GRANDMA follow-up of LVK campaigns O3, O4 so far, perspectives

Thomas Hussenot-Desenonges, 3rd year PhD at IJCLab

GdR Ondes Gravitationnelles Oct 14 – 15, 2024

Plan

- 1. The GRANDMA collaboration, with improved tools
 - Follow-up strategy for LVK campaigns, results of O3 and O4 so far
 - 3. Preparing analyses for the next Kilonova

Acronyms

- **BBH**: Binary Black Hole
- BNS: Binary Neutron Star
- **DL**: Luminosity Distance
- **EM**: Electromagnetic
- FoV: Field of View
- **GCN**: General Coordinates Network
- GRB: Gamma-Ray Burst
- GW: Gravitational Wave
- KN: Kilonova
- **NSBH:** Neutron Star Black Hole
- **ToO**: Target of Opportunity

Global Rapid Advanced Network Devoted to Multi-messenger Addicts

GRANDMA : Created in 2018, by IJCLab

20 countries - 23 Sites - 35 Telescopes

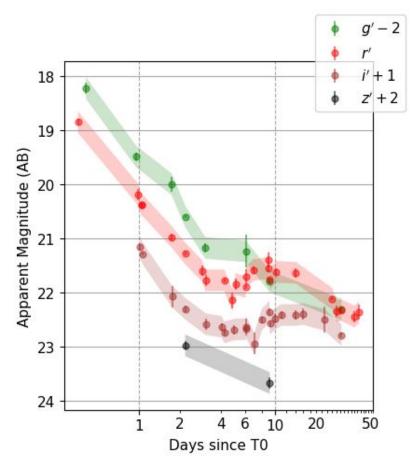
- Wide-fields down to 20 mag
- EM candidates ~ 23 mag in photometry
- 22 mag in spectroscopy

Allocation time on CFHT, SOAR, SALT

GRANDMA's citizen science program : Kilonova-Catcher

More than 130 amateur astronomers

French collaborators in IJCLab, APC, CEA/Irfu, CPPM, OCA, IPHC, IRAP

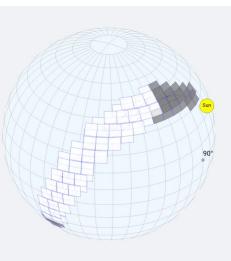

Global Rapid Advanced Network Devoted to Multi-messenger Addicts

Science Topics : Following transient sources:

- GW counterparts: Kilonovae
- GRBs (including SVOM) and high energy transients
- Neutrino-emitting transients

The network allows for well-sampled follow-up in multiple bands

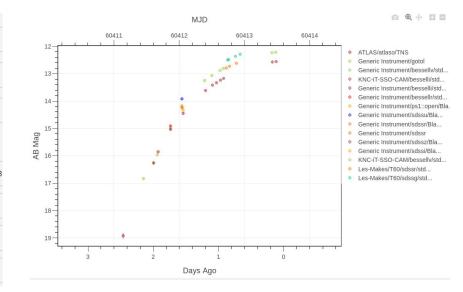
Right: GRB230812B observations (arXiv:2310.14310)



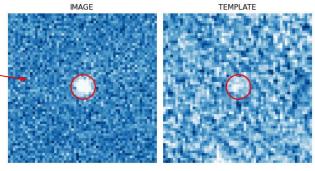
Collaboration-wide Tools : SkyPortal

Collecting the alerts and their skymaps

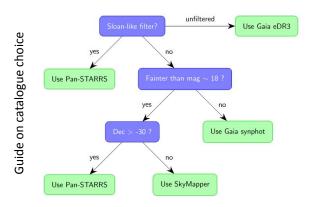
Eiglde to uso


 \rightarrow Generating Observation Plans

Allocation		
Allocation		
Localization		
Skymap: Bilby.multiorder.fits,0 / Crea	ted: 2023-11-	10T16:55:43 792067
Share Data With		
GRANDMA -		
- queue_name *		- Start Date (UT) *
dacacTunuc		
ToO 2024 07 12T01-00-09 602242		2024 07 12 01:00:09
ToO_2024-07-12T01:00:08.693342		2024-07-12 01:00:08
ToO_2024-07-12T01:00:08.693342		2024-07-12 01:00:08
	•	
- filter_strategy *	•	schedule_type *
- filter_strategy *	•	schedule_type *
- filter_strategy * block - Exposure Time [s] *	•	schedule_type * greedy filters *


