ROXAS: a pseudospectral evolution code based on primitive variables dedicated to isolated neutron stars

Gaël SERVIGNAT servignat@apc.in2p3.fr

APC - work carried in LUTh arxiv:2212.10853 + code paper soon on arXiv

Assemblée Générale du GdR Ondes Gravitationnelles October 15, 2024

- 2 Conservative vs primitive variables
- 3 Application to numerical simulations: isolated neutron star oscillations
- 4 Conclusion and ongoing work

2/25

• Core collapse supernovae and binary merger simulations in General Relativity (GR) have gone under tremendous progress during the last \sim 20 years

э

- Core collapse supernovae and binary merger simulations in General Relativity (GR) have gone under tremendous progress during the last ~ 20 years
- Shibata and Uryu: first 3D binary neutron star (NS) merger simulation [Shibata and Uryū, 2000]

э

- Core collapse supernovae and binary merger simulations in General Relativity (GR) have gone under tremendous progress during the last \sim 20 years
- Shibata and Uryu: first 3D binary neutron star (NS) merger simulation [Shibata and Uryū, 2000]
- Valencia formulation [Banyuls et al., 1997]: conservative formulation of GR-hydro equations
- Development of high-resolution shock capturing (HSRC) methods

- Core collapse supernovae and binary merger simulations in General Relativity (GR) have gone under tremendous progress during the last \sim 20 years
- Shibata and Uryu: first 3D binary neutron star (NS) merger simulation [Shibata and Uryū, 2000]
- Valencia formulation [Banyuls et al., 1997]: conservative formulation of GR-hydro equations
- Development of high-resolution shock capturing (HSRC) methods
- Conservative formulation comes with recovery procedures which use iterative algorithm to recover primitive variables from conservative ones: $(D, S_i, \tau) = f(e, p, T, U_i)$.
 - Be source of code failure (non-convergence of iterative algorithms, non-analytical EoS)
 - Computationally consuming (each grid point, each time step)

Goal

Evolve an isolated super/hypermassive NS and extract GW signals + parametric study on properties of matter (varying the equation of state (EoS)).

Code written in C++ , based upon LORENE¹. Steps:

- Newtonian simulations in spherical symmetry.
- Relativistic simulations in spherical symmetry.
- Development of new numerical tools to use multidomain approach with deformed domains.
- Axisymmetric/non-axisymmetric simulations.

Framework 3+1 formulation of GR

Figure: 3+1 foliation in spacelike hypersurfaces

Figure: Illustration of the lapse and the shift

э

Physical variables are called "primitive" variables:

- *e* the energy density, *p* the pressure
- *n_B* the baryon number density
- *m_B* a baryon mass
- $H = \ln\left(\frac{e+p}{m_B n_B}\right)$ the log-enthalpy
- U_i the Eulerian velocity field
- v_i the coordinate velocity field
- c_s the sound speed

1 Introduction

2 Conservative vs primitive variables

3 Application to numerical simulations: isolated neutron star oscillations

4 Conclusion and ongoing work

The variables $D = m_B n_B \Gamma^2$, $S_j = (e + p)\Gamma^2 U_j$ and $\tau = (e + p)\Gamma^2 - p$, with $\Gamma = (1 - U_i U^i)^{-1/2}$ the Lorentz factor, are conserved in the sense that $\mathbf{u} = (D, S_j, \tau)$ obeys an equation that looks like

$$\partial_t \mathbf{u} + \operatorname{div}(F(\mathbf{u})) = \operatorname{source}$$

but the knowledge of e, p, U_i is compulsory to solve Einstein equations to compute the metric. The reference code CoCoNuT [Dimmelmeier et al., 2005] is based upon the conservative formulation of hydrodynamics.

Recovery procedures are needed to recover the primitive variables in multiple steps of CoCoNuT and account for a significant part of the computation:

- Solving for the metric
- Solving for the Riemann problems in each grid cell at each timestep

Full GR equations, using only primitive variables

From the principles of stress-energy and baryon number conservation:

$$\nabla_{\mu}(n_B u^{\mu})=0, \ \nabla_{\mu}T^{\mu\nu}=0,$$

the following holds for a barotropic, non-reactive perfect fluid:

$$\begin{split} \partial_t U_i &= -\sqrt[V^j]{D_j U_j} - D_i N - \frac{N}{\Gamma^2} \left(D_i H \right) + \frac{\Gamma^2 (1 - c_s^2)}{\Gamma^2 - c_s^2 (\Gamma^2 - 1)} U_i U^j D_j H \right) \\ &+ U_j D_i \beta^j + U_i U^j D_j N \\ &+ \frac{N c_s^2}{\Gamma^2 - c_s^2 (\Gamma^2 - 1)} U_i D_j U^j + \frac{N \Gamma^2 (c_s^2 - 1)}{\Gamma^2 - c_s^2 (\Gamma^2 - 1)} U_i U^j U^j K_{jl} \\ \partial_t H &= -\sqrt[V^j]{D_i H} - c_s^2 N \frac{\Gamma^2}{\Gamma^2 - c_s^2 (\Gamma^2 - 1)} \left[U^i U^j K_{ij} - \frac{U^i}{\Gamma^2} D_i H + D_i U^i \right] \end{split}$$

This new set of equations is **covariant** within the 3+1 formalism. e, p, c_s are recovered in a single call to the EoS (no iteration).

