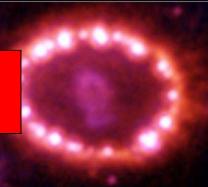

SEMINAIRE, MARSEILLE, 14 NOVEMBRE 2005

Fermilab Fermi National Accelerator Laboratory

Peter Skands

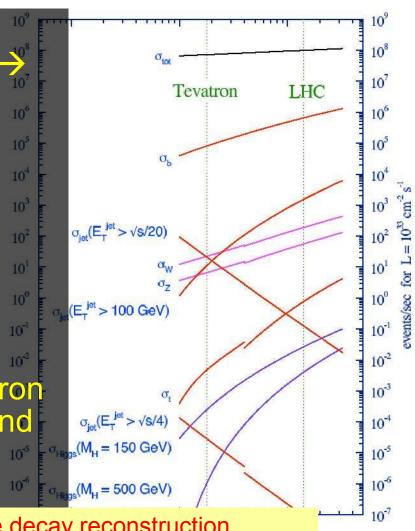

Theoretical Physics Dept

WHY STUDY SUPERNOVAE?

- They are the highest energy explosions in the universe
- They give us clues to other physics
 - Type Ia = large-distance standard candles distance/redshift relation
 - Cosmological constant problem
- SN1987a
 - \rightarrow neutrino physics,
 - Cooling → limits on light/weak particles
 - + much much more …

PRICE: Extremely Complicated Dynamics $\leftarrow \rightarrow$ They are now <u>almost</u> making them explode in simulations

✓ → Much can be done even in complex environments.
 More if the complex dynamics can be understood and modeled and modeled.


WHY STUDY HADRON COLLISIONS?

- **Tevatron** (2 TeV, Fermilab, running)
 - 4 8 fb⁻¹ by LHC turn-on (1fb⁻¹ on tape now)
 - Large Z, W, and ttbar samples (including hard tails !)
 - Always: Potential discoveries...
- LHC (14 TeV, CERN, start 2007(?))
 - Explore EWSB / Probe New Physics up to ~ 5-6 TeV
 - 10 fb⁻¹ \rightarrow more than 10⁷ Z,W, ttbar events
 - ' → σ_{stat} << 1%
 - Improved systematics (Luminosity, Jet Energy Scale, parton distributions, ...) with high-statistics 'standard candles'.

→Large discovery potential + Percent level Physics!

BUT NO FREE LUNCH proton - (anti)proton cross sections

- Not all discovery channels produce dramatic signatures Need theoretical control of shapes, backgrounds, uncertainties, ...
- Scattering at LHC≠ rescaled scattering at Tevatron.
- Aiming for percent level measurements, PDFs, luminosities, jets etc → solid understanding of QCD in hadron collisions, both perturbative and non-perturbative, is crucial.

√s (TeV)

E.g.: precision in SUSY cascade decay reconstruction

- Quantum Chromodynamics @ high energy
- A new parton/dipole shower and underlying-event model in Pythia
- Top production at the Tevatron
- Top production at the LHC
- Supersymmetry pair production at the LHC

- Known Gauge Group and Lagrangian
- Rich variety of dynamical phenomena, not least <u>confinement</u>.
- Large coupling constant also means perturbative expansion tricky.
- To calculate higher perturbative orders, 2 approaches:
 - Feynman Diagrams
 - Complete matrix elements order by order ©
 - Complexity rapidly increases (8)
 - Resummation
 - In certain limits, we are able to sum the entire perturbative series to infinite order
 e.g. parton showers
 - Exact only in the relevant limits ⁽²⁾

APPROXIMATIONS TO QCD

- 1. Fixed order matrix elements: Truncated expansion in $\underline{\alpha}_{s} \rightarrow$
 - Full intereference and helicity structure to given order.
 - Singularities appear as low-p_T log divergences.
 - Difficulty (computation time) increases rapidly with final state multiplicity \rightarrow limited to 2 \rightarrow 5/6.
- 1. <u>Parton Showers: infinite series in α_s (Marriage Desirable</u> <u>collinear approximation).</u>
 - Resums logs to all orders \rightarrow excellent at low p_T .
 - Factorisation \rightarrow Exponentiation \rightarrow Arbitrary multiplicity
 - Easy match to hadronisation models
 - Interference terms neglected + simplified helicity structure + ambiguous phase space → large uncertainties away from singular regions.