Centralizing photometry data points in one table

\rightarrow Data visualization helps discussion



Collaboration-wide Tools : STDweb

- Standardized Photometric Analysis pipeline
- \rightarrow Calibration on catalogue
- \rightarrow Transient Detection
- \rightarrow Upperlimit estimations

• Documentation Handbook

SkyPortal Integration

Upload to SkyPortal

IDs: 1794 1795 1827 1828

- Task <u>1794</u> ATLAS24fsk_Freeberg_T32_2024-04-21T09-27-47_V_Stack_3x120sec.fits SkyPortal source: <u>ATLAS24fsk</u>
- MJD 60421.391806 Filter bessellv (vega) Mag 12.02 +/- 0.00 Limit 18.76
- Task <u>1795</u> ATLAS24fsk_Freeberg_T32_2024-04-21T09-35-49_lc_Stack_3x120sec.fits SkyPortal source: <u>ATLAS24fsk</u>
- MJD 60421.397373 Filter besselli (vega) Mag 11.58 +/- 0.00 Limit 17.50
- Task <u>1827</u> ATLAS24fsk_Freeberg_T32_2024-04-22T14-23-01_V_Stack 3x120sec.fits SkyPortal source: <u>ATLAS24fsk</u>
- MJD 60422.596759 Filter bessellv (vega) Mag 12.05 +/- 0.00 Limit 18.22 - Task 1828 - ATLA524fsk_ Freeberg_T32_2024-04-22T14-31-02_lc_Stack_3x120sec.fits SkyPortal source: ATLA524fsk MJD 60422.602396 Filter besselli (vega) Mag 11.57 +/- 0.01 Limit 17.04

Ph	otometry of AT	LAS24fsk	VEGA 🗸			
id	mjd	mag	magerr	limiting_mag	filter	instrument_name
5726	60421.39180556	12.019894	0.003682	18.763007	bessellv	KNC-iT-SSO-CAM
5727	60421.39737269	11.576070	0.004947	17.497591	besselli	KNC-IT-SSO-CAM
5728	60422.59675926	12.045082	0.004253	18.221660	bessellv	KNC-iT-SSO-CAM
5729	60422.60239583	11.570798	0.005227	17.039702	besselli	KNC-iT-SSO-CAM

6

Plan

- 1. The GRANDMA collaboration, with improved tools
- Performed and the second se
 - 3. Preparing analyses for the next Kilonova

Acronyms

- **BBH**: Binary Black Hole
- BNS: Binary Neutron Star
- **DL**: Luminosity Distance
- **EM**: Electromagnetic
- FoV: Field of View
- **GCN**: General Coordinates Network
- GRB: Gamma-Ray Burst
- GW: Gravitational Wave
- KN: Kilonova
- **NSBH**: Neutron Star Black Hole
- **ToO**: Target of Opportunity

GRANDMA Follow-up Strategy

Blind search of the GW skymap

Target of Opportunity follow-up

Follow-up of promising candidates: ZTF (selection with Fink), GCN counterpart candidates

O3 with GRANDMA

O3: 56 significant Detection candidates :

49/56 followed (~1 alert per week). Median start of observations 1.5h post trigger

Average ~200 deg2 covered at ~18 mag

What number of alerts were expected for O4?

		BNS	NSBH	BBH
	nber of public alerts I merger rate uncerta			tv)
(log-norma	i merger rate uncerta			(y)
04	HKLV	$36\substack{+49\\-22}$	6^{+11}_{-5}	$260\substack{+330 \\ -150}$

 \rightarrow ~1 alert per day !

