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Prospects for the Einstein Telescope
Theoretical and astrophysical implications

⇒ Astrophysics: Black Holes (BHs) properties and evolution
⇒ Fundamental physics: Tests of General Relativity (GR)

M. Maggiore +, JCAP, 2020

To better investigate its capabilities we need a Parameter Estimation (PE) study
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Parameter estimation for coalescing binary systems
Bayesian inference

⇒ Let’s assume our time-domain Gravitational Wave (GW) signal s(t) as:

s(t) = h(t) + n(t)

⇒ Once s(t) is detected, we want to infer statistical information about the physical parameters θ⃗
(e.g. M = m1 +m2, χi) related to the GW sources, such as Binary Black Hole (BBH):

p(θ⃗|s) ∝ L(s|θ⃗)π(θ⃗)

The posterior p(θ⃗|s) must be stochastically sampled (e.g. MCMC methods)

The only computationally feasible way of performing PE on large populations
(∼ 105 events/yr) is based on the Fisher Information Matrix (FIM) approach

M. Branchesi +, JCAP, 2023, M. Maggiore +, JCAP, 2020
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Fisher information matrix
Approximations in the context of Bayesian analysis

⇒ By writing down the likelihood L(s|θ⃗), we implicitly assume a noise model:

logL(s|θ⃗) ∝ −1
2
⟨n|n⟩ = −1

2
⟨s − h(θ⃗)|s − h(θ⃗)⟩

at fixed parameters θ⃗, and compute the FIM in the following way:

Γij = ⟨hi|hj⟩ , hi = ∂ih|θ⃗=θ⃗0

Under the large SNR limit, a stationary Gaussian noise and a flat prior, the inverse of
the FIM (Γ−1) can be approximated to the covariance matrix of the Bayesian posterior :

p(θ⃗|s) ∝ L(s|θ⃗)π(θ⃗) ∝ exp
[
− 1

2 Γij δθ
iδθj

]
, δθi = θi − θi0

M. Vallisneri, Phys. Rev. D, 2008
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Tests of GR: model-agnostic deviations
to the inspiral part of the GW phase predicted by GR

⇒ The frequency-domain waveform models, during the inspiral phase, can be given as:

h̃(f ) = A(f )eiΦins(f )

in which Φins(f ) is treated within the Post-Newtonian (PN) framework up to a certain nPN order:

O
[(v

c

)2n
]
= O

[(
πGMf
c3

)2n/3
]

Our main aim is to introduce and constrain a model-agnostic deviation δΦ(f )
in the inspiral part of the phase Φins(f ):

Φins(f ) → Φins(f ) + δΦ(f )

N.Yunes +, Phys. Rev. D, 2016
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Method: Adopt GWFISH to estimate errors on GW signals
simulated onto different detectors

⇒ Under the FIM formalism, we can easily forecast the PE capabilities (e.g. constraining
model-agnostic δΦ) of future generation detectors

Input: Binary parameters

• mi, χi, dL, ... (i = 1, 2)

• GW models based on GR

• Detector type (e.g. ET, LIGO)

• New injection of a phase
deviation through δΦ Dupletsa +, 2022

Output: Statistical errors σ
by detector noise

• on BBH parameters

• on GR deviations,
σδΦ ̸= 0 represents our
statistical constrain
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Model-agnostic tests of the multipolar structure
arising with quadratic and cubic spin terms in the GW modified inspiral phase

We introduce model-agnostic deviations in the dominant spin-induced quadrupole
moment scalar M2 = −κ m3χ2 through:

κGR
i = 1 → κi = 1+ δκi

for each component i = 1, 2 of the coalescing binary

⇒ We want to constrain the symmetric combination δκs =
δκ1 + δκ2

2
entering the inspiral part of

the GW modified phase:

δΦ = δΦ(δκs)

and test the Kerr BHs multipolar structure predicted by ’no-hair theorems’
N.V. Krishnendu +, 2019
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Results: statistical errors on different simulated events
Constraining quadrupolar deviations entering the GW modified inspiral phase

⇒ GR deviations are detectable in σδκs and are agnostic to modified theories

• 5 different simulated events with the
same spins (χ1 = 0.9, χ2 = 0.8) mass
ratio (m1/m2 = 3) and luminosity
distance (dL = 400 Mpc)

