An exploration of the impact of waveform systematics for LISA massive black hole binaries

Sylvain Marsat (L2IT, Toulouse)

Assemblée du GdR Ondes Gravitationnelles - Luminy, Marseille

Sylvain Marsat

2024-10-15

Massive black hole binaries for LISA

MBHBs cardinal sources for LISA, SNRs of thousands !

Waveform errors (systematics) crucial for:

- golden events for EM counterparts
- population inference and cosmology

In the literature:

- a lot of recent activity in LVK/LISA
- similarity 3G/LISA •

[Toubiana&al 2023] [Pitte&al 2023] [Jan&al 2024] [Dhani&al 2024] [Kapil&al 2024]

LISA response and sky localization of MBHBs

Response:

Time and frequency-dependency Time: motion of LISA on its orbit **Frequency**: inter-spacecraft delays

'Pattern function' localization:

Without these effects TDIA, TDIE become 2 LIGO-like channels

The size of the main mode in the sky is driven by the pattern function response F_+, F_{\times} for 2 channels, with higher harmonics: amplitude/phase of $h_{\ell m}$ important

Multimodality patterns:

Degeneracy breaking:

- motion of LISA: weak for short high-mass signals
- high-frequency effects in the response: only at high frequencies
 - 'Pattern function' response is a source of information at \bullet high mass, depends on $h_{\ell m}$ amplitudes
 - Multimodality broken by subdominant effects in response (motion, high-f)
 - LISA sky localization at high mass: weak effects, high SNR

Waveform systematics and parameter estimation

Mismatch (unfaithfulness):

Mismatch, optimization over time/phase/polarization:

$$MM = 1 - \max_{t,\varphi,\psi,\dots} \frac{(h_m | h_{tr})}{\sqrt{(h_m | h_m)} \sqrt{(h_{tr} | h_{tr})}}$$

- Computed locally [fast]
- SNR-independent
- Used in waveform modelling
- Different versions: single-detector optimized over sky, combining h_+, h_\times

Systematic biases:

Ignoring the effect of the noise, bias given by the **best-fit** parameters on the model signal manifold: $\Delta \theta = \theta_{\rm bf} - \theta_{\rm tr}$

the **bias** is SNR-independent (optimization problem), but requires to explore the full parameter space [**expensive**]
the statistical errors scale with SNR: significant bias ?

Indistinguishability criterion:

[Lindblom&al 2008] [Chatziioannou&al 2019]

$$\ln \mathcal{L}(\theta) = -\frac{1}{2}(h(\theta) - h_{\rm tr}|h(\theta) - h_{\rm tr})$$

$$\ln \mathcal{L}(\theta_{\rm bf}) \sim \ln \mathcal{L}(\theta_{1-\sigma}) \quad \mathrm{MM} < \frac{D}{2} \frac{1}{\mathrm{SNR}^2}$$

- Constant *D*: dimension,
 - approximate
- Scaling SNR² robust

Goals: - Assess waveform models systematics for LISA with full PE - Compare with simpler methods :he

ension, oust

Injections:

Aligned spin case: mismatch with NR ~ $10^{-4} - 10^{-2}$ Precessing spin case: mismatch with NR ~ $10^{-3} - 10^{-1}$

Analysis settings: waveform models

Tempering the analysis:

Start at large z / small SNR, then increase SNR gradually

Equivalent to a tempering scheme with non-0 base temperature

Additional parallel tempering with 4 temps.

SNRs and mismatches

• **Template:** PhenomXHM

• Injection: NRHybSur3dq8 { $M = 10^5 M_{\odot}, q = 4, \chi_1 = 0.5, \chi_2 = 0.3$ }

• **Template:** PhenomXHM

• Injection: NRHybSur3dq8 { $M = 10^5 M_{\odot}, q = 4, \chi_1 = 0.5, \chi_2 = 0.3$ }

The good:

- converges on the true parameters
- mild bias at z = 1, SNR = 317

• **Template:** PhenomXHM

• **Template:** PhenomXHM

• **Template:** PhenomXHM

• **Template:** PhenomXHM

+3.33

• Injection: NRHybSur3dq8 { $M = 10^6 M_{\odot}$, $q = 4, \chi_1 = 0.5, \chi_2 = 0.3$ }