TOOLS - WHAT'S THERE ...

X=Anything (e.g. ttbar) PS=Parton Shower

Hard & Soft Marriage Desireable!

• Several different ceremonies:

1) Merging (correcting first jet in X+PS to X+jet matrix element)

- PYTHIA: many ee →X + jet, pp → (h,V) + jet and most top, EW & MSSM decays

- **HERWIG:** many ee \rightarrow X + jet (incl VV), DIS, pp \rightarrow (V,h) + jet, top decay

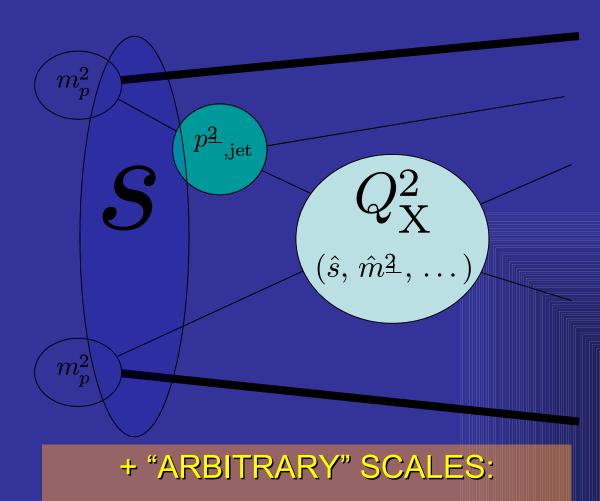
2) LO Matching (combining LO X, X+jet, X+2jets, ... with PS)

- SHERPA: "CKKW" matching for e+e- → n jets, pp → (V,VV) + jets
- PATRIOT: Pre-prepared ME/PS matched samples (using MADGRAPH with PYTHIA, stored in MCFIO format) for (W, Z) + jets (\leq 4), for Tevatron
- ARIADNE: Vetoed Shower matching (interface to MADGRAPH) for e+e- → n jets and pp → W + jets (DIS underway)

3) NLO Matching (matching NLO matrix elements with PS)

- MC@NLO: NLO + HERWIG for: pp → (h,V,VV,QQ,II) + jets

[+ MCFM: NLO (no PS) for pp → (V,h)+jets, VV,Vh, WBF, single top]


WHAT'S WHAT?

- Matrix Elements correct for 'hard' jets
- Parton Showers correct for 'soft' ones.

So what is 'hard' and what is 'soft'?

 And to what extent can showers be constructed and/or tuned to describe hard radiation? (PS: I'm not talking about matching here)

COLLIDER ENERGY SCALES

• Q_F , Q_R : Factorisation & Renormalisation

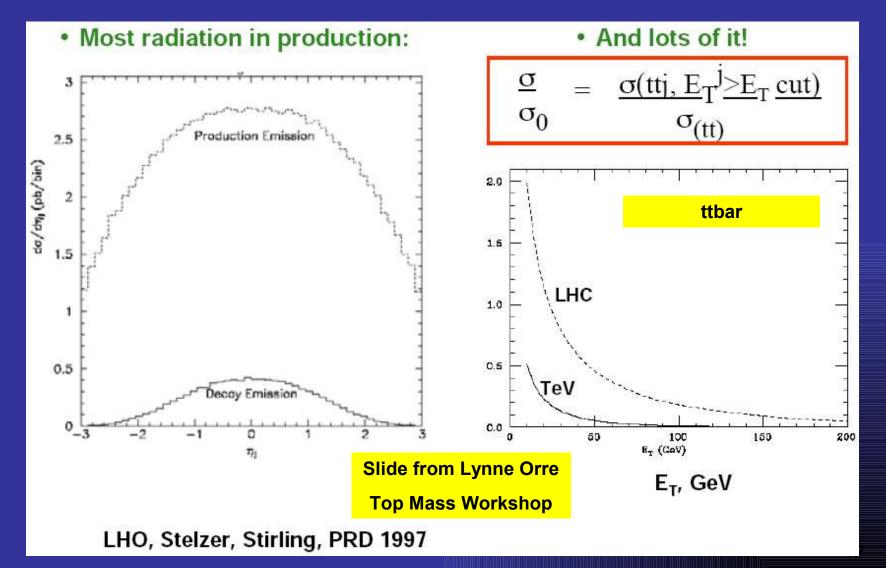
HARD SCALES:

