Propagation et directions d'arrivée des rayons cosmiques d'ultra-haute énergie

E. Armengaud (APC & IAP)

Sujets discutés

Les UHECRs

- L'observatoire Pierre Auger
- Résultats observationnels récents
 - Premiers résultats d'Auger
 - Analyse des anisotropies à "basse" énergie
- Influence des champs magnétiques sur la propagation des UHECRs
 - Champs galactiques
 - Champs extragalactiques
- Contreparties photon/neutrino d'une source proche d'UHECRs

Sujets discutés

Les UHECRs

- L'observatoire Pierre Auger
- Résultats observationnels récents
 - Premiers résultats d'Auger
 - Analyse des anisotropies à "basse" énergie
- Influence des champs magnétiques sur la propagation des UHECRs
 - Champs galactiques
 - Champs extragalactiques
- Contreparties photon/neutrino d'une source proche d'UHECRs

Détection des UHECRs

Détection par fluorescence ("HiRes-like")

Front de particules

Fluorescence

Détection avec un réseau ("AGASA-like")

Extension au sol de la cascade : Plusieurs 10 km² (à 10²⁰ eV)

Le spectre des rayons cosmiques

• AGASA (Japon) : réseau de détecteurs au sol

• HiRes (US) : télescopes de fluorescence

E. Armengaud - Auger et propagation des UHECRs

Après "correction" des systématiques

- Principal désaccord = échelle d'énergie (~30%)
- Systématiques attendues ~ 20 25% pour les 2 expériences

Nature des UHECRs

<u>E < 10¹³ eV</u> : Détection directe du rayon cosmique (satellites et ballons atmosphériques)

⇒ Mesure directe de la charge du cosmique par dépôt d'énergie

Nature des UHECRs

Nature des UHECRs

Origine des UHECRs

Très probable à basse E

Accélération astrophysique

- Accélération stochastique dans des chocs magnétisés
- $\Box \quad \mathsf{E}_{\mathsf{max}} \sim \mathsf{L} , \mathsf{B} ; \mathsf{Z}$
- Candidats très nombreux, dont: AGNs (lobes radio), ICM, GRBs, pulsars
- Spectre : loi de puissance d'indice α ~ 2 – 2.7 (chocs relativistes,...)
- $\ \ \, \ \ \, \alpha, \, E_{max} \, et \, n_{sources} \, mal \, connus$
- Observation de sources aux hautes énergies

Possible seulement à haute E

"Top – down"

- Désintégration de particules supermassives
 - SHDM
 - Défauts topologiques
- Production copieuse de photons et neutrinos
 - Constraintes dues au fond diffus au GeV
- Production locale
 - Contourne GZK
 - Structure à grande échelle (halo galactique) aux hautes énergies

Propagation des protons

Cheville ??

• Fonds impliqués : CMB, fond infrarouge

 Photons et neutrinos secondaires

→ flux "assurés"

 <u>Cas des noyaux</u> : photodissociation ~ GZK (fond IR plus crucial)

• <u>Effet des champs B</u> : déflections, temps de propagation rallongé

Contournement? LIV (modification phénoménologiques des relations de dispersion) → Contraintes sur modèles ?

Sujets discutés

Les UHECRs

L'observatoire Pierre Auger

Résultats observationnels récents

- Premiers résultats d'Auger
- Analyse des anisotropies à "basse" énergie
- Influence des champs magnétiques sur la propagation des UHECRs
 - Champs galactiques
 - Champs extragalactiques

Contreparties photon/neutrino d'une source proche d'UHECRs

L'Observatoire Pierre Auger

 But princ UHECRs
 Flux faib
 Comprél meilleurs énergie:

Réseau de surface

Chaîne d'installation ATT installation de l'électronique Ρ Dép

- ----

Déploiement du réseau

Un événement stéréo hybride

HitLocations (Red: First, Violet: Last)

Sujets discutés

Les UHECRs

- L'observatoire Pierre Auger
- Résultats observationnels récents
 - Premiers résultats d'Auger
 - Analyse des anisotropies à "basse" énergie
- Influence des champs magnétiques sur la propagation des UHECRs
 - Champs galactiques
 - Champs extragalactiques
- Contreparties photon/neutrino d'une source proche d'UHECRs