~1 BNS or NSBH /week

https://emfollow.docs.ligo.org/userguide/capabilities.html

O4a with GRANDMA

Criteria for blind search: - BNS or NSBH (expecting EM counterpart)

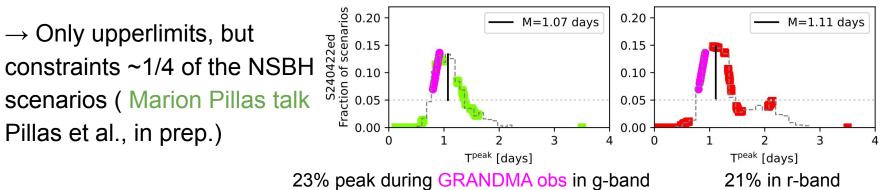
- 90% skymap <200deg2 - DL < 200 Mpc (Kilonova peak mag ~20-21)

81 significant detections : Only 1 passed the criteria

S230627c (NSBH): Targeted galaxy observations (T0+ 0.69 to 0.84 days) + ToO on ZTF candidates (T0+0.44 d)

 \rightarrow Only upperlimits, can be compared against peak of ~1/4 of the NSBH scenarios

Only ToO of candidates for other O4a events: S230529ay (NSBH), S230615az (low-significance BNS), S230627c (low-significance BBH with IceCube track)


O4b with GRANDMA

Criteria for blind search: - BNS or NSBH or BBH either <200 deg2 or <200 Mpc

- 90% skymap <~200deg2 - DL < ~200 Mpc

68 significant detections : - Some well localised BBH (240527fv, 240615dg, 240920dw) \rightarrow Tiled observations: only upperlimits

Only 1 NSBH, S240422ed: Tiled observations (T0+0.1 to 0.3 days) +Targeted galaxy observations (T0+ 0.5 to 0.9 d) + ToO on GCN candidates (T0+ 2 to 4 d)

11

Ready for the next BNS?

• Tools for network coordination and image analysis are operational

• Tiling and galaxy targeting observations are working

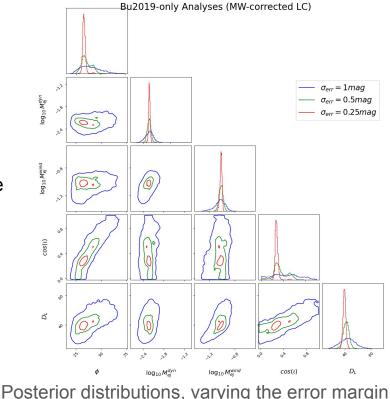
\rightarrow GRANDMA is ready to observe the next BNS

However, are we prepared to extract information out of the next Kilonova?

Plan

- 1. The GRANDMA collaboration, with improved tools
- Follow-up strategy for LVK campaigns, results of O3 and O4 so far
- 3. Preparing analyses for the next Kilonova

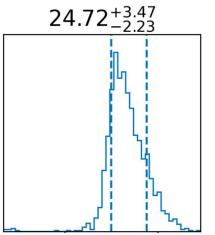
Acronyms


- **BBH**: Binary Black Hole
- BNS: Binary Neutron Star
- **DL**: Luminosity Distance
- **EM**: Electromagnetic
- FoV: Field of View
- **GCN**: General Coordinates Network
- GRB: Gamma-Ray Burst
- GW: Gravitational Wave
- KN: Kilonova
- **NSBH**: Neutron Star Black Hole
- **ToO**: Target of Opportunity

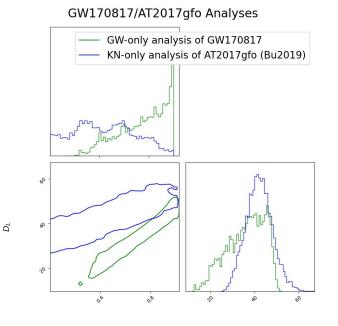
Kilonova Parameter Estimation

We use the NMMA framework (arXiv:2205.08513) for Bayesian Analysis with Monte Carlo 'nested sampling'

Trying to maximise the likelihood:


observed magnitude model predicted magnitude $= \prod_{ij} \frac{1}{\sqrt{2\pi((\sigma_i^j)^2 + (\sigma_{sys})^2)}} \exp\left(-\frac{1}{2} \frac{\left(m_i^j - m_i^{j,est}(\vec{\theta})\right)^2}{(\sigma_i^j)^2 + (\sigma_{sys})^2}\right)$ observed magnitude error model error margin