9/25

Introduction

- 2 Conservative vs primitive variables
- Opplication to numerical simulations: isolated neutron star oscillations
- 4 Conclusion and ongoing work

ROXAS: Relativistic Oscillations of non-aXisymmetric neutron stArS

- Pseudospectral methods (space) + explicit finite-difference scheme (time).
- xCFC formulation of metric equations (elliptic partial differential equations).
- Rigid rotation.
- GW extracted with quadrupole formula (+ improvements to first PN order).

ROXAS: Relativistic Oscillations of non-aXisymmetric neutron stArS

- Two distinct grids:
 - Metric grid: spherical domains up to spatial infinity.
 - **2** Hydro grid: one nucleus + shells.
- Hydro grid adapted to the surface of the star: deformed domains (*).
- Multi-domain matching (*).
- Filters (*).
- Well-balanced formulation of the hydro equations (**).

(*) these numerical techniques were tested and validated on the scalar wave equation. (**) tested also in the Newtonian framework

A B < A B </p>

12/25

Hydro grid: deformed domains

Figure: Deformed external domain (rotating star).

Gaël SERVIGNAT (LUTH - Meudon)

AG GdR OG, Oct 15, 2024 13 / 25

BU4 model: rigidly rotating polytrope, $f_{\rm rot} = 673\,{\rm Hz}.$ GW extraction with quadrupole formula.

Model	$f_{ m rot} [{ m Hz}]$	$M[M_{\odot}]$	<i>r_e</i> [km]	$^{2}f_{-2}$ [kHz]		Relative difference (%)	
				Cowling	CFC	Cowling	CFC/GR
BU0	0	1.400	11.99	1.881	1.565	0.00	0.83
BU1	347	1.431	12.30	2.259	1.953	0.09	0.56
BU2	487	1.465	12.64	2.364	2.052	0.09	0.10
BU3	590	1.502	13.03	2.443	2.123	0.61	0.24
BU4	673	1.542	13.49	2.473	2.153	0.57	0.09
BU5	740	1.585	14.03	2.480	2.158	0.44	1.44
BU6	793	1.627	14.70	2.477	2.143	0.40	1.82
BU7	831	1.665	15.55	2.396	2.105	1.88	3.94
SLy4	191	1.361	9.34	2.640	2.185	×	3.7

э

Introduction

- 2 Conservative vs primitive variables
- 3 Application to numerical simulations: isolated neutron star oscillations
- 4 Conclusion and ongoing work

Assets:

- Very light code (3D simulations on laptop/office computer).
- Short simulation time.
- No recovery procedure.
- Radius of the star followed by the grid.
- Very good frequency extraction (although CFC).
- Soon to be published/open source (paper soon on arXiv).

- GWs extracted with quadrupole formula. Drawbacks:
 - In practice: no shock treatment.
 - Spectral methods are unforgiving.
 - Only oscillations/post-merger phase.

Outlook:

- Getting rid of CFC (low priority).
- Implement differentially rotating profiles.
- Implement EoS with compositional and temperature dependence.

Thank you!

Figure: Roxas, the eponymous cat.

э

イロト イヨト イヨト

Francesc Banyuls, Jose A. Font, Jose Ma. Ibanez, Jose Ma. Marti, and Juan A. Miralles. Numerical {3 + 1} General Relativistic Hydrodynamics: A Local Characteristic Approach. Astrophysical Journal, 476(1):221–231, February 1997. ISSN 0004-637X, 1538-4357. doi: 10.1086/303604. URL https://iopscience.iop.org/article/10.1086/303604.

- Harald Dimmelmeier, Jérôme Novak, José A. Font, José M. Ibáñez, and Ewald Müller.
 Combining spectral and shock-capturing methods: A new numerical approach for 3D relativistic core collapse simulations. *Phys Rev. D*, 71(6):064023, March 2005. ISSN 1550-7998, 1550-2368. doi: 10.1103/PhysRevD.71.064023. URL https://link.aps.org/doi/10.1103/PhysRevD.71.064023.
- Christian Krüger, Erich Gaertig, and Kostas D. Kokkotas. Oscillations and instabilities of fast and differentially rotating relativistic stars. *Phys. Rev. D*, 81(8):084019, April 2010. ISSN 1550-7998, 1550-2368. doi: 10.1103/PhysRevD.81.084019. URL https://link.aps.org/doi/10.1103/PhysRevD.81.084019.

(4) E > (4) E >

19 / 25

- Christian J. Krüger and Kostas D. Kokkotas. Dynamics of fast rotating neutron stars: An approach in the Hilbert gauge. *Phys. Rev. D*, 102(6):064026, September 2020. ISSN 2470-0010, 2470-0029. doi: 10.1103/PhysRevD.102.064026. URL https://link.aps.org/doi/10.1103/PhysRevD.102.064026.
- Masaru Shibata and Kōji Uryū. Simulation of merging binary neutron stars in full general relativity: Γ =2 case. *Phys Rev. D*, 61(6):064001, March 2000. doi: 10.1103/PhysRevD.61.064001.