Kilonovae Associated with a Neutron Star-Black Hole Merger : an example study with O4 NSBH candidates

Marion Pillas, on behalf of the GRANDMA collaboration marion.pillas@ligo.org

GdR Ondes Gravitationnelles October 14-15th 2024

Introduction

Stage

Signal

X-ray/radio

precursor?

GW "chirp"

- Compact Binary Coalescence (CBC) systems with neutron star (NS) can produce **electromagnetic** (EM) counterpart in addition to gravitational-wave (GW) emission
- First and unique KN associated with GW: **AT2017gfo**
- Kilonova (KN) Optical counterpart, witness to the nucleosynthesis of heavy elements during the merger
- Neutron star Black Hole (NSBH) merger can also produce KN signature, depending on:
 - Mass ratio
 - Black hole spin
 - NS EoS (Villar et al, 2017)
- KN brings information about:
 - Sky location of the source
 - Merger environment ...

Introduction

- In O3, first confirmed NSBH event: GW200115
- O4 has started in May 2023
 - > 100 GW candidates
 - confirmed NSBH: **GW230529**
 - 2 NSBH candidates: **S230518h, S230627c**
 - 1 low-significance NSBH candidate: **S240422ed**
 - Massive followup from the optical community but no discovery of a clear KN counterpart

Introduction

- In O3, first confirmed NSBH event: GW200115
- O4 has started in May 2023
 - > 100 GW candidates
 - confirmed NSBH: GW230529
 - 2 NSBH candidates: **S230518h**, **S230627c**
 - low-significance NSBH candidate: **S240422ed**

Modeling Kilonova from NSBH

Barbieri et al, 2019

Modeling Kilonova from NSBH

Kilonova properties imprinted in the light curves:

- m_{dyn}
- m_{wind}
- viewing angle θ
 (between line of sight and orbital momentum direction)

Included in this work

Anand 2021-Bulla 2019

- 891 light curves
- 21 different filters
- half-opening angle ϕ of the lanthanide-rich component ($\phi = 0 \rightarrow$ lanthanide-free)
- ejecta velocity
- ...

We define a **kilonova scenario by**: *m_{dyn} , n*

$$n_{wind}$$
 , $heta$

Goal:

- Take a critical look at observation strategies from the optical community
- 2) Given the non-observation of a KN, set constraints on source ejecta and viewing angle properties of the 4 NSBH candidates*:

*Acronyms:

18h: S230518h, 29: GW230529, 27c: S230627c and 22ed: S240422ed

Goal:

Take a critical look at observation strategies from the optical community

- angle properties of the 4 NSBH candidates*:

Probability of astrophysical origin (p_{astro} **)**

- Estimate the chirp mass of each candidate
- Compare the magnitude of the light curves (M_{KN}) to the upper limit from optical observations (M_{obs})
- If $M_{KN} < M_{obs}$ (expected KN brighter than the observation): KN light curve incompatible with observation

Acronyms:

18h: S230518h, 29: GW230529, 27c: S230627c and 22ed: S240422ed

2) Given the non-observation of a KN, set constraints on source ejecta and viewing

- Start from GraceDB public information for each NSBH candidate, S230518h, GW230529, S230627c, S240422ed:

- Compute a range of consistent ejected masses m_{dyn} , m_{wind} & select a corresponding set simulated of KN light curves

- PyCBC Live method to compute the p_{astro} : deterministic mapping between the source-frame chirp mass and its source classification probabilities
- Assumptions:
 - Astrophysical origin of the event
 - Uniform mass distribution in source-frame component masses
 - Only the detector-frame chirp mass is well measured
- Redshift estimate derived from effective distance and SNR to estimate the $\mathcal{M}_{\rm src}$ from a detector-frame point estimate
- → process reversed
 - Uncertainty derived from the one on the distance

	Candidate	BNS	NSBH	BBH	$\mathcal{M}_{ m src} \left[M_{\odot} ight]$
	S230518h	0	0.959	0.041	$2.73\substack{+.07 \\06}$
	S230529ay	0.329	0.671	0	$1.91\substack{+.06 \\05}$
	S230627c	0	0.493	0.507	$5.96^{+.18}_{17}$
1	S240422ed	0.700	0.300	0	$1.60^{+.04}_{04}$

Consistent with public results about GW230529

 $m_{1,\mathrm{Src}}$

2) <u>light curves</u>

Aspect	Details	
Source P		
NS Mass	$1.2 - M_{max,NS}M_{\odot}$	2 scopari
BH Mass	$3.0-9.0 M_{\odot}$	
	• BH Spin: $Spin1z_{BH} \in \{-0.3, 0.0, 0.3, 0.8\}$	• Optimi
	• NS Spin: None	Pessim
Spins		
Equation of State of matter	SLy, H4	