- s : collider energy
- pT,jet : extra activity
- Q_x : signal scale (ttbar)
- m_x : large rest masses


SOFT SCALES:

- Γ : decay widths
- m_p : beam mass
- Λ_{QCD} : hadronisation
- m. : small rest masses

A HANDWAVING ARCUMENT


- Quantify: what is a soft jet?
- <u>Handwavingly</u>, leading logs are:

$$\rightarrow \mathcal{O}_{(1) \text{ for } \frac{Q_F}{p^{\pm}, \text{jet}}}^{\alpha_s \log^2(Q_F^2/p^{\underline{2}}, \text{jet})} \approx 6$$

➤→ very roughly, logarithms become large for jet p_T around 1/6 of the hard scale.

STABILITY OF PT AT TEVATRON & LHC

- QCD @ high energy
- <u>A new QCD parton/dipole shower</u>
- Top pairs at the Tevatron and the LHC
- SUSY pairs at the LHC
- Outlook ...

PARTON SHOWERS: THE BASICS

• Today, basically 2 approaches to showers:

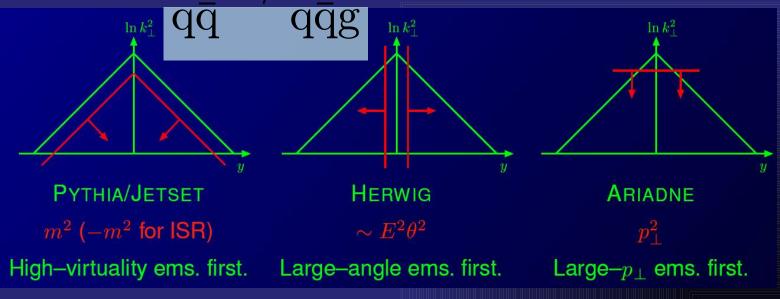
- Parton Showers (e.g. HERWIG, PYTHIA)
- and Dipole Showers (e.g. ARIADNE).

• Basic Formalism: Sudakov Exponentiation:

$$\mathrm{d}\mathcal{P}_a = \frac{\mathrm{d}X^2}{X^2} \, \frac{\alpha_{\mathrm{s}}(X^2)}{2\pi} \, P_{a \to bc}(z) \, \mathrm{d}z \, \exp\left(-\frac{\mathrm{d}X^2}{2\pi} \, P_{a \to bc}(z) \, \mathrm{d}z\right) \, \exp\left(-\frac{\mathrm{d}X^2}{2\pi} \, P_{a \to bc}(z) \, \mathrm{d}z\right)$$

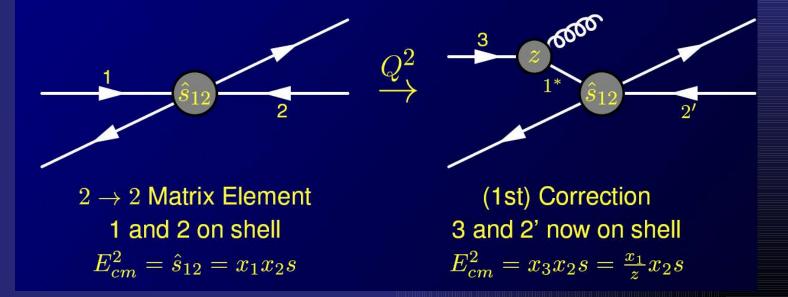
- X = Some measure of hardness (Q^2 , p_T^2 , ...)

Sudakov Form Factor = 'no-branching' probability


 X_{\max}

- z: energy-sharing
- Resums leading logarithmic terms in P.T. to all orders
- Depends on (universal) phenomenological params (color screening cutoff, ...) → determine from data (compare eg with form factors) ~ `tuning'
- Phenomenological assumptions
 some algorithms `better' than others.

