

A new stacking pipeline to detect gravitational waves signals from repeaters

Huitième assemblée générale du GdR Ondes Gravitationnelles

15 Octobre 2024 Hugo Einsle, M-A Bizouard, Nice

Magnetars and bursting activity

- Magnetic Field $B \approx 10^{14} 10^{15} \,\mathrm{G}$
- Rotation Period $P \approx 0.3 12 \,\mathrm{s}$
- Age $\tau \approx 10^3 10^5$ years
- X-ray Luminosity $L_X \approx 10^{35} 10^{36} \, \mathrm{erg/s}$
- Burst Energy $E \approx 10^{38} 10^{41} \,\mathrm{erg}$
- Burst Duration $\Delta t \approx 0.1 1 \,\mathrm{s}$
- Peak Luminosity $L_{\rm peak} \approx 10^{41} 10^{43} \, {\rm erg/s}$

(SGR1935 bust storm light curve, 1120s taken on 2020 April 28 00:40:58: arXiv:2009.07886)

(Artistic representation of a magnetar flaring by me)

f-mode Gravitational Wave Emission Model

(Fundamental vibrational mode induced GW emission from Hydromagnetic Instabilities in Rotating Magnetized Neutron Stars, Paul D. Lasky : arXiv:1203.3590)

$$h = h_{max} sin(2\pi f_{mode} t) e^{\frac{-\iota}{\tau}}$$

$$h_{max} = 8.5 \times 10^{-28} \times \frac{10 kpc}{d} \left(\frac{R}{10 km}\right)^{4.8} \left(\frac{M}{M_{\odot}}\right)^{1.8} \left(\frac{B_{pole}}{10^{15} G}\right)^{2.9}$$

Stacking bursts

individuals GW bursts

Workflow

A new stacking pipeline to detect gravitational signals waves from repeaters - Hugo Einsle

<u>PySTAMPAS</u> <u>library !</u>

Burst identification

- NICER data (1120s, 1–10 keV energy range)
- 214 bursts detected :
- 1s<
- Bursts times = "on-source segments"
- "Off-source segments" = (Total time) (Bursts times)

$$C_{\text{bins}}^{j} = \sum_{i} H(t_{i} - (t_{1} + j\Delta t))H((t_{1} + (j+1)\Delta t) - t_{i})$$

$$\lambda = \frac{1}{\Delta T} \sum_{i=1}^{N_{\Delta T}} C_{\text{bins}}^i \qquad P_i = \frac{\lambda^{n_i} e^{-\lambda}}{n_i!} < \frac{0.01}{N_{\Delta T}}$$

(A single burst isolated from SGR1935 2020 burst storm centered around peak emission, April 28 00:40:58: arXiv:2009.07886)

Denoising with autoencoders

(Schematic representation of the structure of an autoencoder for TF-map denoising)

$$h = f(\tilde{x}) = \sigma_e(W_e \tilde{x} + b_e) \qquad \qquad r = g(h) = \sigma_d(W_d h + b_d)$$

Denoising with autoencoders - convolutional blocks

	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	
	x_{21}	x_{22}	x_{23}	x_{24}	x_{25}	
x =	x_{31}	x_{32}	x_{33}	x_{34}	x_{35}	
	x_{41}	x_{42}	x_{43}	x_{44}	x_{45}	
	x_{51}	x_{52}	x_{53}	x_{54}	$egin{array}{c} x_{15} \ x_{25} \ x_{35} \ x_{45} \ x_{55} \end{bmatrix}$	

	w_{11}	w_{12}	w_{13}
W =	w_{21}	w_{22}	w_{23}
	w_{31}	w_{32}	w_{33}

 $\operatorname{Conv2D}(x,W)_{1,1} = w_{11}x_{11} + w_{12}x_{12} + w_{13}x_{13} + w_{21}x_{21} + w_{22}x_{22} + w_{23}x_{23} + w_{31}x_{31} + w_{32}x_{32} + w_{33}x_{33}$

$$F_{i,j} = \sigma \left(\sum_{m=1}^{k_1} \sum_{n=1}^{k_1} W_{m,n} \cdot x_{i+m-1,j+n-1} + b \right)$$

$$F = [F_{i,j}] = \text{Conv2D}(x, f_1, k_1, \sigma) = \left[\sigma\left(\sum_{m=1}^{k_1} \sum_{n=1}^{k_1} W_{m,n} \cdot x_{i+m-1,j+n-1} + b\right)\right]$$

Denoising with autoencoders - attention gate

 $\theta_x = \text{Conv2D}(F, f, k)$ $\phi_g = \text{Conv2D}(g, f, k)$

$$\operatorname{add}_x g = \theta_x + \phi_g$$

 $\psi = \sigma \left(\text{Conv2D}(\gamma(\text{add}_x g)) \right)$

$$y = F \odot \psi_{:}$$

Denoising with autoencoders - curriculum learning

$$h(t) = s(t) + n(t) \longrightarrow \tilde{y}(t, f)$$

$$h_{\rm in}^{(i)}(t) = \beta(e) \cdot \frac{s(t)}{\|s(t)\|} + n(t) \longrightarrow \tilde{y}_{\rm in}$$

$$h_{\rm out}^{(i)}(t) = \beta(e) \cdot \frac{s(t)}{\|s(t)\|} \longrightarrow \tilde{y}_{\rm out}$$

$$\beta(e) = \beta_{\rm start} + \frac{e}{E}(\beta_{\rm end} - \beta_{\rm start})$$

$$L(\tilde{y}_{\rm out}, \hat{\tilde{y}}_{\rm out}) = \frac{1}{n} \sum_{i=1}^{n} \left(\tilde{y}_{\rm out}^{(i)}(t, f) - \hat{\tilde{y}}_{\rm out}^{(i)}(t, f)\right)^2$$