• Test the regime of validity for the
FIM method

• ET is expected to reduce correlations
between δκs and the other GW
parameters

[
ET constraints can improve by more than an order of magnitude compared to future LVK
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Model-agnostic tests of tidal effects
altering the inspiral part of the GW phase starting at 5PN

We introduce an inspiral phase deviation produced by possible tidal effects:

δΦ(f ) = − 117
256η

Λ

(
πGM f

c3

)5/3

, η =
m1m2

M2

where Λ is the weighted tidal deformability of the compact binary

⇒ We want to constrain Λ and possible deviations
(e.g exotic compact objects) from its GR value:

ΛGR = 0

associated with a Kerr BH binary

M. Maggiore +, Oxford University Press, 2018
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Results: statistical errors on different simulated events
Constraining possible tidal deviations entering the GW modified inspiral phase

⇒ GR deviations are detectable in σΛ and are agnostic to modified theories

• 5 different simulated events with the
same spins (χ1 = χ2 = 0) mass ratio
(m1/m2 = 3) and luminosity distance
(dL = 400 Mpc)

• Test the regime of validity for the
FIM method

• Less correlations between Λ and the
other GW parameters

[
ET constraints can improve by more than an order of magnitude compared to future LVK
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Conclusions
and possible outcomes

Conclusions

• We generalized GWFISH to predict statistical errors on δκs and Λ

• We have shown that ET will improve statistical constraints on δκs and Λ by more than
an order of magnitude compared to predicted future LIGO O5

• We have tested the validity of the FIM approach making a fully Bayesian comparison

Possible outcomes

• The investigation on possible causes of false GR violations (Gupta +, 2024)

• The implementation and test of generic priors in GWFISH (Dupletsa +, 2024)

• The development of an entire CBC population analysis (Mancarella +, 2022)

Thanks for the attention!
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Gravitational Waves: a brief introduction
Emission by Compact Binary Coalescing (CBC) systems during the inspiral phase

B.P. Abbott +, PRL 116, 2016

Inspiral phase main approximations

• Slow-motion condition

• Weak-field sources

Analytical treatment of the emitted
Gravitational Wave (GW) frequency and

amplitude of the two wave polarizations h+,×



Gravitational Waves: observations
Ground-based laser interferometers

M. Coleman +, Nature, 2019

We are able to measure the time-domain
GW strain as:

h = h+F+ + h×F× ≃ ∆L
L

But the signal is buried in the detector
noise affecting the sensitivity and

frequency bandwidth

Significant improvements are expected by future third-generation
interferometers such as the Einstein Telescope



Science with Einstein Telescope
Sensitivity curves

→ Each detector is composed by two interferometers, ”xylophone” configuration:

Predicted noise Amplitude Spectral Density Improved sensitivity

• High-frequency (HF)

• Low-frequency (LF) cryogenic

• Up to one order of magnitude
better respect to predicted
Advanced LIGO O5 (C. Cahillane
et al. Galaxies, 2022)

Noise ASD of a single nested detector,
but we have more than one...

M. Branchesi et al. JCAP07(2023)068



Science with Einstein Telescope
Detector geometries

→ Two possible underground detector networks, triangular vs separated 2L-shaped:

Scheme of the two geometries
Triangular configuration

• ”Null-stream”

• SNR ∝ 1.5 L

2L-shaped configuration

• Parallel vs misalligned

• SNR ∝ 1.4 L

M. Branchesi et al. JCAP07(2023)068



Fisher Information Matrix
Formalism

→ Let’s assume our time-domain GW signal s(t) as:

s(t) = h0(t) + n0(t)

where h0(t) = h(θ⃗0, t) is the signal with expected parameters θ⃗0 and n0(t) is a stationary Gaussian noise

→ Let’s define a weighted-noise inner product ⟨·|·⟩ between two time-domain signals as:

⟨a|b⟩ = 4ℜ
∫ ∞
0

ã∗(f )b̃(f )
Sn(f ) df

where the tilde denotes the Fourier transform and Sn(f ) is the one-sided noise PSD

The Fisher Information Matrix (FIM) is defined as:

Γij = −⟨∂i∂j log P(s|θ⃗)⟩n
∣∣
θ⃗=θ⃗0

where ∂i =
∂
∂θi

and ⟨· ·⟩n is a noise average with fixed θ⃗ and P(s|θ⃗) is the likelihood for a data realization s(t) conditioned on θ⃗