PARTON SHOWERS: THE BASICS


- Today, basically 2 approaches to showers:
 - Parton Showers (e.g. HERWIG, PYTHIA)
 - and Dipole Showers (e.g. ARIADNE).

PARTON SHOWERS: THE BASICS

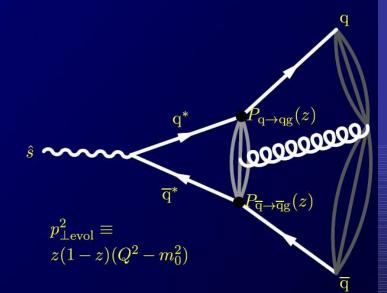
- Today, basically 2 approaches to showers:
 - Parton Showers (e.g. HERWIG, PYTHIA)
 - and Dipole Showers (e.g. ARIADNE).
- Another essential difference: kinematics construction, i.e. how e.g. 2→2 kinematics are 'mapped' to 2→3.

NEW PARTON SHOWER - WHY BOTHER?

- Today, basically 2 approaches to showers:
 - Parton Showers (e.g. HERWIG, PYTHIA)
 - and Dipole Showers (e.g. ARIADNE).

• Each has pros and cons, e.g.:

- In PYTHIA, ME merging is easy, and emissions are ordered in some measure of (Lorentz invariant) hardness, but angular ordering has to be imposed by hand, and kinematics are somewhat messy.
- HERWIG has inherent angular ordering, but also has the (in)famous 'dead zone' problem, is not Lorentz invariant and has quite messy kinematics.
- ARIADNE has inherent angular ordering, simple kinematics, and is ordered in a (Lorentz Invariant) measure of hardness, but is primarily a tool for FSR, and g→qq is 'articial' in dipole formalism.

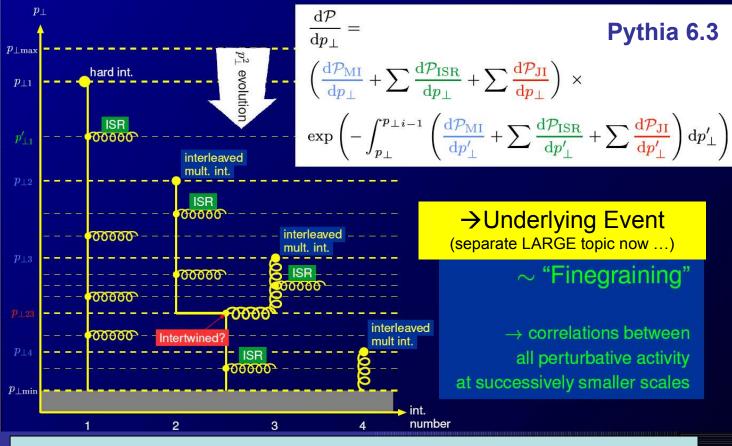

Finally, while these all describe LEP data well, none are perfect.

Try combining the virtues of each of these while avoiding the vices?

PYTHIA 6,3 ; PT-ORDERED SHOWERS

Merged with X + 1 jet Matrix Elements (by reweighting) for: h/ γ /Z/W production, and for most EW, top, and MSSM decays!

Exclusive *kinematics* constructed inside dipoles based on Q^2 and z, assuming yet unbranched partons on-shell


Iterative application of Sudakov factors...

 \Rightarrow One combined sequence $p_{\perp max} > p_{\perp 1} > p_{\perp 2} > \ldots > p_{\perp min}$

NB: Choice of $p_{\perp max}$ non-trivial and *very* important for hard jet tail \leftrightarrow wimpy vs power showers...

'INTERLEAVED EVOLUTION' WITH MULTIPLE INTERACTIONS

The new picture: start at the most inclusive level, $2 \rightarrow 2$. Add exclusivity progressively by evolving *everything* downwards.

T. Sjöstrand & PS - Eur.Phys.J.C39(2005)129 + JHEP03(2004)053

- QCD @ high energy
- A new QCD parton/dipole shower
- Top production at the Tevatron and LHC
- SUSY pair production at the LHC
- Outlook ...