- IMRPhenomXP waveform model)
- Results (we take the broader upper limit between EoS and spins)
 - S230518h: $m_{dyn} < 0.08 \text{ M}_{\odot} \& m_{wind} < 0.04 \text{ M}_{\odot} + \theta$ unconstrained
 - GW230529: m_{dyn} , $m_{wind} < 0.01 \text{ M}_{\odot} + \theta$ unconstrained
 - S230627c: m_{dyn} , $m_{wind} < 0.01 \text{ M}_{\odot} + \theta$ unconstrained
 - S240422ed: given the low significance, select all the synthetic light curves of the grid

Compute a range of consistent ejected masses: m_{dvn}, m_{wind} select a corresponding set simulated of KN

- os for ejecta computation:
- stic: $Spin1z_{RH} = 0.8$ & EoS with tidal deformability
- stic: $Spin1z_{RH} = 0$ & EoS with rigid NS

• For GW230529: use public results (posterior distribution of masses, spins and later viewing angle, computed with

- <u>Compare the magnitude of the light curve (M_{KN}) with the one of optical observations (M_{obs})</u> 3)
 - Each optical telescope fields has a specific field of view, filter, limiting magnitude and epoch
 - Report these fields on the GW HEALPix skymap
 - Extract pixels of the skymap in each field and their associated distances

GW230529 (between 0 and 1 day)

S240422ed (between 0 and 1 day)

GRANDMA, KMTNet, Las Cumbres 1m & 2m, Magellan, MASTER, MeerLIGHT, PRIME, Swift UVOT, WINTER, ZTF

- 4)
- Compute the apparent M_{KN} of the synthetic kilonova light curves for each pixel and at the corresponding distance
- Compare the brightness of the simulated kilonova with the upper limits of the fields that contains the pixel at the
 epoch of the field
- If $M_{KN} < M_{obs}$ (expected KN brighter than the observation): KN light curve incompatible with observation

GW230529

S240422ed

If $M_{KN} < M_{obs}$ (expected KN brighter than the observation): KN light curve incompatible with observation 4)

Compute a scale reflecting the possibility of the « presence » of a kilonova:

)	r	١

4)

GW230529 (between 0 and 1 day)

Threshold of of a fraction of 0.7:

GW230529: **O deg²** within the 90% credible region > 0.7

If $M_{KN} < M_{obs}$ (expected KN brighter than the observation): KN light curve incompatible with observation

S240422ed (between 0 and 1 day)

S240422ed: **79 deg²** within the 90% credible region (259 deg²) for t in [0,1[days, **218 deg**² for t in [1,2[and **178 deg**² for t in [2,6[: probable absence of a kilonova in the observations

If $M_{KN} < M_{obs}$ (expected KN brighter than the observation): KN light curve incompatible with observation 4)

Associate a deterministic probability to each KN scenario (θ , m_{dvn} , m_{wind}) of being ruled out

• **Discussion & Key numbers:**

- S230518h: it has not been possible to observe kilonovae emitted from an on-axis collision up to a viewing angle of $\theta = 25^{\circ}$, assuming a minimum confidence of 10% for the presence of the source in this region
- GW230529: for $t \in [0,1[$ days, $\theta = 0^{\circ}, 25^{\circ}, 36^{\circ}$ incompatible by observations that covered ~3%, ~2% & ~1% of the skymap \rightarrow we cannot exclude the presence of a kilonova in the observations
- S230627c: we cannot exclude the presence of a kilonova in the observations
- S240422ed: observations ruled out the presence of a kilonova (with or without GWs)

• **Discussion & Key numbers:**

	mchirp	$spin1z, BH = 0.0 (M_{\odot})$	$spin1z, BH=0.8 (M_{\odot})$
	any	$SLy < 0.01 \ H4 < 0.03$	SLy < 0.06, H4 <
	1.6	SLy < 0.01, H4 < 0.03	SLy < 0.04, H4 <
	2.0	-, $H4 < 0.03$	SLy < 0.06, H4 <
m_{dyn}	2.4		SLy < 0.06, H4 <
	2.8	_	SLy < 0.03, H4 <
	3.2	-	- $H4 < 0.03$
	any	SLy < 0.02, H4 < 0.03	SLy < 0.09, H4 <
	1.6	SLy < 0.01, H4 < 0.03	SLy < 0.09, H4 <
	2.0	-, $H4 < 0.01$	SLy < 0.06, H4 <
mwind	2.4	-	SLy < 0.04, H4 <
	2.8	-	SLy < 0.02, H4 <
	3.2	-	SLy < 0.01, H4 <
1			