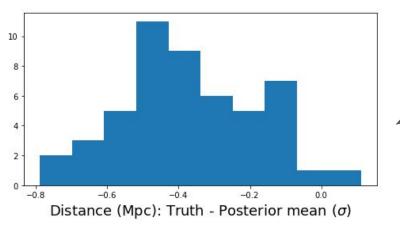
Tensions in KN models

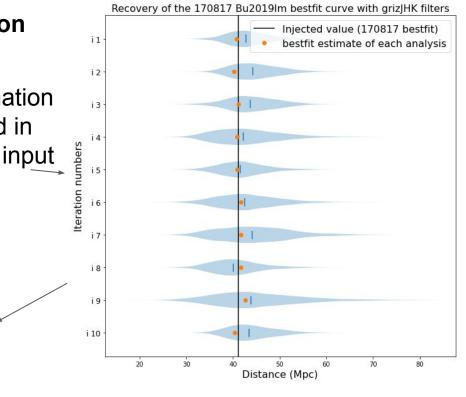

Problems with recovering the GW170817 distance (40-42 Mpc) with KN models

The Kasen2017 model underestimates distance:

Distance [Mpc] posterior for Ka2017 analysis of 170817

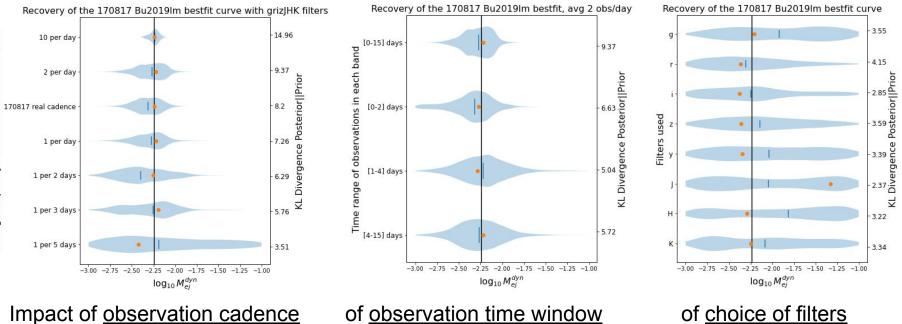
The Bulla2019 model find distances systematically large:




 D_{l}

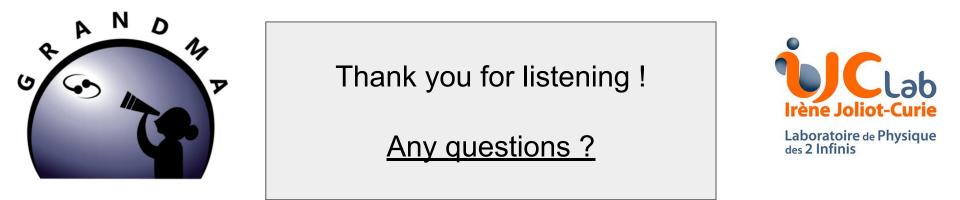
Potential variability

Possible selection bias from observation sparseness


Given a model with set parameter combination \rightarrow Generate lightcurves randomly sampled in time (average 1 obs/day) \rightarrow Try to recover input

Studying precision of estimations

Quantifying posterior tightness (~quantity of gained information)

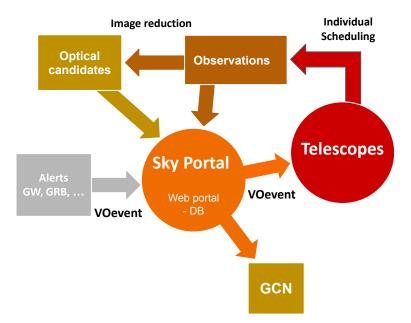

 \rightarrow Trying to find the observation strategy that maximizes information gain

Conclusion

- Tools for network coordination and image analysis are operational
- Tiling and galaxy targeting observations have been performed in O3 and O4, starting within a few hours from GW trigger
- We obtain upperlimits that are constraining NSBH scenarios
- We are benchmarking the KN parameter estimation tools and models, and wish to improve observation strategies to optimize information

Thank you for listening! Any questions?