Last Week: D. Rainwater, T. Plehn & PS - hep-ph/0510144

- Compare MadGraph (for ttbar, and SMadGraph for SUSY), with 0, 1, and 2 explicit additional jets to:
- 5 different shower approximations (Pythia):

 - 'Wimpy Q²-ordered' (PHASE SPACE LIMIT < Q_F) 'Power Q²-ordered' (PHASE SPACE LIMIT = s) $\rightarrow 2$ PARP(67)
 - 'Tune A' (Q²-ordered) (PHASE SPACE LIMIT ~ Q_{F})
 - 'Wimpy p_T -ordered' (PHASE SPACE LIMIT = Q_F)_
 - 'Power p_⊤-ordered' (PHASE SPACE LIMIT = s)

p_⊤-ordered showers: T. Sjöstrand & PS - Eur.Phys.J.C39:129,2005

[•]New in 6.3

NB: Renormalisation scale in p_{τ} -ordred showers also varied, between $p_{\tau}/2$ and $3p_{\tau}$

CSMADGRAPH NUMBERS

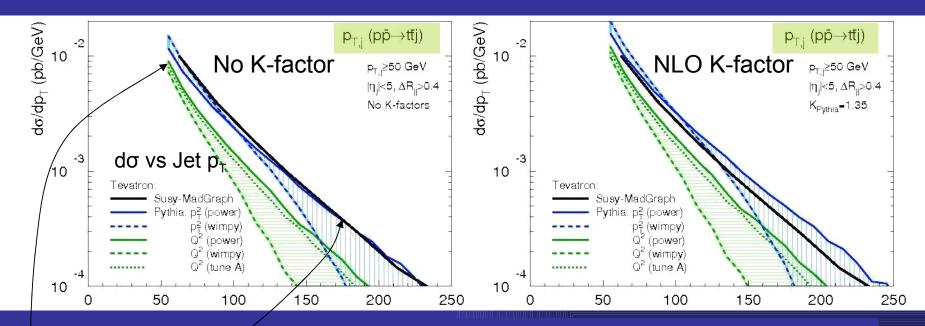
LHC $\sigma_{tot}[pb]$ $\tilde{g}\tilde{g}$ $\tilde{u}_L\tilde{g}$ $\tilde{u}_L\tilde{u}_L^*$ $\tilde{u}_L\tilde{u}_L$ TT $\sigma_{tot}[pb]$ $\tilde{g}\tilde{g}$ $\tilde{u}_L\tilde{g}$ $\tilde{u}_L\tilde{u}_L^*$ $\tilde{u}_L\tilde{u}_L$ TT
$p_{T,j} > 100 \text{ GeV}$ σ_{0j} 4.83 5.65 0.286 0.502 1.30 $\sigma_{0j} = 2.80 - 2.74 - 0.126 - 0.145 - 0.72$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
σ_{2j} 4.17 3.18 0.179 0.117 1.21

1) Extra 100 GeV jets are there ~ 25%-50% of the time!

2) Extra 50 GeV jets - ??? No control \rightarrow We only know ~ a lot!

TTBAR - JETS @ TEVATRON

Process characterized by:


- <u>Threshold production</u> (mass large compared to s)
- <u>A 50-GeV jet is reasonably hard</u>, in comparison with hard scale ~ top mass