S240422ed

- 0.10
- 0.07
- < 0.09 0.1
- 0.08
- 0.11
- 0.11
- < 0.09
- < 0.06
- 0.04
- 0.02

Candidate	BNS	NSBH	BBH	$\mathcal{M}_{\mathrm{src}}$ [M
S230518h	0	0.959	0.041	$2.73^{+.07}_{06}$
S230529ay	0.329	0.671	0	$1.91\substack{+.06 \\05}$
S230627c	0	0.493	0.507	$5.96\substack{+.18\17}$
S240422ed	0.700	0.300	0	$1.60^{+.04}_{04}$

Magnetar wind nebula

sk wind ejecta

$$M_{ej} \approx 10^{-2} - 10^{-1} M_{\odot}$$

 $v \approx 0.01c - 0.1c$

Not in the NSBH case

MONET Filters

Wavelength [nm]

	mchirp	$spin1z, BH = 0.0 (M_{\odot})$	$spin1z, BH=0.8 (M_{\odot})$
	any	$SLy < 0.01 \ H4 < 0.03$	SLy < 0.06, H4 < 0.10
	1.6	SLy < 0.01, H4 < 0.03	SLy < 0.04, H4 < 0.07
	2.0	-, $H4 < 0.03$	SLy < 0.06, H4 < 0.09
m_{dyn}	2.4		SLy < 0.06, H4 < 0.1
	2.8	_	SLy < 0.03, H4 < 0.08
	3.2	-	- $H4 < 0.03$
	any	SLy < 0.02, H4 < 0.03	SLy < 0.09, H4 < 0.11
	1.6	SLy < 0.01, H4 < 0.03	SLy < 0.09, H4 < 0.11
	2.0	-, $H4 < 0.01$	SLy < 0.06, H4 < 0.09
m_{wind}	2.4	_	SLy < 0.04, H4 < 0.06
	2.8	-	SLy < 0.02, H4 < 0.04
	3.2	_	SLy < 0.01, H4 < 0.02
	any	SLy < 0.02, H4 < 0.05	SLy < 0.11, H4 < 0.16
	1.6	SLy < 0.02, H4 < 0.05	SLy < 0.11, H4 < 0.14
	2.0	SLy < 0.001, H4 < 0.04	SLy < 0.10, H4 < 0.14
Total	2.4	-	SLy < 0.09, H4 < 0.14
	2.8	-	SLy < 0.05, H4 < 0.11
	3.2	-	-, $SLy < 0.01, H4 < 0.05$

Goal:

Take a critical look at observation strategies from the optical community

2) Given the non-observation of a KN, set constraints on source ejecta and viewing angle properties of the 4 NSBH candidates:

1)

- Peak time depends on KN properties
- filters

- To ensure a KN detection, at least one observation should be done at the **time of brightness peak**

- Compare time of optical observations with the predicted peak time from simulated KN light curves for numerous

1) <u>Compare time of optical observations with the predicted peak time from simulated KN light curves</u>

GRANDMA followup

(see Thomas Hussenot talk for details about GRANDMA followup)

Key Aumbers:

S230 Sh: Observations in i-band covered the kilonova time peak of 44% of the population

GW23529ay: only 2% of our simulated sample population the predicted peak was covered by these observations in g and r band -> expected given the large skymap

S260727c: observations in g and r-band happened before most of the scenario's predicted peak time

S2404 2ed: - observations consistent with the peak time of 76% and 6016 of kilonova of our population in r and i-band respectively. - in r-band, no observitions between 0.6 and 1.06 days while 25% of kilonova per k in this time range.

Discussion 1:

- Necessity to image the first moment but also the importance of imaging 1 day in g, r, i post-merger, especially for shallower images, as the magnitude of the kilonova may vary up to ~11 magnitudes between prompt observations to the peak time (computed for a distance of 200 Mpc)
- Prompt strategy has been well demonstrated by the community, the « later time » strategy is not always realized.
- We advocate a more « relaxed » approach for near and infrared for which the maximum of the peak time of the kilonova is less obvious.
- Motivation for taking into account additional measurements from the GW signal itself, especially the chirp mass -> allows us to estimate a range of time at which you expect the maximum brightness ; would be an important tool for follow-up of NS merger events.

Between 0 and 1 day

Between 1 and 2 day

S230518h

Between 2 and 6 day

S230518h

Between 0 and 1 day

GW230529

Between 1 and 2 day

Between 2 and 6 day

Between 0 and 1 day

Between 1 and 2 day

S230627c

Between 2 and 6 day

S230627c

Between 0 and 1 day

S240422ed

Between 1 and 2 day

Between 2 and 6 day