Detectability of a phase transition in neutron star matter with third-generation gravitational wave interferometers

Chiranjib Mondal M. Antonelli, F. Gulminelli, M. Mancini, J. Novak & M. Oertel (Caen-Meudon group)

GdR Ondes Gravitationnelle Marseille October 15, 2024

In the context of Neutron Star

In the context of Neutron Star

In the context of Neutron Star

In the context of Neutron Star

Questions one can ask:

In the context of Neutron Star

Questions one can ask:

• Can PT be detected through a GW signal?

In the context of Neutron Star

Questions one can ask:

- Can PT be detected through a GW signal?
- In which conditions it can be detected? Early/Late??

In the context of Neutron Star

Most *et. al.*, PRL 122, 061101 (2019)

Questions one can ask:

- Can PT be detected through a GW signal?
- In which conditions it can be detected? Early/Late??
- What are the signatures in the signal? For overview see e.g. Blacker *et. al.* PRD 102, 123023 (2020).

NS-NS GW signal

Uncertainties in information

Solve Tolman-Oppenheimer-Volkoff (TOV) equations, we can construct the unique M-R or Λ**-M(R) relations.**

NS-NS GW signal

Uncertainties in information

Solve Tolman-Oppenheimer-Volkoff (TOV) equations, we can construct the unique M-R or Λ**-M(R) relations.**

Solve Tolman-Oppenheimer-Volkoff (TOV) equations, we can construct the unique M-R or Λ**-M(R) relations.**

I. Bombaci, conference paper

Solve Tolman-Oppenheimer-Volkoff (TOV) equations, we can construct the unique M-R or Λ**-M(R) relations.**

Solve Tolman-Oppenheimer-Volkoff (TOV) equations, we can construct the unique M-R or Λ**-M(R) relations.**

• The joint tidal
$$
\tilde{\Lambda}
$$
 not Λ_1, Λ_2

Solve Tolman-Oppenheimer-Volkoff (TOV) equations, we can construct the unique M-R or Λ**-M(R) relations.**

- The joint tidal $\tilde{\Lambda}$ not Λ_1, Λ_2
- The chirp mass \mathcal{M}_c not m1*,* m²

NS-NS GW signal

Uncertainties in information

Solve Tolman-Oppenheimer-Volkoff (TOV) equations, we can construct the unique M-R or Λ**-M(R) relations.**

- The joint tidal $\tilde{\Lambda}$ not Λ_1, Λ_2
- The chirp mass \mathcal{M}_c not m₁, m₂
- The GW170817 case.

LVC, PRX 9, 011001 (2019)

NS-NS GW signal

Uncertainties in information

Solve Tolman-Oppenheimer-Volkoff (TOV) equations, we can construct the unique M-R or Λ**-M(R) relations.**

LVC, PRX 9, 011001 (2019)

- The joint tidal $\tilde{\Lambda}$ not Λ_1, Λ_2
- The chirp mass \mathcal{M}_c not m₁, m₂
- The GW170817 case.
- Prospect of many NS-NS in ET with 3G detectors

β-equilibrium at T=0, 1st order PT

β-equilibrium at T=0, 1st order PT

Possibilities: Nucleons, leptons, hyperons, quark matter?

β-equilibrium at T=0, 1st order PT

Possibilities: Nucleons, leptons, hyperons, quark matter?

Glendenning PRD 46, 1274 (1992)

β-equilibrium at T=0, 1st order PT

Possibilities: Nucleons, leptons, hyperons, quark matter? Models with quarks: NJL, Bag, CSS *etc.*

Glendenning PRD 46, 1274 (1992)

Li, Sedrakian and Alford, PRD 101, 063022 (2020)

β-equilibrium at T=0, 1st order PT

Possibilities: Nucleons, leptons, hyperons, quark matter? Models with quarks: NJL, Bag, CSS *etc.*

119 (2020) Li, Sedrakian and Alford, PRD 101, 063022 (2020)

Founding aspects [PRC 97, 025805 (2018)]

Features:

Founding aspects [PRC 97, 025805 (2018)]

Features:

- Flexible functional $e(n_n, n_n)$ able to reproduce existing effective nucleonic models and interpolate between them.
- Expansion in powers of the Fermi momentum or of the density.
- Expansion around saturation: Parameter space = emp. par. \overrightarrow{X} .
- *β*-equilibrium!!!

