Huitième Assemblée Générale du GdR Ondes Gravitationnelles @Aix-Marseille University Oct 15, 2024

Probing Cosmic Expansion with Gravitational Wave-Large Scale Structure Correlations

Sayantani Bera University of the Balearic Islands, Spain

Motivation

AB SERVINA												
2015 - 2016	202		02		-	10	-	1			03a+0	
	a. 4	ii. 17	: .:	11 7.6		1		i i		5 • 3 •	2	8
63	36	21	49 GWT0004	18 CHITTOLOG	BO	56 CHATCHER	53 CHATTERIN	= 2.8 OVERNORT	60 ENV/70818	65 CWINDRED	105 Gwmo-ol opsm	41 CW190400, 199800
10 AL	85 . N			1.1		43 pH	20 U		39 28		2 . :	;
37 CW/H0402	56 CW190413_052954	76 CWTRD#3.154308	70	3.2 CHATHER	175 CW104-3E 190642	69 CW100000.005404	35 cwitecs2_180714	52 CHARGES 205428	65	59 CW100577.056101	101 CW/900598_953044	156 Civr90520
			: :	35 25	54 . A		12 84	10 13	A7 21	15 7.8	12 64	
71 GW190521.074889	56 CHANGONET CHOOSES		87 GW/HOG20.010421	56	90 CW190701, 201306	99 GW190706, 2236-1	19 	30 GWTROTOR_250487	55 CW100770.20054	20 CHANGE 20	17 CHARGE THAT 28	64
				23 26		24		35 26	· - 24	10 E		
20 CW190728, 064549	67 CW19078, 140834	62 owneeds.cozner	76 CM180805_28187	26 CWTHORM	55 CW190628.062405	33 CM/100628_065009	76 CW190800_352807	57 CW/96085_292762	66	11	13 CW190504_075846	35 GW100025.212545
49		12 78	12 79	n 77		29 59	12 85	51 JA	n 47	27	12 112	25 B
ଗ 	102 GW190928-05149	19 ownesso.sssea	19 CW19103_002449	18 CWMPOLISED	107 CW19109.010711	34 owners.ormss	20 CW19502, TE250	76 CW19727.090221	17 CW19129L154029	45 GW190204-310529	19 CW19204_77524	41 CW/96296 223092
10 . 77	a ii		-		30 20		4 n	54 29	10 73			ж
19 cwneze, 20258	32 CW195219.143220	76 CW195222_053537	82 CW190200_180-458	11 GW200008_863+26	61 CW200112, 00838	7.2 CW200115_042309	71 GW200128, 022011	60 CW20003.045458	17 GW200302.84303	63 CW300308_73017	61 CM2000000_222007	60 58/200000.0404-02
24 2.8	9 . D	÷		29 28	40	19 14	34	24 15		34 20	12 7.8	34 . 14
27 CW20000 040254	78 CW2001%_220804	62 (W000278,094405	141 CM200020 04909	64 GW300220,124850	69 0000000-00004	32 CW200225.040421	56 GW206302,01881	42 CW200306, 091794	47 CHOODEDH_TTRES	59 CW20030L75663	20	53 CW200182.00103

Experimental de la construcción de Nancemente estado de la construcción de la consequencia de la construcción de la consequencia de la construcción de la consequencia de la construcción de la construcció

Credit: Carl Knox (OzGrav, Swinburne University of Technology)

Distance measurement from Gravitational Waves

$$h(t) = \frac{M_z^{5/3} f(t)^{2/3}}{d_L} F(\iota, \theta) \cos(\Phi(t))$$

 M_z : Redshifted chirp mass ι : inclination angle $\Phi(t)$: Accumulated phase

Measuring Ho with "standard sirens"

 Luminosity distance - redshift curve depends on the value of the Hubble parameter Ho

 $d_L \sim cz/H_0$ low redshift

- Luminosity distance GW observation
- Redshift Electromagnetic counterpart

Thus an independent estimate of H₀ is possible

Image: https://www.ligo.org

- The only GW event detected along with a GRB: GRB 170817A
- Luminosity distance ~ 40 Mpc
- Host identification : NGC 4993

For the majority of the detected events, host identification is not possible

Constraints on Hubble constant from GW170817

Measurement of H₀ with ~ 15% accuracy at 68.3% confidence

Inferring Housing population statistics

Credit : Leo Singer

- Map an astrophysically motivated source mass distribution to the detector frame thus extract the redshift distribution (icarogw)
 Abbott et al. (2023)
- Consider galaxies (with known redshifts) in the localization region as potential hosts and compute H₀ distribution for each potential host (gwcosmo)
 Schutz(1986)