Fisher Information Matrix
SNR, variance & sky localization area

→ For each kth single detector of the network we can compute the FIM and the SNR:

• Γk
ij = (hki |hkj ) • SNRk =

√
(hk|hk)

→ For the entire network of n detector we can compute:

• Γij =
∑n

k=1 Γ
k
ij • SNR =

√∑n
k=1 SNR

2
k

The variance σ2
i of the ith parameter & the sky localization area ∆Ω90% are:

σ2
i = Γ−1

ii ∆Ω90% = −2π ln
( 1
10

)
| sin θ|

√(
Γ−1
θθ

)(
Γ−1
ϕϕ

)
−
(
Γ−1
ϕθ

)2



GWFISH: an overview
Flowchart of the functioning of modules and directories

waveforms.py

fishermatrix.py

i n jec t ions

detectors.yaml

te s t s

detection.py

Waveform
approximants:

LALTD_Waveform
LALFD_Waveform
TaylorF2
IMRPhenomD

Detector response
for:

Ground-based
Space-based
Moon-based

Waveform
derivative
Fisher matrix
SVD inversion
Network errors
Network SNR
Network sky
localization

BBH, BNS. BHNS:

Single event
Population of events

PSD of:

LVK collaboration
ET and CE
LISA
LGWA

About:

waveforms
matrix inversion
sky localization
horizon

{‘mass_1‘,‘mass_2‘,‘a_1‘,‘a_2‘,
‘luminosity_distance‘,‘theta_jn‘,

‘ra‘,‘dec‘,‘psi‘,‘phase‘,‘geocet_time‘
,‘tilt_1‘,‘tilt_2‘,‘phi_12‘,

‘phi_jl‘,‘lambda_1‘,‘lambda_2‘}

inspiral_corrections.py

Modified waveform
approximants:

ppE corrections
Multipolar deviations
Tidal  corrections

parameter s



TaylorF2
Early inspiral phase expansion

Φins(x) = ϕc −
3

128η
∑7

n=0

[
φn + φ

(l)
n ln

(
x3/2

)]
x(n−5)/2 , x =

(
πGMf
c3

)2/3
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IMRPhenomD
Total phase expression

Φ(f ) = Φins θ(f − fins) + θ(f − fins) Φint θ(f − fint) + ΦMR θ(f − fMR)



Multipolar structure of a Kerr BH
Spin-induced multipolar moments

⇒ In a specific class of coordinate systems called “Asymptotically Cartesian and Mass
Centered” (ACMC), the metric is given by:

ds2 = − (1− c00) dt2 + (1+ c00) dx2i + c0idtdxi

where c00 admits a spherical harmonic decomposition in terms of the mass multipole
moments Mℓm, while c0i is decomposed in terms of the current multipole moments Sℓm.

⇒ All the multipole moments of a Kerr BH can be uniquely determined by two parameters,
its mass m and spin χ:

MBH
ℓ + iSBHℓ = mℓ+1 (iχ)ℓ



Results: errors on multiple simulated events
Implications for possible GR deviations entering the GW modified phase

⇒ GR deviations are detectable in σδλs and are agnostic to modified theories
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ET
LIGO O5
ET, fcut = 3fISCO

• 5 different simulated events with the same
spins (χ1 = 0, 5, χ2 = 0, 4) mass ratio
(m1/m2 = 3) and luminosity distance
(dL = 400 Mpc)

• ET property of reducing the correlations
among parameters

ET constraints can improve by more than an order of magnitude compared to future LVK



Tidal properties of a Kerr BH
Weighted tidal deformability

⇒ The linear response of vacuum Kerr BHs to external static perturbations is predicted to be:
λ̃BH
ℓ = 0 , Mij = −λ̃Eij

where Mij is the tidal-induced quadrupole moment and Eij is the quadrupole tidal field.
Considering higher multipole contributions, the procedure can be extended to generic ℓ ̸= 2.

⇒ We can define the dimensionless tidal Love numbers kℓ ∝ λ̃ℓ/m2ℓ+1. For instance, in the

Neutron Star case, k2 =
3
2
Gλ̃2

R5
from which we can define Λ =

2
3
k2

(
Gm
Rc2

)−5

. In general, it

is useful to introduce the weighted tidal deformability as:

Λ =
16
13

(m1 + 12m2)m4
1Λ1 + (m2 + 12m1)m4

2Λ2

(m1 +m2)5
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