SCALES [GeV] s = $(2000)^2$ $Q^2_{Hard} \sim (175)^2$

<mark>50 < р_{т,jet} < 250</mark>

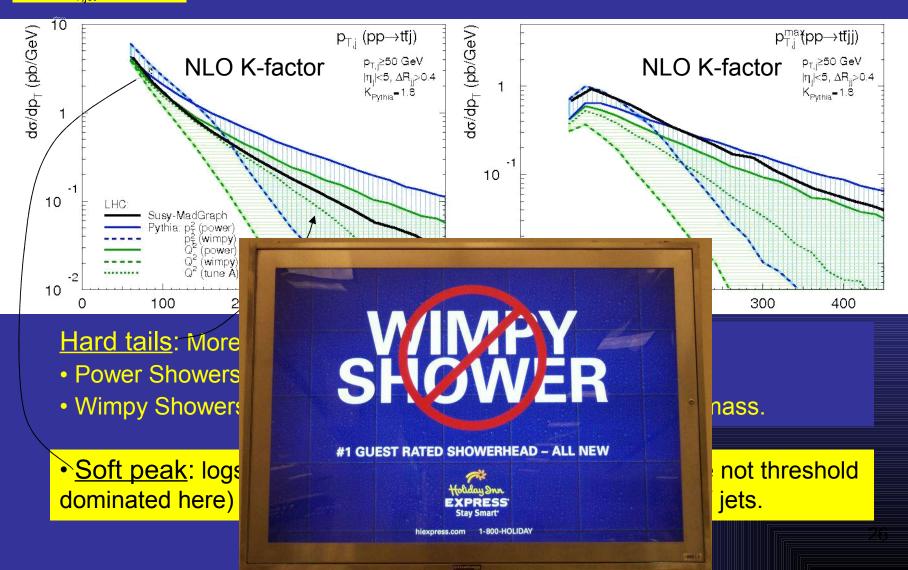
→ **RATIOS** $Q_{H}^{2}/s = (0.1)^{2}$ $1/4 < p_{T} / Q_{H} < 2$

Hard tails:

- Power Showers (solid green & blue) surprisingly good (naively expect collinear approximation to be worse!)
- Wimpy Showers (dashed) drop rapidly around top mass.

<u>Soft peak</u>: logs large @ ~ mtop/6 ~ 30 GeV \rightarrow fixed order <u>still good</u> for 50 GeV jets (did not look explicitly below 50 GeV yet)

TTBAR - JETS @ LHC


Process characterized by:

- Mass scale is small compared to s
- <u>A 50-GeV jet is hard</u>, in comparison with hard scale
 top mass, but is soft compared with s.

SCALES [GeV]
s = (14000)²
Q ² _{Hard} ~ (175+…) ²
50 < p _{T,jet} < 450

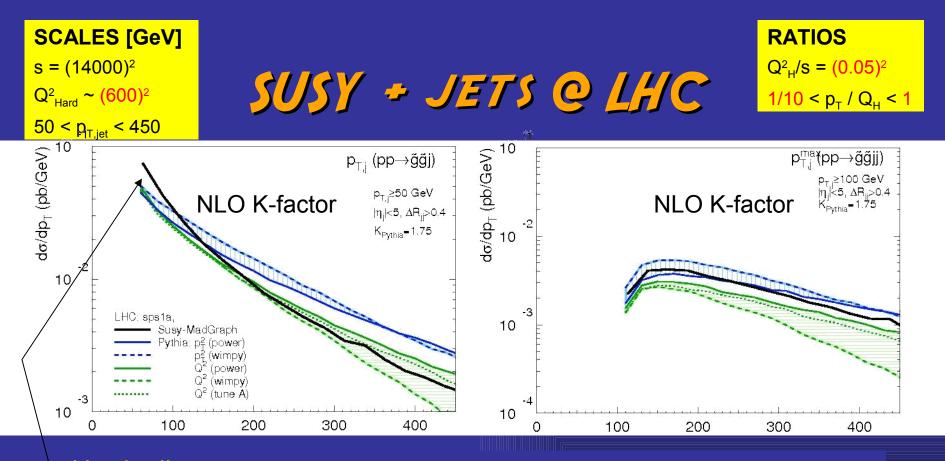
RATIOS: Q²_H/s = (0.02)² 1/5 < p_T / Q_H < 2.5

SUSY - JETS @ LHC

<u>Process characterized by:</u> (SPS1a \rightarrow m_{aluino}=600GeV)

- Mass scale is large compared to s
- <u>But a 50-GeV jet is now soft</u>, in comparison with hard scale ~ SUSY mass.

