Gravitational Waves inspiral tests of General Relativity in the framework of the Einstein Telescope

Alessandro Agapito (Centre de Physique Theorique, Cosmology group) ´ PhD supervisor: Prof. **Michele Mancarella** (Aix-Marseille universite)`

On behalf of: Mr. **Francesco Crescimbeni** (Sapienza Universita di Roma) ` Prof. **Andrea Maselli** (Gran Sasso Science Institute) Prof. **Paolo Pani** (Sapienza Universita di Roma) `

1/11 11 **Huitième Assemblée Générale du GdR Ondes Gravitationnelles**, 14/10/2024

Prospects for the Einstein Telescope amU

Theoretical and astrophysical implications

- ⇒ **Astrophysics**: Black Holes (BHs) properties and evolution
- ⇒ **Fundamental physics**: **Tests of General Relativity (GR)**

Parameter estimation for coalescing binary systems Bayesian inference

⇒ Let's assume our **time-domain Gravitational Wave (GW) signal** *s*(*t*) as:

 $s(t) = h(t) + n(t)$

 \Rightarrow Once *s*(*t*) is detected, we want to *infer* **statistical information** about the physical parameters $\vec{\theta}$ (e.g. $M = m_1 + m_2$, χ_i) related to the GW sources, such as Binary Black Hole (BBH):

 $p(\vec{\theta}|s) \propto \mathcal{L}(s|\vec{\theta})\pi(\vec{\theta})$

The $\mathbf{posterior}\ p(\vec{\theta}|s)$ must be stochastically sampled (e.g. MCMC methods)

The only computationally feasible way of performing PE on large populations (∼ 10⁵ events/*yr*) is based on the **Fisher Information Matrix** (FIM) approach

M. Branchesi +, JCAP, 2023, *M. Maggiore +, JCAP, 2020*

Fisher information matrix

Approximations in the context of Bayesian analysis

 \Rightarrow By writing down the likelihood $\mathcal{L}(s|\vec{\theta}),$ we implicitly assume a **noise model**:

$$
\log \mathcal{L}(s|\vec{\theta}) \propto -\frac{1}{2} \langle n|n \rangle = -\frac{1}{2} \langle s - h(\vec{\theta})|s - h(\vec{\theta}) \rangle
$$

at fixed parameters $\vec{\theta}$, and compute the FIM in the following way:

$$
\left|\Gamma_{ij}=\langle h_i|h_j\rangle\right| \quad , \quad h_i=\partial_i h|_{\vec{\theta}=\vec{\theta}_0}
$$

Under the **large SNR limit**, a **stationary Gaussian noise** and a **flat prior**, the *inverse of the FIM* (Γ ⁻¹) *can be approximated to the covariance matrix of the Bayesian posterior*:

$$
p(\vec{\theta}|s) \propto \mathcal{L}(s|\vec{\theta})\pi(\vec{\theta}) \propto exp\bigg[-\frac{1}{2}\,\mathbf{\Gamma_{ij}}\,\delta\theta^i\delta\theta^j\bigg]\bigg| \quad , \quad \delta\theta^i = \theta^i - \theta_0^i
$$

M. Vallisneri, Phys. Rev. D, 2008

Tests of GR: model-agnostic deviations amU

to the inspiral part of the GW phase predicted by GR

⇒ The **frequency-domain waveform models**, during the *inspiral phase*, can be given as:

$$
\tilde{h}(f) = A(f) e^{i\Phi_{ins}(f)}
$$

in which Φ*ins*(*f*) is treated within the *Post-Newtonian (PN)* framework up to a certain *n*PN order:

$$
\mathcal{O}\left[\left(\frac{v}{c}\right)^{2n}\right] = \mathcal{O}\left[\left(\frac{\pi GMf}{c^3}\right)^{2n/3}\right]
$$

Our main aim is to introduce and constrain a **model-agnostic deviation** $\delta \Phi(f)$ in the *inspiral part of the phase* $\Phi_{ins}(f)$:

 $\Phi_{ins}(f) \rightarrow \Phi_{ins}(f) + \delta \Phi(f)$

N.Yunes +, Phys. Rev. D, 2016

Method: Adopt GWFISH to estimate errors on GW signals amU simulated onto different detectors

⇒ Under the FIM formalism, we can easily **forecast the PE capabilities** (e.g. constraining model-agnostic $\delta\Phi$) of future generation detectors

Input: Binary parameters

- $m_i, \chi_i, d_L, ...$ $(i = 1, 2)$
- GW **models** based on **GR**
- **Detector type** (e.g. ET, LIGO)
- New injection of a **phase deviation** through $\delta \Phi$ *Dupletsa +, 2022*

Output: Statistical errors σ **by detector noise**

- on BBH parameters
- on **GR deviations**, $\sigma_{\delta\Phi} \neq 0$ represents our statistical constrain

6/11 **Example Assemblée Générale du GdR Ondes Gravitationnelles**, 14/10/2024

Model-agnostic tests of the multipolar structure

arising with quadratic and cubic spin terms in the GW modified inspiral phase

We introduce **model-agnostic deviations** in the dominant spin-induced *quadrupole moment scalar* $M_2 = -\kappa m^3 \chi^2$ through:

$$
\kappa_i^{GR} = 1 \to \kappa_i = 1 + \delta \kappa_i
$$

for each component $i = 1, 2$ of the coalescing binary

 \Rightarrow We want to constrain the symmetric combination $\delta \kappa_s = \frac{\delta \kappa_1 + \delta \kappa_2}{\delta \kappa_3 + \delta \kappa_4}$ $\delta \kappa_1 + \delta \kappa_2$ $\frac{1}{2}$ entering the inspiral part of the GW modified phase:

$$
\delta \Phi = \delta \Phi(\boldsymbol{\delta \kappa_s})
$$

and test the Kerr BHs multipolar structure predicted by *'no-hair theorems'*

N.V. Krishnendu +, 2019

Results: statistical errors on different simulated events

Constraining quadrupolar deviations entering the GW modified inspiral phase

ET constraints can **improve by more than an order of magnitude** compared to future LVK

Model-agnostic tests of tidal effects

altering the inspiral part of the GW phase starting at 5PN

We introduce an inspiral phase deviation produced by possible **tidal effects**:

$$
\delta\Phi(f) = -\frac{117}{256\eta} \Lambda \left(\frac{\pi GMf}{c^3}\right)^{5/3} \qquad , \quad \eta = \frac{m_1 m_2}{M^2}
$$

where Λ is the *weighted tidal deformability* of the compact binary

 \Rightarrow We want to constrain Λ and possible deviations (*e.g exotic compact objects*) from its GR value:

$$
\Lambda^{GR}=0
$$

associated with a Kerr BH binary

M. Maggiore +, Oxford University Press, 2018

9/11 Subset of the Huitieme Assemblée Générale du GdR Ondes Gravitationnelles, 14/10/2024

Results: statistical errors on different simulated events

Constraining possible tidal deviations entering the GW modified inspiral phase

ET constraints can **improve by more than an order of magnitude** compared to future LVK

10/11 **10/11 Huitième Assemblée Générale du GdR Ondes Gravitationnelles**, 14/10/2024

Conclusions

- We **generalized GWFISH** to predict statistical errors on δκ*^s* and Λ
- We have shown that **ET will improve statistical constraints** on δκ*^s* and Λ by more than an order of magnitude compared to predicted future LIGO O5
- We have tested the validity of the FIM approach making a **fully Bayesian comparison**

Possible outcomes

- The investigation on possible causes of **false GR violations** (*Gupta +, 2024*)
- The implementation and test of **generic priors** in GWFISH (*Dupletsa +, 2024*)
- The development of an entire **CBC population analysis** (*Mancarella +, 2022*)

Thanks for the attention!

