Non-linear gravitational waves in Horndeski gravity

Hugo Roussille, Jibril Ben Achour, Mohammad Ali Gorji October 14th. 2024

2401.050992402.01487

Huitième Assemblée Générale du GdR Ondes Gravitationnelles

Introduction

- Non-linear gravitational wave solutions known in GR (pp-waves, Kundt, Robinson-Trautman) [Robinson, Trautman '60; Ehlers, Kundt '62]
- Not directly useful for comparison to observations but crucial to explore non-linear radiative regime of a theory (ex: non-linear memory effects [Christodoulou '91])
- This work: investigate phenomenology of scalar-tensor mixing on non-linear gravitational waves in modified gravity
- · Use an exact solution of a Horndeski theory as a toy model
- Take advantage of disformal transformations as solution-generating techniques

Scalar-tensor theories

Motivation: add a scalar degree of freedom ϕ to GR to effectively describe deviations at a given energy scale

- · Simplest example: Einstein-scalar system (GR + minimally coupled scalar)
- Brans-Dicke: gravitational constant upgraded to a scalar field [Brans, Dicke '61]
- Horndeski: escape unicity theorems by introducing higher derivatives
 [Horndeski '74; Charmousis, Copeland+ '12]

Disformal transformations of scalar-tensor theories

Disformal transformations

Generalization of conformal transformations [Bekenstein '93]

$$\tilde{g}_{\mu\nu} = A(\phi, X)g_{\mu\nu} + B(\phi, X)\phi_{\mu}\phi_{\nu} \qquad (X = \phi_{\mu}\phi^{\mu})$$

- · In vacuum: field redefinition $S[g_{\mu\nu},\phi] \iff \tilde{S}[\tilde{g}_{\mu\nu},\phi]$
- If one adds matter following geodesics:

$$S[g_{\mu\nu},\phi] + \int \sqrt{-g_{\mu\nu} \,\mathrm{d}x^{\mu} \,\mathrm{d}x^{\nu}} \quad \Longrightarrow \quad \tilde{S}[\tilde{g}_{\mu\nu},\phi] + \int \sqrt{-\tilde{g}_{\mu\nu} \,\mathrm{d}x^{\mu} \,\mathrm{d}x^{\nu}}$$

- → disformal transformations describe new physics when one probes spacetime through matter observables (ex: strain in a GW detector)
- · Horndeski theories: stable under $A(\phi)$, $B(\phi)$

Solution-generating technique

Canonical term for scalar $S = \int \mathrm{d}^4 x \sqrt{-g} (R - \frac{1}{2} X)$ Disformal transformation $\text{Exact solution } g_{\mu\nu}$ Higher-order scalar-tensor theory (Horndeski, DHOST) $\text{Exact solution } \tilde{g}_{\mu\nu}$

- → use disformal transformations as a solution-generating technique [Anson, Babichev+ '21; Ben Achour, Liu+ '20; Ben Achour, Liu+ '20; Faraoni, Leblanc '21]
- Simplest transformation: $\tilde{g}_{\mu\nu}=g_{\mu\nu}+B_0\phi_\mu\phi_\nu$
- Obtain a solution of Horndeski with $\tilde{F}_2(\tilde{X}) = \frac{1}{\sqrt{1 B_0 \tilde{X}}}$

Usual linearised setup

- · Add a perturbation to a background: $q_{\mu\nu} = \bar{q}_{\mu\nu} + h_{\mu\nu}$
- · Obtain a wave propagation equation $\Box h_{\mu\nu} = 0$
- \rightarrow sufficient for most cases but missing complex dynamics of the theory: non-linear memory effects [Christodoulou '91], colliding waves [Szekeres '70], solitons...