Le spectre : HiRes

HiRes confirme la coupure GZK

- HiRes1 (mono) ~5000 km2 sr yr
- HiRes (Stereo) ~2500 km2 sr yr
- Auger-ICRC 1750 km2 sr yr ~ AGASA

Analyse très délicate:

- Estimation de l'acceptance difficile
- Biais systématique entre les données mono et stéréo
 - Besoin d'un contrôle parfait de l'atmosphère

Le spectre : Auger

Premier spectre Auger

- Echelle d'énergie du FD...
- Systématiques larges, vont vite diminuer
- Lot de données restreint (trigger de niveau 5)

Proportion de photons dans les UHECRs (Auger-FD)

- Comparaison du X_{max} des événements avec celui attendu pour des photons
 → Valeur limite supérieure sur la fraction de photons à 10 EeV
- Contraintes fortes potentielles sur les modèles "top down"

Structures à petite échelle à E > 10 EeV

- HiRes : pas d'autocorrélation nette (mais manque de statistique encore)
- Un amas de 5 événements (triplet AGASA @ E> 40 EeV + 1 HiRes @ E ~ 38 EeV + 1 HiRes @ 10 < E < 30 EeV)
 - □ Analyse HiRes : P(amas) ~ 28%
- Corrélations avec les BI Lacs :
 - Evénements AGASA, E > 40 EeV
 - Evénements HiRes, $E > 10 EeV (P \sim 0.5 \%)$
 - → Peut-être des particules neutres; doit être vérifié avec un lot de données indépendantes
- Auger : on attend plus de statistique...

HiRes, Astrophys.J. 623 (2005) 164-170

Sujets discutés

Les UHECRs

- L'observatoire Pierre Auger
- Résultats observationnels récents
 - Premiers résultats d'Auger
 - Analyse des anisotropies à "basse" énergie
- Influence des champs magnétiques sur la propagation des UHECRs
 - Champs galactiques
 - Champs extragalactiques
- Contreparties photon/neutrino d'une source proche d'UHECRs

Données Auger à "basse énergie"

- Un trigger efficace : le "<u>Compact</u> <u>3-ToT</u>" → événements reconstruits avec 3 cuves en configuration compacte
- Résolution angulaire ~ 2° @ EeV

+ Données hybrides :

Reconstruction FD améliorée
significativement avec les signaux d'1seule cuve

- Meilleure résolution angulaire ~ 1° @ EeV
- Bas seuil en énergie (< 1 EeV)

Carte des 3ToT en coord. gal. (année 2004)

Difficulté : couverture du ciel

- Nécessité de connaître le nombre d'événements attendus dans chaque direction
- Des systématiques nombreuses à basse énergie:
 - Instabilités du détecteur
 - Effets atmosphériques
 - → Modulation à grande échelle du nombre d'événements sur le ciel
- 2 stratégies complémentaires:
- 1. Modélisation complète de l'acceptance du détecteur
- 2. Permutations astucieuses des événements (*scrambling*)

Analyse cruciale pour les anisotropies à grande échelle

Variations du taux d'événements

Excès vers le centre galactique (GC)

• AGASA 1998 :

- Excès annoncé a posteriori dans la bande d'énergie [10^{17.9} – 10^{18.3}] eV
- GC hors de vue, mais proche : 308 obs / 242 attendus (4σ)
- Couverture supposée R.A.invariante
- 2001 : Réanalyse de SUGAR (hémisphère Sud, années 60) :
 - Source ~ ponctuelle à 7 deg. du GC

Une connection TeV – EeV ?

Accélération de protons dans un (des) objet(s) du GC à l'EeV

 $p\gamma_{IR} \boldsymbol{\rightarrow} n$ via photoproduction de pions / photodésintégration de noyaux

 \rightarrow Flux de neutrons

Source 3 EG J1746-2851 ? Source HESS au TeV~ SGR A* ?

Crocker et al., ApJ,622:892-909 (2005) Grasso, Maccione, astro-ph/0504323

Une connection TeV – EeV ?