11/11 **11/11 Startight Conduct Conducts** Equipment Assemblée Générale du GdR Ondes Gravitationnelles, 14/10/2024

\blacktriangleright [Back-up slides](#page-11-0)

Gravitational Waves: a brief introduction amU

Emission by Compact Binary Coalescing (CBC) systems during the inspiral phase

Inspiral phase main approximations

- **Slow-motion** condition
- **Weak-field** sources

Analytical treatment of the emitted Gravitational Wave (GW) **frequency** and **amplitude** of the two wave *polarizations* $h_{+,\times}$

Gravitational Waves: observations amU Ground-based laser interferometers

M. Coleman +, Nature, 2019

We are able to measure the time-domain GW **strain** as:

$$
h = h_+ F_+ + h_\times F_\times \simeq \frac{\Delta L}{L}
$$

But the signal is buried in the **detector noise** affecting the *sensitivity* and *frequency bandwidth*

Significant improvements are expected by future **third-generation interferometers** such as **the Einstein Telescope**

Science with Einstein Telescope aml Sensitivity curves

→ Each detector is composed by two interferometers, **"xylophone" configuration**:

Predicted noise Amplitude Spectral Density Improved sensitivity

- **High-frequency** (HF)
- **Low-frequency** (LF) **cryogenic**
- Up to **one order** of magnitude **better** respect to predicted Advanced LIGO O5 (*C. Cahillane et al. Galaxies, 2022*)

Noise ASD of a **single nested detector**, but we have more than one...

Science with Einstein Telescope Detector geometries

→ Two possible underground detector networks, **triangular** *vs* **separated 2L-shaped**:

Scheme of the two geometries

Triangular configuration

- "**Null-stream**"
- *SNR* ∝ 1.5 *L*

2L-shaped configuration

- **Parallel** vs **misalligned**
- *SNR* ∝ 1.4 *L*

M. Branchesi et al. JCAP07(2023)068

Fisher Information Matrix Formalism

 \rightarrow Let's assume our **time-domain GW signal** $s(t)$ as:

 $s(t) = h_0(t) + n_0(t)$

where $h_0(t)=h(\vec{\theta}_0,t)$ is the signal with expected parameters $\vec{\theta}_0$ and $n_0(t)$ is a stationary Gaussian noise → Let's define a **weighted-noise inner product** ⟨·|·⟩ between two time-domain signals as:

$$
\langle a|b\rangle=4\Re\int_0^\infty \tfrac{\tilde{a}^*(f)\tilde{b}(f)}{S_n(f)}df
$$

where the tilde denotes the Fourier transform and $S_n(f)$ is the one-sided noise PSD

The **Fisher Information Matrix (FIM)** is defined as:

$$
\Gamma_{ij} = -\langle \partial_i \partial_j \log P(s|\vec{\theta}) \rangle_n \big|_{\vec{\theta} = \vec{\theta}_0} \quad \text{where } \partial_i = \frac{\partial}{\partial \theta_i}
$$

and $\langle\cdot\,\cdot\rangle_n$ is a noise average with fixed $\vec\theta$ and $P(s|\vec\theta)$ is the likelihood for a data realization $s(t)$ conditioned on $\bar\theta$

Fisher Information Matrix ar SNR, variance & sky localization area

σ

 \rightarrow For each k^{th} **single detector** of the network we can compute the FIM and the SNR:

•
$$
\Gamma_{ij}^k = (h_i^k | h_j^k)
$$
 • $SNR_k = \sqrt{(h^k | h^k)}$

 \rightarrow For the **entire network** of *n* detector we can compute:

•
$$
\Gamma_{ij} = \sum_{k=1}^{n} \Gamma_{ij}^{k}
$$
 • $SNR = \sqrt{\sum_{k=1}^{n} SNR_{k}^{2}}$