Denoising with autoencoders

Waveform	Distance (Mpc)	Duration (s)	Freq. Range (Hz)	Hrss
Bar Modes A	40	277.22	139 - 449	2.63×10^{-23}
Inspiral B	1.0	186.14	10 - 1570	2.09×10^{-20}
GRB Plateau Short	100	470.40	79 - 251	3.57×10^{-23}
ISCO Chirp A	100	238.62	1049 - 2048	3.40×10^{-23}
Magnetar D	1.0	400.0	1598 - 1900	7.06×10^{-22}
NCSACAM A	100	296.77	10 - 300	2.38×10^{-22}
PT B	1.0	196.90	800 - 1075	3.85×10^{-21}
Sine Damped (1600 Hz)	1.0	50.0	1595 - 1605	2.10×10^{-20}
Sine Damped (1050 Hz)	1.0	50.0	1045 - 1055	2.10×10^{-20}
Sine Damped (1300 Hz)	1.0	50.0	1295 - 1305	2.10×10^{-20}
ADI B	1.0	9.43	110 - 209	3.00×10^{-20}

Clustering

Detection statistic estimation

(clusters are cross-correlated between detectors to build a coherent detection statistic efficient at detecting coherent excess of energy in a network of GW detectors)

(Example of background triggers ranked by their P_lambda values as a function of the false alarm rate estimated on off-source segments)

False alarm rate (FAR) : how often a random noise fluctuation mimics a true signal.

Stacking procedure

Set of denoised TF-maps outputted from autoencoders :

Compute global mean value and global standard deviation across all denoised TF-maps :

Threshold computation (Theta) :

Compute the accumulated "background" A^b and "signals" A^s, by applying masks to the corresponding TF-maps, as the sum of all "signal" pixels on one hand and the sum of all "background" pixels on the other hand :

Compute the average "background" :

Compute the combined "stacked" TF-map with accumulated "signal" and average "background":

$$= \{\tilde{y}^1, \tilde{y}^2, \dots, \tilde{y}^L\} \qquad K = L \times M \times N$$
$$\mu = \frac{1}{K} \sum_{y \in \mathcal{P}} y$$
$$\sigma = \sqrt{\frac{1}{K} \sum_{y \in \mathcal{P}} (y - \mu)^2}$$

Y

 $\theta = \mu + \alpha \cdot \sigma$

$$\begin{split} A^{b}(t,f) &= \sum_{k=1}^{L} \tilde{y}^{k}(t,f) \cdot \mathbb{I}\left[\tilde{y}^{k}(t,f) \leq \theta\right] \\ A^{s}(t,f) &= \sum_{k=1}^{L} \tilde{y}^{k}(t,f) \cdot \mathbb{I}\left[\tilde{y}^{k}(t,f) > \theta\right] \end{split}$$

 $\overline{B(t,f)} = \frac{A^b(t,f)}{L}$

 $\mathbf{Y}(t,f) = A^s(t,f) + \overline{B}(t,f)$

Results - Background and injection analysis

 $h(t) = h_0 \sin(2\pi f_0 t) e^{-t/\tau} \begin{cases} h_0 = 1.0 \times 10^{-20} \\ \tau = 0.2 \end{cases}$

		10 ⁻²						threshold : 0.77)	
Parameters							- 5 windows (P_{λ} - 20 windows (P_{λ}	threshold : 1.50)	
TF-maps		10 ⁻³						threshold : 2.32) P_{λ} threshold : 2.48	
Duration	2s					_		P _λ threshold : 2.58	5)
Frequency range	$22-2000\mathrm{Hz}$	10-4					- 5×10 ⁻⁸ Hz	1	
Time-frequency resolution	$[1.0~{ m s} imes1.0~{ m Hz}-0.5~{ m s} imes2.0~{ m Hz}]$	10			$\langle \rangle$				
	$[0.25~{ m s} imes 4.0~{ m Hz} - 0.125~{ m s} imes 8.0~{ m Hz}]$	-1)				X			
	$[0.0625 \text{ s} \times 16.0 \text{ Hz}]$	° 10-5	_						
PSD estimation	full-median	FAR			$\langle \rangle$				
GPS Start Time	1261870018				\sim				
GPS End Time	1261877018	10 ⁻⁶							
Run	O3		~				N N		
Detectors	H1, L1				~	2			
	· · · ·	- 10 ⁻⁷		\leq				$ \left \right $	
					7	<u> </u>			
		10 ⁻⁸	0.0	0.5	1.0	1.5	2.0	2.5	3.0
					P_{λ}				

Results - injection analysis

Results - FAR loudest statistic vs Number of windows

Both injections and background loudest trigger's detection statistic evolve <u>logarithmically</u> as a function of the number of windows, but which one evolves the fastest ?

(Loudest P_lambda value as a function of the number of windows, and magnetarF stacked trigger detection statistic for alpha = 500) with a logarithmic function with a linear scaling and an offset)

Ratio =
$$\frac{a_{\text{injections}}}{a_{\text{background}}} = \frac{0.87}{0.25} \approx 3.44$$

Results - injection analysis

• Denoising using autoencoders allows to effectively reduce background pixels while keeping excess of power from potential GW signals

• Stacking can help identifying repetitive and faint GW emission from magnetars

• The more burst there is in a storm, the more we are likely to identify a signal

Thank you for your attention !