Simplest non-linear example: pp-wave

[Brinkmann '25: Bondi '57: Robinson, Trautman '60: Penrose '65]

$$ds^2 = -H_{ab}x^a x^b du^2 + 2 du dv + \delta_{ab} dx^a dx^b$$

- describes propagation of a plane wave in vacuum along ∂_v
- property close to linearised waves: profiles H_{ab} can be added
- can define polarisations through components of H_{ab}

Metric element

Solution of Einstein-scalar theory [Tahamtan, Svitek '15; Tahamtan, Svitek '16]

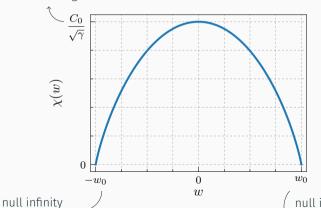
$$S = \int \mathrm{d}^4 x \sqrt{-g} \bigg(R - \frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi \bigg)$$
 wave pulse
$$\mathrm{d} s^2 = -K(x,y) \, \mathrm{d} w^2 - 2 \, \mathrm{d} w \, \mathrm{d} \rho + \frac{\rho^2 - \chi(w)^2}{P(x,y)^2} (\mathrm{d} x^2 + \mathrm{d} y^2)$$
 lightlike coordinate
$$\phi = \frac{1}{\sqrt{2}} \log \bigg(\frac{\rho - \chi(w)}{\rho + \chi(w)} \bigg)$$

- Wave propagation towards outgoing ho
- Not spherically symmetric
- Presence of an apparent horizon
- Fully non-linear solution
- Petrov type II

Representing the wave pulse

scalar charge

(past)



• Curvature of 2D space (∂_x, ∂_y) :

$$\mathcal{K} = \frac{\chi^2(w)}{C_0^2} K(x, y)$$

- Scalar pulse χ goes from 0 to max and back to 0
- Longitudinal wave generated by scalar field monopole
- Empty spacetime at remote past and future

(future)

Description of the scalar-tensor solution

$$ds^{2} = (-K(x,y) + B_{0}\phi_{w}^{2}) dw^{2} - 2(1 - B_{0}\phi_{w}\phi_{\rho}) dw d\rho + B_{0}\phi_{\rho}^{2} d\rho^{2} + \frac{\rho^{2} - \chi(w)^{2}}{P(x,y)^{2}} (dx^{2} + dy^{2})$$

- Wave pulse χ unchanged: scalar monopole
- · Apparent horizon and singularities unchanged qualitatively
- Remote past and future ($w \to \pm w_0$): empty non-spherical spacetime
- Petrov classification: type I while seed was type II \rightarrow loss of algebraic speciality

GW content of spacetime

How can one read the polarisation content of a GW?

Linearised GW

Read off from the components of $h_{\mu
u}$

Non-linear GW

No extraction of wave profile!

- Main idea: tidal effects experienced by a photon around its worldline $\bar{\gamma}$ [Penrose '76], with parallel transported null tetrad E^{μ}_{A} and parameter W
- In this setup, always recover pp-wave geometry:

$$ds^2 = 2 dW dV + \delta_{AB} dX^A dX^b - H_{AB}X^A X^B dW^2$$

• Read off polarisation from components of $H_{AB}=\bar{R}_{\mu\nu\rho\sigma}E^{\mu}_WE^{\nu}_AE^{\rho}_WE^{\sigma}_B$ evaluated on $\bar{\gamma}$

Waves in the transformed solution

$$H_{AB} = \begin{pmatrix} a_0 + B_0 a_1 + B_0^2 a_2 & 0 \\ 0 & a_0 + B_0 a_1 + B_0^2 a_2 \end{pmatrix} + B_0^2 \begin{pmatrix} +b_2 & c_2 \\ c_2 & -b_2 \end{pmatrix} + \mathcal{O}(B_0^3)$$
scalar waves H_0

 10^{-1} 10^{-4} 10^{-7} 10^{-10} 10^{-13} 10^{-16} 5 10 15 20 W

- the disformal transformation sources tensorial gravitational waves
- keep the complete non-perturbative character of the metric

Conclusion

- · First exact radiative non-linear solution in Horndeski beyond plane waves
- Contains non-linear superposition of shear and breathing modes generated by a scalar monopole
- Probe new effects in strong regime scalar-tensor gravity: additional contribution to GWs
- Open question: consequence for GWs in the case of scalar-tensor cosmology?

Thank you for your attention!