 θ

Statistical significance of biases: intrinsic parameters

Bias in chirp mass:

Bias in longitude (on corrected skymode):

Linking mismatches and biases

From indistinguishability criterion:

From bias measured in PE:

$$\epsilon_b = \frac{\Delta}{\sigma(e)}$$

$$\epsilon_m = \sqrt{\frac{2}{D}} \mathrm{SNR}^2 \mathrm{MM}$$

 $\mathrm{MM} < \frac{D}{2} \frac{1}{\mathrm{SNR}^2}$

 $\epsilon_m > 1$ means that the mismatch is large enough to indicate a significant bias

 $\epsilon_b > 1$ indicates means that PE measures a significant bias

easured in PE: $\Delta \theta$ $\overline{(\theta)}$

Relation between mismatch and bias unclear

 $\epsilon_b, \ \epsilon_m \propto \mathrm{SNR}$

Both

Example Parameter estimation with systematics III: Cutler-Vallisneri bias

Results

- Unsurprisingly, strong biases for loud LISA signals at z = 1
- Strong dependence on mass: at z = 1, low-mass much better than high mass
- Noticeable improvement for most recent waveform models
- Degeneracies in the sky position can lead to the wrong sky mode to be selected
- Indications that the distinguishability criterion does not apply well; Cutler-Vallisneri bias esimates can work but do not capture multimodality

Outlook

- Compare to LVK/3G studies
- Focus on high masses: NR waveforms long enough ?
- More realistic waveforms: precession (and eccentricity)

[Preliminary]

Fitting factors in parameter space

Waveform systematics and parameter estimation

Different questions for systematics:

Are current waveform models accurate enough for LISA ? How accurate do they need to be ?

Systematic biases:

Ignoring the effect of the noise, bias given by the **best-fit** parameters on the model signal manifold: $\Delta \theta = \theta_{\rm bf} - \theta_{\rm tr}$

• the **bias** is SNR-independent (optimization problem), but requires to explore the full parameter space [**expensive**] • the statistical errors scale with SNR

- Are waveforms good enough for prospective science ? Are e.g. Fisher errors accurate with approx. waveforms ? More forgiving.
- Will the biases be statistically significant ?
- Will biases affect hierarchical analyses (population, cosmology) ? How will they stack (coherent/incoherent) ?
- Will residuals affect the rest of the global fit ?
- How will tests of GR be affected ?
- Can we mitigate the biases ? Computational aspects for lowlatency ?

Waveform systematics and parameter estimation

Indistinguishability criterion:

$$\ln \mathcal{L}(\theta) = -\frac{1}{2}(h(\theta) - h_{\rm tr}|h(\theta) - h_{\rm tr})$$

[Lindblom&al 2008] [Chatziioannou&al 2019] [Toubiana-Gair 2024]

 $\ln \mathcal{L}(\theta_{\rm bf}) \sim \ln \mathcal{L}(\theta_{1-\sigma})$

$$\mathrm{MM} < \frac{D}{2} \frac{1}{\mathrm{SNR}^2}$$

- Constant *D*: dimension, approximate
- Scaling SNR² robust

Mismatch (unfaithfulness):

Mismatch, optimization over time/phase/polarization:

$$MM = 1 - \max_{t,\varphi,\psi,\dots} \frac{(h_m | h_{tr})}{\sqrt{(h_m | h_m)} \sqrt{(h_{tr} | h_{tr})}}$$

- Computed locally [fast]
- SNR-independent
- Different versions: single-detector optimized over sky, combining h_+, h_\times

Linearized biases (Cutler-Vallisneri): [Flanagan-Hughe

[Flanagan-Hughes 1997] [Cutler-Vallisneri 2007]

In the linear signal approximation, estimation of bias [**fast**]:

$$F_{ij} = (\partial_i h | \partial_j h)$$
$$\Delta \theta_i = F_{ij}^{-1} (\partial_j h | \delta h)$$

Can we assess biases with efficient tools ?