Accélération de protons dans un (des) objet(s) du GC à l'EeV

- □ 1) Diffusion hadronique pp \rightarrow pp + $\pi^{\circ} \rightarrow \underline{Flux \text{ gamma}}$ avec $\alpha \sim 2.2 \text{ si } \alpha_{\text{proton}} \sim 2.2$
- □ 2) pp → np + π^+

 $p\gamma_{IR} \boldsymbol{\rightarrow} n$ via photoproduction de pions / photodésintégration de noyaux

Le GC à ~ 10^{18} eV vu par Auger

Recherche aveugle de sources avec Auger

Spectre de puissance angulaire des UHECRs

- Jusqu'à présent: études limitées
- Analyse harmonique en ascension droite des événements

Une seule dimension

Ajustement d'un dipôle sur les données

Ordres supérieurs non pris en compte

 Nous avons adapté les méthodes de la communauté du CMB pour calculer les C(I) d'une carte de rayons cosmiques

Spectre de puissance : définitions

- Développement des fluctuations du nombre d'événements sur la base des harmoniques sphériques:
- Champ stochastique et homogène au niveau de ses propriétés spectrales.
- Estimation du spectre de puissance:
- Le bruit étant poissonien, tout peut se calculer analytiquement!

$$\Delta(\vec{n}) = \sum_{\ell \ge 0} \sum_{m=-\ell}^{m=\ell} a_{\ell m} Y_{\ell m}(\vec{n})$$

$$\langle a_{\ell m} a_{\ell' m'}^{\star} \rangle_r = C_\ell \delta_{\ell \ell'} \delta_{m m'}$$
$$\tilde{C}_\ell = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{m = \ell} |\tilde{a}_{\ell m}|^2$$

Couverture partielle du ciel

Couverture partielle du ciel : les $\hat{C}(I)$ que l'on peut calculer à partir des données sont liés aux vrais C(I) par un noyau de convolution:

$$\left\langle \tilde{C}_{\ell} \right\rangle = \sum_{\ell'=0}^{+\infty} M_{\ell\ell'} C_{\ell'}$$

On peut calculer M(l,l') à partir de la couverture de l'expérience.

theta $\langle 60 \rangle$ 10.000 +A bas I, on peut remonter 1.000 Error on dipole des Ĉ(I) aux Ĉ(I) si la couverture du ciel est 0.100 assez grande; + 0.010 c'est le cas d'Auger Sud +Auger South +Auger North 0.001 0.30.4 0.50.6Fraction of the sky

Deligny et al., JCAP, 0410:008, 2004

Exemple de calcul de C(l)

<u>Tests fins de l'isotropie du ciel</u> UHECR à grande échelle:

• A ~ EeV, structures galactiques attendues

(si la cheville marque bien la transition galactique - extragalactique)

 A haute énergie : halo de matière noire,

quelques sources très étendues...

Sujets discutés

Les UHECRs

- L'observatoire Pierre Auger
- Résultats observationnels récents
 - Premiers résultats d'Auger
 - Analyse des anisotropies à "basse" énergie
- Influence des champs magnétiques sur la propagation des UHECRs
 - Champs galactiques
 - Champs extragalactiques
- Contreparties photon/neutrino d'une source proche d'UHECRs

Effet des champs B galactiques sur les anisotropies

E. Armengaud - Auger et propagation des UHECRs

Sujets discutés

Les UHECRs

- L'observatoire Pierre Auger
- Résultats observationnels récents
 - Premiers résultats d'Auger
 - Analyse des anisotropies à "basse" énergie
- Influence des champs magnétiques sur la propagation des UHECRs
 - Champs galactiques
 - Champs extragalactiques
- Contreparties photon/neutrino d'une source proche d'UHECRs

Modèles de champs B extragalactiques

- Origine:
 - Graine uniforme "cosmologique"
 - Vents galactiques / d'AGN
 - Génération aux chocs : par exemple mécanisme de Biermann (+ amplification dynamo), instabilités
- Evolution cosmologique (simulation de grandes structures) selon MHD
- Dans tous les cas, B renormalisé par

$$(B_{cluster})_{z=0} \sim \mu G$$

 Difficile de confronter avec les données actuelles!

Dolag et al.