Constraints from GWTC-3

Method 2 : Galaxy Catalogue technique (gwcosmo)

Abbott et al. (2023)

An alternative approach: The Large Scale Structures

Image: ESA

The Millennium simulation (z=0)

Image: SDSS

Measures of clustering: Density Contrast and cross-correlation

$$\delta(\mathbf{x}) \sim \frac{\rho(\mathbf{x})}{\bar{\rho}} - 1$$
$$\xi(\mathbf{x}, \mathbf{x}') \sim \langle \delta(\mathbf{x}) \delta(\mathbf{x}')$$

 $w(\theta, \theta') \sim \langle \delta(\theta) \delta(\theta') \rangle$

Clustering ~ N/N -1 L : Clustering length

Measures of clustering: Density Contrast and cross-correlation

$$\delta(\mathbf{x}) \sim \frac{\rho(\mathbf{x})}{\bar{\rho}} - 1$$

$$\xi(\mathbf{x}, \mathbf{x}') \sim \langle \delta(\mathbf{x}) \delta(\mathbf{x}') \rangle$$

Angular cross-correlation

 $w(\theta, \theta') \sim \langle \delta(\theta) \delta(\theta') \rangle$

Jain, Scranton, Sheth (2003)

Inferring redshift from LSS distribution

Red : BBH sources at a fixed unknown redshift

Blue: Galaxy distribution at different redshift slices

The BBH distribution is a part of the same large scale structure as the galaxies.

Cross-correlation of the two distributions provide a redshift estimate for the unknown BBH population

A realistic Simulation of the catalogs

- □ The true locations of the GW events are sampled from the dark matter distribution of a cosmological N-body simulation (Big-MultiDark Planck)
- □ Massive dark matter halos act as galaxy markers in our simulation.
- Realistic simulation of the GW events and parameter estimations run using BILBY: A free Bayesian Inference library for GW (Ashton et al. 2019)
- 3 detector network (Advanced Ligo L +H + Advanced Virgo): combined SNR threshold of 8

Modelling the cross-correlation

Assume power law three-dimensional cross-correlation function:

$$\xi_{\rm gw,g}(r) = \left[\frac{r}{r_0}\right]^{-\gamma}$$

$$w(\leq \theta_{\max}, z, z') \propto \exp\left[-\frac{(z-z')^2}{2\sigma_z^2}\right]$$

Hubble-Lemaitre diagram : 500 events

SB, Rana, More, Bose (2020)

An event-by-event analysis

$$p(H_0 \mid \boldsymbol{d}_{ ext{strain}}, \boldsymbol{d}_g^{ ext{obs}}) = \int p(H_0, \boldsymbol{d}_{ ext{gw}} \mid \boldsymbol{d}_{ ext{strain}}, \boldsymbol{d}_g^{ ext{obs}}) d\boldsymbol{d}_{ ext{gw}}$$
 $\propto \int \mathcal{L}(\boldsymbol{d}_{ ext{strain}}, \boldsymbol{d}_{ ext{g}}^{ ext{obs}} \mid H_0, \boldsymbol{d}_{ ext{gw}}) P(H_0, \boldsymbol{d}_{ ext{gw}}) d\boldsymbol{d}_{ ext{gw}}$

For each GW event, the posterior is obtained by marginalizing over localization uncertainties **d**gw

Assuming independent probability distributions, the single-event posteriors can be combined as :

$$egin{aligned} P(H_0 \mid \{oldsymbol{d}_{ ext{strain}}\}, \{oldsymbol{d}_g^{ ext{obs}}\}) & \propto P(H_0) \prod_i \mathcal{L}(oldsymbol{d}_{ ext{strain}_i}, oldsymbol{d}_{g_i}^{ ext{obs}} \mid H_0) \ & \propto P(H_0) \prod_i \int \mathcal{L}(oldsymbol{d}_{ ext{strain}_i}, oldsymbol{d}_{g_i}^{ ext{obs}} \mid H_0, oldsymbol{d}_{ ext{gw}}) P(oldsymbol{d}_{ ext{gw}}) doldsymbol{d}_{ ext{gw}}) \end{aligned}$$

-Set 1,2,3 : Different realizations of randomly generated events upto 1000 Mpc, SNR>12

-Dependence on sample size and correlation scale

-Injected value of H₀ = 67 km/s/Mpc

Ghosh, More, SB, Bose (arXiv: 2312.16305)

Take-Home Message

Incorporating information from large-scale structure correlations is crucial to a more robust inference of the background cosmology

Take-Home Message

Incorporating information from large-scale structure correlations is crucial to a more robust inference of the background cosmology

- With 3G gravitational wave detectors such as Einstein Telescope, Cosmic Explorer and space based LISA, the future looks promising.
- Euclid will map the large-scale structures in the universe very accurately up to high redshifts.

