Data-driven tests
	- $\cdot\mathcal{P}(S\rightarrow B)$ under forced lightlevel variations
- CNN scores' robustness
	- With $7 \nu_{\tau}$ candidates:
		- Adversarial attacks
		- Manually smooth DP waveforms
		- Forced arrival time shifts
			- •Randomly
			- •Dust band focused
	- With backgrounds:
		- Adversarial attacks on data
		- Adversarial attacks on $\nu_e^{\rm astro}$ MC

Summary \rightarrow

Post-Unblinding Checks: Summary

- CNNs sensitive to overall event structure, not just to a few DP waveforms
- Reconstructed distributions look fine
- Induced $S \leftrightarrow B$ migration probabilities small & consistent with MC estimates
- CNN scores very robust
	- •Only alterations (e.g., using *DeepFool*) outside expected ranges produce noticeable change

Event Pics: Clear Double Pulse Signature

Here's "Double Double," an old event & prior ν_{τ} candidate:

time/ns

Gratifying to find this event again.

Event Pic: Unclear DP Signature

Here's "Barn Owl," another new event:

Saliency Maps

Saliency maps "rank the pixels in an image based on their contribution to the final score from a CNN." Saliency = gradient of CNN score vs. pixel content.

https://usmanr149.github.io/urmlblog/cnn/2020/05/01/Salincy-Maps.html

Saliency Maps

Saliency maps "rank the pixels in an image based on their contribution to the final score from a CNN." Saliency = gradient of CNN score vs. pixel content.

https://usmanr149.github.io/urmlblog/cnn/2020/05/01/Salincy-Maps.html

Event Pics w/Saliency Maps

"BarnOwl," with $\log Q_{\rm str}$ and saliency maps:

Large $S(C_1)$: where/when $\Delta(\text{light}) \rightarrow \Delta C_1$. (Bright pixels can have small $S(C_1)$.) Generally, $S(C_1)$ shows C_1 sensitive to overall event shape.

Post-Unblinding Checks: $E_{\nu}^{\text{reco.}}$, cos θ_{zen.}

- Single-pulse reco.
- Good data–MC agreement…
	- \bullet …but take numbers w/ grain of salt

(IceCube's "GlobalFit" flux assumed above.)

Conclusions: What's Next?

- Used just 3 (of 86) strings. Using more strings would:
	- Improve bkgd rejection \Rightarrow relax cuts, more signal
		- Possibly start excluding some source acceleration mechanisms
- Apply a dedicated reco. for direction, E,...
	- Study parameters of the ν_{τ} and τ themselves
		- Inelasticity, L_{τ} , energy asymmetry, ...
	- Look for $\nu_\tau^{\rm astro}$ point sources
- $\lambda_s^{\text{sea}} > \lambda_s^{\text{ice}}$:
	- KM3NeT, P-ONE,... should have larger effective volume per string

IceCube Collaboration

Spring 2022 Collaboration Meeting, Brussels, Belgium