SCALES [GeV]

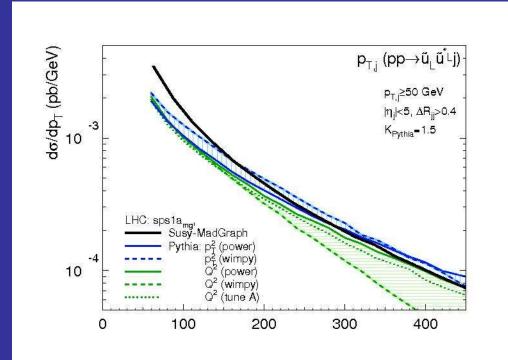

 $s = (14000)^2$

 $Q^2_{Hard} \sim (600)^2$

50 < p_{T,jet} < 450

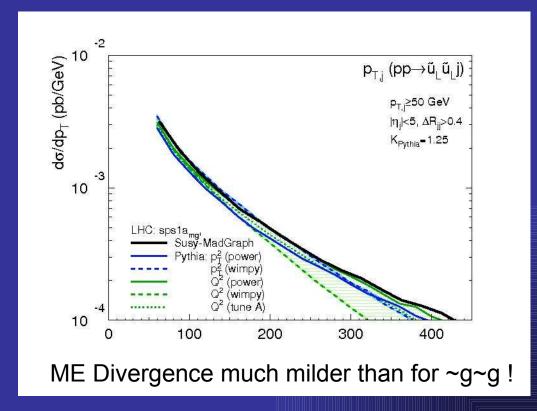
RATIOS $Q_{H}^{2}/s = (0.05)^{2}$ $1/10 < p_{T} / Q_{H} < 1$

27



<u>Hard tails</u>: Still <u>a lot</u> of radiation (p_{T} spectra have moderate slope)

- Parton showers less uncertain, due to higher signal mass scale.
- <u>Soft peak</u>: fixed order breaks down for ~ 100 GeV jets. Reconfirmed by parton showers → universal limit below 100 GeV.


No description is perfect everywhere! → To improve, go to ME/PS matching (CKKW / MC@NLO / ...)

MORE SUPERSYMMETRY: "UL"

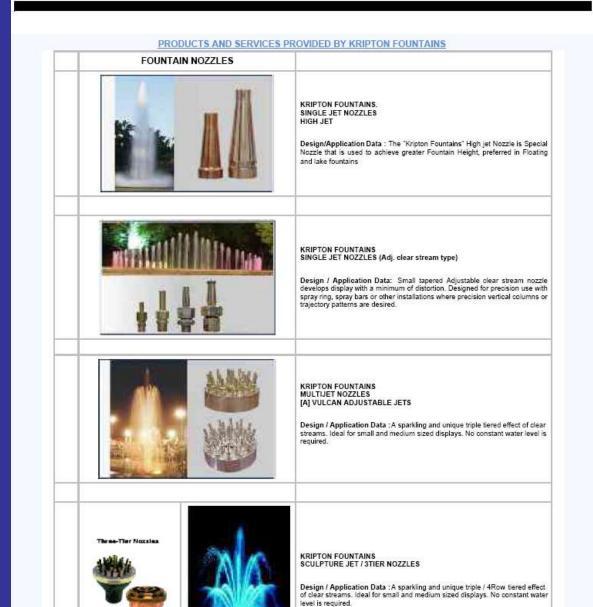
Other sea-dominated initial states exhibit same behaviour as ~g~g

MORE SUSY: -UL-UL

Possible cause: qq-initiated valence-dominated initial state \rightarrow less radiation.

- SUSY-MadGraph soon to be public.
- Comparisons to PYTHIA Q²- and p_T²- ordered showers → New illustrations of old wisdom:
 - Hard jets (= hard in comparison with signal scale)
 S→ collinear approximation misses relevant terms
 S→ use fixed-order P.T. (if available)
 - If P.S., handle with <u>care</u>! (i.e. vary phase space, ordering variable etc to at least <u>estimate</u> uncertainty)
 - <u>Soft jets</u> (= soft in comparison with signal process, but still e.g. 100 GeV for SPS1a)

 \rightarrow low-pT real readiation pole gives large logarithms


 \times \rightarrow singular terms must be resummed

 Important for precision measurements, e.g. in SUSY cascade decays with squarks & gluinos – but probably even more so for other BSM!

We Bring you Closer to the Nature

32