ACKNOWLEDGMENTS

This work was supported by the Universitat de les Illes Balears (UIB); the Spanish Agencia Estatal de Investigación grants PID2022-138626NB-IOO, RED2022-134204-E, RED2022-134411-T, funded by MICIU/AEI/10.13039/501100011033 and the ERDF/EU; and the Comunitat Autònoma de les Illes Balears through the Servei de Recerca i Desenvolupament and the Conselleria d'Educació i Universitats with funds from the Tourist Stay Tax Law (PDR2020/11

- ITS2017-006), from the European Union - NextGenerationEU/PRTR-C17.I1 (SINCO2022/6719) and from the European Union - European Regional Development Fund (ERDF) (SINCO2022/18146).

NISTERIO E CIENCIA, INNOVACIÓN UNIVERSIDADES

AGENCIA ESTATAL DE INVESTIGACIÓN

Cofinanciado por la Unión Europea

FONDO EUROPEO DE DESARROLLO REGIONAL "Una manera de hacer Europa"

Conselleria d'Economia, Hisenda i Innovació

Extra Slides

Waveform simulation: inputs

Detectors	Sensitivity	Injection Parameters			
Detectors	Sensitivity	Injection ParamParametersDistribution $m_{1,2}$ uniform $\chi_{1,2}$ uniform ϕ_{12} , ϕ_{jl} uniform $\cos \theta_{1,2}$, $\cos \iota$ uniform ψ , ϕ_c Fixed	Limits		
Livingston	Advanced LIGO	$m_{1,2}$	uniform	$[10, 35] M_{\odot}$	
Hanford	Advanced LIGO	$\chi_{1,2}$ ϕ_{12}, ϕ_{il}	uniform	[0, 0.8] $[0, 2\pi)$	
		$\cos \theta_{1,2}$, $\cos \iota$	uniform	[-1, 1)	
Virgo	Advanced Virgo	$\psi \;, \phi_{ m c}$	Fixed	0	

<u>Detection criteria</u>: At least two of the detectors SNR above a threshold value of 5 each, the third an SNR greater than 2.5, and network SNR of greater than 8.

Hubble-Lemaitre diagram : 5000 events

Black solid line: the true value of H_0 in the simulation Dashed lines: 90 percent credible interval

Redshift from angular cross-correlation

- 5000 BBH mergers divided into 6 bins in the inferred luminosity distances
- The mock galaxies are divided into 20 redshift bins
- Red points are the measured cross-correlations with error bars, peaking at the correct redshift
- The injected value of H₀ = 70 km/s/Mpc gives an average redshift of the GW sources in each bin (black vertical line)

Hubble-Lemaitre diagram : 50 events

Constraints from the three samples

Constraints on H_0								
No. of GW events	Max $d_{\rm L}$ (Mpc)	Injected H_0 (km s ⁻¹ Mpc ⁻¹)	$\begin{array}{c} \text{Constraints on } H_0 \\ (\text{km s}^{-1} \text{ Mpc}^{-1}) \end{array}$					
5100	1400	70	$70.22^{+1.09}_{-1.18}$					
500	900	70	$70.26^{+1.47}_{-1.40}$					
50	900	70	$72.24_{-6.05}^{+5.98}$					

The error bars signify 90% credible interval around the the median of H0 posterior

Angular Cross-correlation Estimator

We count the number of galaxy-BBH pairs which have an angular separation θ_{max} or less in the actual catalog and in a randomly distributed catalog.

Angular cross-correlation estimator

$$w(\leq \theta_{\max}) = \frac{n_{\mathrm{D}_1\mathrm{D}_2}(\leq \theta_{\max})}{n_{\mathrm{R}_1\mathrm{R}_2}(\leq \theta_{\max})} - 1$$

D₁, D₂: Data catalogs R₁, R₂: Random catalogs