Sigl et al. (PRD 043007) :

- Champ généré au cours de l'évolution / champ initial uniforme
- MHD sur réseau

Dolag et al. (JCAP 0501, 009) :

- Graine uniforme B ~ (1-5) nG @ z ~ 20
- Algorithme = "mariage" de SPH et de MHD
- Simulation cosmologique "contrainte" : champ $\delta\rho$ initial déduit du survey de galaxies IRAS

Remplissage de l'espace par les champs B

Champs B structurés : influence sur les trajectoires des UHECRs

- Scénario "champs faibles"
 - □ "Cartes de déflection" = ∫ B_⊥
 le long d'une droite

E. Armengaud - Auger et propagation des UHECRs

Modèle de propagation des UHECRs

- Grille de champ B (Sigl et al.)
- Sources discrètes, densité ~ 10⁻⁵ Mpc⁻³, distribuées selon la densité baryonique
- Injection et propagation de protons/fer
 - Suivi des secondaires
 - Enregistrement
 "d'événements" par un
 observateur = sphère de rayon
 ~ 1 Mpc
- <u>Etude des propriétés</u> <u>statistiques du spectre, de la</u> <u>composition, des</u> <u>anisotropies</u>

- Protons
- Spectre d'injection E^{-2.4}
- Variance cosmique : fluctuations des positions des sources

Modèle de propagation des UHECRs

- Grille de champ B (Sigl et al.)
- Sources discrètes, densité ~ 10⁻⁵ Mpc⁻³, distribuées selon la densité baryonique
- Injection et propagation de protons/fer
 - Suivi des secondaires
 - Enregistrement
 "d'événements" par un
 observateur = sphère de rayon
 ~ 1 Mpc
- <u>Etude des propriétés</u> <u>statistiques du spectre, de la</u> <u>composition, des</u> <u>anisotropies</u>

- Même scénario
- Variance cosmique considérable
- "Champs forts" → on observe des sources étendues

Sources UHECR de noyaux lourds

Sujets discutés

Les UHECRs

- L'observatoire Pierre Auger
- Résultats observationnels récents
 - Premiers résultats d'Auger
 - Analyse des anisotropies à "basse" énergie
- Influence des champs magnétiques sur la propagation des UHECRs
 - Champs galactiques
 - Champs extragalactiques

 Contreparties photon/neutrino d'une source proche d'UHECRs

Secondaires neutres générés par les UHECRs

- Interactions des protons:
 - Production de paire : CEL
 - Production de pions : utilisation du code SOPHIA (Mucke et al. 1999)
 - Les secondaries (e⁺,e⁻,γ,ν) sont générés et suivis après la propagation des protons
 - Les e⁺,e⁻,γ forment des cascades électromagnétiques :
 - ICS
 - Synchrotron
 - Production de paire ...
 - → Modélisation avec le code de S.Lee (1998) : résolution numérique d'équations de transport

Fonds IR et radio extragalactiques :

- plusieurs modèles possibles
- utilisés à la fois pour les interactions des hadrons et les cascades EM

Prise en compte du champ B inhomogène dans l'Univers local

Neutrinos GZK provenant d'une source proche et magnétisée

- L'essentiel des neutrinos générés par production de pions sont émis à grand z et constitue un fond diffus
 - Quelques événements au plus observables par Auger

- Calcul du spectre d'une source proche : la prise en compte des déflections augmente le flux neutrinos.
 - □ (reste faible → pas détectables à court terme)

Flux au GeV – TeV d'une source d'UHECRs magnétisée

- Production de paires ET de pions → Gammas
- Rôle important des champs B sur les cascades EM + sur la propagation des protons

Une éventuelle source UHECR

aura probablement une contrepartie

observable au TeV [voire au GeV]

Source :

- située à 20 Mpc
- magnétisée
- luminosité ~ correspondant aux "clusters" AGASA

Armengaud et al.,astro-ph/0511277

Perspectives

- Auger a déjà des données, mais est encore en construction...
- Anisotropies à E ~ 10¹⁸ eV : une perspective prometteuse
 - Systématiques délicates
 - Une statistique déjà énorme

Contraintes sur les modèles "topdown" : le spectre mais aussi la composition des UHECRs

Des sources? Dépendra :

- De leur densité
- Des champs magnétiques
- Composition des UHECRs
- Si on voit des sources :
- Contraintes sur les champs B
- Réel espoir d'une contrepartie TeV

"This could be the discovery of the century. Depending, of course, on how far down it goes."