The LISA instrumental response

The low-frequency response

The full response

Pattern function response with HM:

LISA response and multimodality in the sky

Multimodality pattern:

Degeneracy breaking:

Fisher localization: impact of waveform model

Analysis settings:	10^{4}
 Fisher matrix localization: sky area of the main mode of the posterior 	10^{3} -
 Randomization over 1000 orientations, mass ratios, spins 	10^{2}
 Change the waveform model: PhenomHM, PhenomXHM, SEOBNRv5HM_ROM 	deg^{2}
	00 ⁰⁰ 00 ⁰ 00
	10^{-1}
	10^{-2}
	10^{-3}
	10^{-4} - 10
• In the high-mass range (HM important), older	

- waveform models can be inaccurate also for prospective PE
- Modern waveform models agree well for prospective

Sky multimodalities for LISA MBHBs

- **Bayesian PE** required to explore multimodal posteriors
- Simulation of 90yrs catalogs
- Custom proposals for degeneracies

Astrophysical models [Barausse 2012]: • Heavy seeds - delay (Q3d) • Heavy seeds - no delay (Q3nd) • PopIII seeds - delay (Pop3) Q3nd Pop3 10 (90 yrs) (90 yrs) 3000 8 1000 - 500 \$ -200 NS - 50 - 20 10 10^{6} 10^{6} 10^{8} 10^{8} 10^{4} $M_{\rm source} (M_{\odot})$ $M_{\rm source} (M_{\odot})$ Multimodality in the sky Applications: EM counterparts and cosmological inference present, but rare for [Mangiagli&al 2022, Mangiagli&al 2023] counterpart candidates

post-merger

Fisher localization: impact of response approximation

Analysis settings:

- Fisher matrix localization: sky area of the main mode of the posterior
- Randomization over 1000 orientations, mass ratios, \bullet spins
- Change the response model: keep or ignore the \bullet motion and high-f effects
 - 'Pattern function' response is the main source of main-mode localization at high mass, from subdominant HM
 - Multimodality broken in turn by subdominant effects in response (motion, high-f)

$M_z = 10^6 M_{\odot}$	
z	SNR
1.0	1907
1.76	954
3.11	477
5.59	238
10.21	119
18.97	59

Example Parameter estimation with systematics III: TD signals and residuals

Example Parameter estimation with systematics III: TD signals and residuals

Biases caused by missing higher harmonics

Biases caused by missing higher harmonics

Estimating the bias is an optimization problem

- Cutler Vallisneri is one step of Newton's gradient descent, approximating the Hessian with the Fisher matrix
- Are there better optimization algorithms ? (e.g. simplex method)
- One simple idea is to repeat CV as iterated gradient descent

[Sophia Yi &al, in prep.]

[Preliminary]

$$\Delta \theta = H^{-1} \cdot \nabla \ln \mathcal{L}$$
$$H_{ij} = \partial_i \partial_j \ln \mathcal{L} \sim (\partial_i h | \partial_j h)$$

There should be better bias estimators than CV - robustness ?

Mismatches of NR surrogate

Statistical significance of biases: intrinsic parameters

Statistical significance of biases: extrinsic parameters

Pre-merger analysis: likelihood with decomposed response

Likelihood:
$$\ln \mathcal{L}(d|\theta) = -\sum_{\text{channels}} \frac{1}{2}(h(\theta) - d|h(\theta) - d)$$

[Marsat&al 2020]

Discussion: thoughts on biases

- Should waveform modellers evaluate parameter biases along mismatches ?
- waveform uncertainty
- detected signals
- connected through gradient descent to optimum / no significant biases
- in the inspiral, not much at merger

• Estimating biases is an SNR-independent deterministic optimization problem: best method ?

• The stochastic view on biases: introduce stochastic waveform errors, marginalize over

• The deterministic view on biases: model the bias as a parameter map (how quickly is it varying with parameters ?), for instance with dedicated NR injections in the vicinity of

• Different goals for waveform errors: evaluate width of posterior / likelihood surface simply

• Tests of GR: are modified-GR effects orthogonal to waveform errors ? Orthogonality better