The $\bf{variance} \; \sigma^2_i$ of the i^{th} parameter $\&$ the \bf{sky} localization area $\Delta \Omega_{90\%}$ are:

$$
\overline{r_i^2} = \Gamma_{ii}^{-1} \qquad \qquad \boxed{\Delta\Omega_{90\%} = -2\pi \ln\left(\frac{1}{10}\right) |\sin\theta| \sqrt{\left(\Gamma_{\theta\theta}^{-1}\right) \left(\Gamma_{\phi\phi}^{-1}\right) - \left(\Gamma_{\phi\theta}^{-1}\right)^2}}
$$

GWFISH: an overview Flowchart of the functioning of modules and directories

$$
\Phi_{ins}(x) = \phi_c - \frac{3}{128\eta} \sum_{n=0}^{7} \left[\varphi_n + \varphi_n^{(l)} \ln(x^{3/2}) \right] x^{(n-5)/2} \quad , \quad x = \left(\frac{\pi G M f}{c^3} \right)^{2/3}
$$

$$
\Phi(f) = \Phi_{ins} \theta(f - f_{ins}) + \theta(f - f_{ins}) \Phi_{int} \theta(f - f_{int}) + \Phi_{MR} \theta(f - f_{MR})
$$

Multipolar structure of a Kerr BH amU Spin-induced multipolar moments

 \Rightarrow In a specific class of coordinate systems called "Asymptotically Cartesian and Mass Centered" (ACMC), the metric is given by:

$$
ds^{2} = -(1 - c_{00}) dt^{2} + (1 + c_{00}) dx_{i}^{2} + c_{0i} dt dx_{i}
$$

where c_{00} admits a spherical harmonic decomposition in terms of the *mass multipole moments* $M_{\ell m}$, while c_{0i} is decomposed in terms of the *current multipole moments* $S_{\ell m}$.

 \Rightarrow All the multipole moments of a Kerr BH can be uniquely determined by two parameters, its mass *m* and spin χ:

$$
M_{\ell}^{\rm BH} + i S_{\ell}^{\rm BH} = m^{\ell+1} (i \chi)^{\ell}
$$

Results: errors on multiple simulated events amU

Implications for possible GR deviations entering the GW modified phase

 \Rightarrow **GR deviations** are detectable in $\sigma_{\delta\lambda_s}$ and are α agnostic to modified theories

- **5 different simulated events** with the same spins ($\chi_1 = 0, 5, \chi_2 = 0, 4$) mass ratio $(m_1/m_2 = 3)$ and luminosity distance $(d_l = 400 \text{ Mpc})$
- ET property of **reducing the correlations** among parameters

ET constraints can **improve by more than an order of magnitude** compared to future LVK

Tidal properties of a Kerr BH Weighted tidal deformability

 \Rightarrow The linear response of vacuum Kerr BHs to external static perturbations is predicted to be: $\tilde{\lambda}_{\ell}^{BH} = 0 \quad , \quad M_{ij} = -\tilde{\lambda} \mathcal{E}_{ij}$

where M_{ii} is the *tidal-induced quadrupole moment* and \mathcal{E}_{ii} is the *quadrupole tidal field*. Considering higher multipole contributions, the procedure can be extended to generic $\ell \neq 2$.

 \Rightarrow We can define the dimensionless tidal Love numbers $k_\ell \propto \tilde{\lambda}_\ell/m^{2\ell+1}.$ For instance, in the Neutron Star case, $k_2 = \frac{3}{2}$ 2 $G\tilde{\lambda}_2$ $\frac{G\lambda_2}{R^5}$ from which we can define $\Lambda = \frac{2}{3}k_2\left(\frac{Gm}{Rc^2}\right)$ *Rc*² \bigwedge ⁻⁵ . In general, it is useful to introduce the **weighted tidal deformability** as: $\Lambda = \frac{16}{13}$ $(m_1 + 12m_2)m_1^4\Lambda_1 + (m_2 + 12m_1)m_2^4\Lambda_2$ $(m_1 + m_2)^5$