GRANDMA follow-up of LVK campaigns O3, O4 so far, perspectives

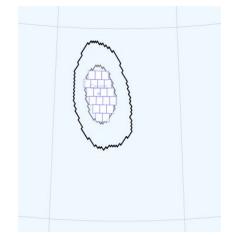


Thomas Hussenot-Desenonges, 3rd year PhD at IJCLab

GdR Ondes Gravitationnelles Oct 14 – 15, 2024

GRANDMA orchestration

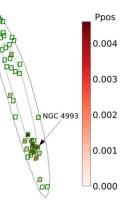
- Listening to external alerts: GW, GRB, SNe
- GRANDMA operates with a central DB SkyPortal
- Individual observation plans to GRANDMA instruments (GWEMOPT)
- 2 observation strategies : Galaxy targeting & Tiling
- Homogeneous data reduction (STDweb)
- Distribution of the low latency analysis via GCN circulars
- Off-line analysis + Modelisation (NMMA)


Observing Strategies

Tiling

- Cover the sky localisation map of GW
- Look for new object that are related to the GW
- Best suited for large FoV (>1deg²) instruments
- Widely used by current survey (PAN-STARRS, ZTF, TAROT,...)

Galaxy Targeting


- Observed the galaxy compatible with the spatial information provided by GW
- Galaxies classified with
 - spatial information
 - Stellar mass estimation
- MANGROVE catalog
 (Ducoin et al., arxiv:1911.05432)
- Best suited for small FoV instruments

BBH S240919bn 50% area covered

Process:

- ICARE/SkyPortal centralises alerts information
- **Gwemopt** generates observation plans
- Telescope teams are notified (Slack, email)
- Images stored on Owncloud
- Stdweb : our online service to process images for photometric analysis
- Results are logged and compiled on SkyPortal

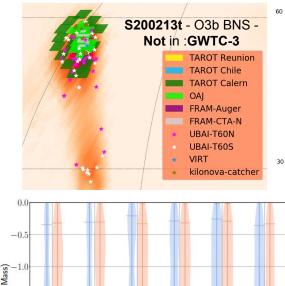
GW170817 localisation and compatible galaxies 1911.05432 and 1909.01244

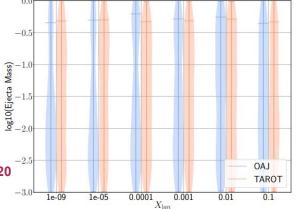
21

O3 with GRANDMA

49/56 O3 alerts were followed by GRANDMA

~ 10 alerts followed by other optical groups


15 min for the first observation after the GW trigger *1.5 h delay for 50% of alerts*


~ **200 deg**² covered in each alert at 18 mag *11 alerts covered above 90% c.r*

ToO observations from other collaborations Participation of **amateur astronomers**

> No EM GW counterpart found Upper limits on ejecta properties

O3b and global summary of O3: <u>GRANDMA Observations of O3 Observational Campaign</u>, MNRAS, 2020 O3a and presentation of the collaboration: <u>The first six months of O3 with</u> <u>GRANDMA</u>, MNRAS, 2020

O4 with GRANDMA

O4a: 81 significant Detection candidates :

No significant event passed our criterion for blind searches (Only LIGO meant large skymaps), we focused on following source candidates

S230529ay: NSBH ~200Mpc Observed upperlimits on ZTF candidate

S230615az: (low significance BNS candidate), GRANDMA followed 4 candidates from GOTO and GIT \rightarrow published GCN https://gcn.nasa.gov/circulars/34020

S230627c: MassGap+BBH, One of few events with 90% area <200 deg2, GRANDMA made blind search with targeted galaxies + followed 2 ZTF candidates

Observed (4 month)

Event type	Announced monthly rate	Observed monthly rate
NSBH	0.08-1.4	0.5
BBH	9-49	11.75
BNS	1-7	0

- 1. The observed rates of NSBH & BBH are in good agreement with the expectation
- 2. No BNS so far! <u>Actually consistent with the</u> <u>current LIGO BNS range</u> ~160Mpc < 180Mpc (expected at the beginning of O4)