Non-linear gravitational waves in Horndeski gravity
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Introduction

- Non-linear gravitational wave solutions known in GR (pp-waves, Kundt,
Robinson-Trautman) [Robinson, Trautman '60; Ehlers, Kundt '62]

- Not directly useful for comparison to observations but crucial to explore
non-linear radiative regime of a theory (ex: non-linear memory effects
[Christodoulou '91])

- This work: investigate phenomenology of scalar-tensor mixing on non-linear
gravitational waves in modified gravity

- Use an exact solution of a Horndeski theory as a toy model

- Take advantage of disformal transformations as solution-generating
techniques



Disformal transformations

Scalar-tensor theories

Motivation: add a scalar degree of freedom ¢ to GR to effectively describe
deviations at a given energy scale

- Simplest example: Einstein-scalar system (GR + minimally coupled scalar)
- Brans-Dicke: gravitational constant upgraded to a scalar field [Brans, Dicke '67]

- Horndeski: escape unicity theorems by introducing higher derivatives
[Horndeski '74; Charmousis, Copeland+ "12]

Horndeski=| GR | x |Coupling| + Orders 0 and + [ (VV¢)?

1in VV¢




Disformal transformations Einstein-scalar solution Scala or so ) aves in the disformed solutic

Disformal transformations of scalar-tensor theories

Disformal transformations
Generalization of conformal transformations [Bekenstein '93]

Gy = A(o, X)g/“’ + B(qﬁ, X)¢M¢V (X = ‘b;@#)

- In vacuum: field redefinition Slgu,¢] <= S[Gu, ]

- If one adds matter following geodesics:

SwwﬁH/JW =x S[QW,W/W

— disformal transformations describe new physics when one probes
spacetime through matter observables (ex: strain in a GW detector)

- Horndeski theories: stable under A(¢), B(¢) 3



Disformal transformations

Solution-generating technique

Canonical term for scalar ;
Higher-order scalar-tensor theory

1 o
5= /d4x\ﬁg(R — 5) | Disformal (Horndeski, DHOST)
transformation 8 o
Exact solution g,

Exact solution g,

— use disformal transformations as a solution-generating technique [Anson,

Babichev+ '21; Ben Achour, Liu+ '20; Ben Achour, Liu+ '20; Faraoni, Leblanc '21]

- Simplest transformation: g, = gu + Boduow
1

V1-— ByX

- Obtain a solution of Horndeski with F5(X) =
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Non-linear GW in GR

Usual linearised setup
- Add a perturbation to a background: g, = Guv + by
- Obtain a wave propagation equation Ohy,, = 0

— sufficient for most cases but missing complex dynamics of the theory:
non-linear memory effects [Christodoulou '91], colliding waves [Szekeres '70], solitons...

Simplest non-linear example: pp-wave

[Brinkmann '25; Bondi '57; Robinson, Trautman '60; Penrose '65]
ds? = —Hypz%2? du? + 2dudo + 8, dz® dz®
- describes propagation of a plane wave in vacuum along 9,
- property close to linearised waves: profiles H,, can be added

- can define polarisations through components of Hy,



Einstein-scalar solution

Metric element

Solution of Einstein-scalar theory [Tahamtan, Svitek '15; Tahamtan, Svitek '16]

- Wave propagation

1 .
S = /d4x \/—g<R — 2vu¢w¢) towards outgoing p
oo e - Not spherically
; pulse symmetric
2 2 P2 —x(w)? ., 2
ds® = —K(z, y) dw —2deP+W(d$ +dy”) - Presence of an
. ’ apparent horizon
lightlike _
coordinate 5 _ ilog p— x(w) - Fully non-linear
V2 p+ x(w) solution
- Petrov type Il



Einstein-scalar solution

Representing the wave pulse

- Curvature of 2D space

scalar charge (81’ ay):
o X (w)
I 0
. - Scalar pulse x goes
% from 0 to max and back
to0
- Longitudinal wave
0 ‘ generated by scalar
—wo 3} o field monopole
null infinity J ( nullinfinity . £mpty spacetime at
(past) (future)

remote nast and future



Scalar-tensor solution

Description of the scalar-tensor solution

2 2 2 S i X(w)2 2 2
ds® = (- K(z, y)+Bo¢y,) dw—2(1—Bopwd,) dwdp +b’()m/‘)<l/)-+P(7)2(dx +dy”)
T,y
- Wave pulse x unchanged: scalar monopole
- Apparent horizon and singularities unchanged qualitatively
- Remote past and future (w — +wyp): empty non-spherical spacetime

- Petrov classification: type | while seed was type Il — loss of algebraic
speciality



Waves in the disformed solution

GW content of spacetime

How can one read the polarisation content of a GW?

Linearised GW N Non-linear GW
Read off from the components of hy, No extraction of wave profile!

- Main idea: tidal effects experienced by a photon around its worldline ¥
[Penrose '76], with parallel transported null tetrad EY and parameter W
- In this setup, always recover pp-wave geometry:

ds? =2dWdV +645dX2dX? — HipXAXB AW?

- Read off polarisation from components of Hyp = Rupe By E4 EY ES
evaluated on ¥ 9



Waves in the disformed solution

Waves in the transformed solution

ao + Boa1 + B2ay 0 + by (;
Hyp = 0 , | +B} + O(BY)
0 ag + Boay + BO as ¢y —by
!
scalar waves H, o, /

- the disformal
transformation sources
tensorial gravitational
waves
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Conclusion

- First exact radiative non-linear solution in Horndeski beyond plane waves

- Contains non-linear superposition of shear and breathing modes generated
by a scalar monopole

- Probe new effects in strong regime scalar-tensor gravity: additional
contribution to GWs

- Open question: consequence for GWs in the case of scalar-tensor cosmology?

n



Thank you for your attention!
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