Gravitational wave signal of protoneutron star convection : a probe into PNS dynamo and magnetar formation

- **Raphaël Raynaud**, Gauri Patti Pablo Cerda-Duran, Jérôme Guilet
- Collaborators: Paul Barrère, Matteo Bugli, Alexis Reboul-Salze
- Huitième Assemblée Générale du GdR Ondes Gravitationnelles
 - Marseille 15/10/2024

VNIVERSITAT e València

A complementary approach: CCSN models and PNS models

CCSN simulations

 Magnetorotational explosions & long GRBs

Next talk by Matteo Bugli

- Nucleosynthesis
- Multi-messenger observables \bullet

3D-MHD PNS models

Study magnetar formation

- Fine characterisation of dynamo processes and large scale field generation
- Extensive parameter studies
- Derivation of physics informed scaling laws

10 s

GW PNS convection signal ?

3D modelling with the MagIC code

Input:

- **Temperature profile**
- **Density profile**

Transport coefficients:

- Kinematic viscosity v
- Thermal diffusivity κ
- Magnetic diffusivity n

github.com/magic-sph/magic

Boundary conditions:

- Mechanical: stress-free
- Thermal: fixed entropy flux
- Magnetic: perfect conductor (B//)

Raphaël Raynaud (UPCité / CEA)

Hypothesis:

- **Spherical geometry**
- **Adiabatic stratification**
- Low Mach convection
- 2nd order diffusion approximation for the neutrino transport
- Electrical conductivity of degenerate, relativistic electrons

Orders of magnitude $\Phi_o \sim 10^{52} \, \mathrm{erg/s}$ $r_o \sim 25 \,\mathrm{km}$ $T_o \sim 10^{11} \,\mathrm{K}$ $arrho_o\sim 10^{13}\,{
m g/cm^3}$ $\nu_o\sim 10^{10}\,{\rm cm}^2/{\rm s}$ $\begin{bmatrix} \kappa_o \sim 10^{12} \, \mathrm{cm}^2 / \mathrm{s} \\ \eta_o \sim 10^{-3} \, \mathrm{cm}^2 / \mathrm{s} \end{bmatrix}$

Protoneutron star structure

Raphaël Raynaud (UPCité / CEA)

PNS convective dynamos

Raphaël Raynaud (UPCité / CEA)

AG GdR OG - 15/10/2024

5/15

GW counterpart of PNS convective dynamos

P = 175 ms

~ " $\alpha \Omega$ " dynamo

$$\frac{E_B}{E_{\rm kin}} \lesssim 1$$

Raphaël Raynaud (UPCité / CEA)

P = 2.1 ms

Strong field dynamo

$$\frac{E_B}{E_{\rm kin}} \propto \left(\frac{U}{\Omega d}\right)^{-1} \equiv Ro^{-1} \ge$$

 $B_{\rm dip} \sim 10^{15} \,{
m G}$ $B_{\rm tor} \sim 10^{16} \,{
m G}$

Amplitude scaling

Raphaël Raynaud (UPCité / CEA)

Frequency scaling: slow rotation

Raphaël Raynaud (UPCité / CEA)

 $J_{\rm max} \propto f_{\rm turn} \equiv u_{\rm rms}/d$

Frequency scaling: fast rotation

Raphaël Raynaud (UPCité / CEA)

Inertial modes

Jpeaks Jrot

Strong field dynamo growth

Raphaël Raynaud (UPCité / CEA)

AG GdR OG - 15/10/2024

 $f_A^2/f_{\rm rot}$ [Hz]

Detectability ?

Hypotheses

- From the 3D models
 - Self-similarity of the PSD
 - Frequency & amplitude scaling relations
- From the 1D model
 - PNS evolution from 0.2 s to 7 s
- Angular momentum conservation $\implies \Omega(t)$
- Asymptotic regimes :
 - Slow rotation ($Ro \gg 1$)
 - Fast rotation ($Ro \ll 1$)

Raphaël Raynaud (UPCité / CEA)

Preliminary proof of concept

Raphaël Raynaud (UPCité / CEA)

Rescaled spectra

Slow rotation

Raphaël Raynaud (UPCité / CEA)

Fast rotation

SNR estimates with current and 3rd gen. Detectors

Raphaël Raynaud (UPCité / CEA)

Conclusion

Slow rotation $Ro \gg 1$

- Broad spectrum
- $f_{\rm max} \propto f_{\rm turn}$
- Weak impact of magnetic field
- SNR ~ O(0.1) @ 10 kpc with ET

Fast rotation $Ro \ll 1$

- $h_{\rm rms}$ strongly increases
- Complex spectra with inertial modes
- Possibly low frequency, strong field dynamo signature
- SNR ~ O(10) @ 10 kpc with ET

Raphaël Raynaud (UPCité / CEA)

Perspectives

- Coupling with a stable zone to study the excitation of g-modes by turbulent convection
- Characterization of the different PNS dynamo scenarios

References Raynaud+20,21

Dynamo scenarios: Barrère+22,23,24 (submitted) Reboul-Salze+21,22

Appendix

$$[d] = r_{o} - r_{i}, \quad [t] = d^{2}/\nu_{o}, \quad [S] = d \left. \partial S / \partial r \right|_{r_{o}}, \quad [p] = \Omega \varrho_{o} \nu_{o}, \quad [B] = \sqrt{\Omega \varrho_{o} \mu_{0} \eta_{o}}$$

 $\nabla \cdot \mathbf{B} = 0$

$$0 = \nabla \cdot (\tilde{\varrho} \mathbf{u})$$

Braginsky+95 Lantz+99

Raphaël Raynaud (UPCité / CEA)

AG GdR OG - 15/10/2024

16/15