Founding aspects [PRC 97, 025805 (2018)]

Features:

- Flexible functional $e(n_n, n_n)$ able to reproduce existing effective nucleonic models and interpolate between them.
- Expansion in powers of the Fermi momentum or of the density.
- \bullet Expansion around saturation: Parameter space = emp. par. \overrightarrow{X} .
- *β*-equilibrium!!!
- The energy per particle can be rewritten as,

$$
e(n_n, n_p) \simeq e_{\text{SNM}}(n, 0) + e_{\text{sym}}(n)\delta^2
$$

\n
$$
e_{meta}(n_n, n_p) = KE(n_n, n_p) + \sum_{\alpha \geq 0} \frac{1}{\alpha!} \left(v_{\alpha}^{is} + v_{\alpha}^{iv} \delta^2 \right) x^{\alpha}.
$$

\n
$$
v_{\alpha}^{is(iv)} \equiv f(E_{\text{sat}}, K_{\text{sat}} \cdots J_{\text{sym}}, L_{\text{sym}} \cdots).
$$

Founding aspects [PRC 97, 025805 (2018)]

Features:

- Flexible functional $e(n_n, n_n)$ able to reproduce existing effective nucleonic models and interpolate between them.
- Expansion in powers of the Fermi momentum or of the density.
- Expansion around saturation: Parameter space = emp. par. \overline{X} .
- *β*-equilibrium!!!
- The energy per particle can be rewritten as,

$$
e(n_n, n_p) \simeq e_{\text{SNM}}(n, 0) + e_{\text{sym}}(n)\delta^2
$$

\n
$$
e_{meta}(n_n, n_p) = KE(n_n, n_p) + \sum_{\alpha \geq 0} \frac{1}{\alpha!} \left(v_{\alpha}^{is} + v_{\alpha}^{iv} \delta^2 \right) x^{\alpha}.
$$

\n
$$
v_{\alpha}^{is(iv)} \equiv f(E_{\text{sat}}, K_{\text{sat}} \cdots J_{\text{sym}}, L_{\text{sym}} \cdots).
$$

Constraints in Bayesian studies:

χ-EFT, Finite nuclei, Mmax, GW170817 *etc.* Dinh-Thi *et. al.* 2021, CM *et.al* 2022, 2023.

CSS model in the quark phase

Low density phase: nucleonic meta-modeling

CSS model in the quark phase

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed

CSS model in the quark phase

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed
- Additional parameters: n_t , $\Delta \varepsilon$, c_s^2

CSS model in the quark phase

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed
- Additional parameters: n_t , $\Delta \varepsilon$, c_s^2

CSS model in the quark phase

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed
- Additional parameters: n_t , $\Delta \varepsilon$, c_s^2

CSS model in the quark phase

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed
- Additional parameters: n_t , $\Delta \varepsilon$, c_s^2

CSS model in the quark phase

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed
- Additional parameters: n_t , $\Delta \varepsilon$, c_s^2

CSS model in the quark phase

- Low density phase: nucleonic meta-modeling
- High density phase: constant sound speed
- Additional parameters: n_t , $\Delta \varepsilon$, c_s^2

Observable with uncertainties

Different choices for $q, \mathcal{M}_c, \mathcal{D}_L$ and PT injection models.

Observable with uncertainties

Different choices for $q, \mathcal{M}_c, \mathcal{D}_L$ and PT injection models.

Injection models with PT

Observable with uncertainties

Different choices for $q, \mathcal{M}_c, \mathcal{D}_L$ and PT injection models.

Injection models with PT $\tilde{\Lambda}$ distribution

Observable with uncertainties

Different choices for $q, \mathcal{M}_c, \mathcal{D}_L$ and PT injection models.

Injection models with PT $\tilde{\Lambda}$ distribution

Observable with uncertainties

Different choices for $q, \mathcal{M}_c, \mathcal{D}_L$ and PT injection models.

Λ˜ **distribution**

Observable with uncertainties

Different choices for q, \mathcal{M}_c , \mathcal{D}_L and PT injection models.

Λ˜ **distribution**

Observable with uncertainties

Different choices for q, M_c, \mathcal{D}_L and PT injection models.

- A possible mechanism to detect the signature of 1st order phase transition was proposed.
- Hybrid metamodelling is used in the Bayesian framework.
- We assess the detectability of PT from a single loud event from the inspiral signal.
- We infer the presence of a PT at low densities with $B \approx 100$, upto distance 300 Mpc.
- Analysis based on many events are on the way.