UCLouvain

Neutrino astronomy

Gwenhaël Dewasseige

1 pc = 3,085 677 581 × 10¹⁶ m = 3,2616 années-lumière

1 pc = 3,085 677 581 × 10¹⁶ m = 3,2616 années-lumière

https://www.youtube.com/watch?v=SnKvtazt5So

1912

Today

Dominated by protons and heavier nuclei

$$\phi = A E^{-\alpha}$$

Today

Dominated by protons and heavier nuclei

$$\phi = A E^{-\alpha}$$

radio/microwave infrared/optical X-rays cosmic-rays neutrinos gamma-rays 104 cosmological max of star formation opaque to photons; 10³ transparent to neutrinos Distance [Mpc] 10² nearest blazar **10**¹ 10⁰ nearest galaxy **10**⁻¹ **10**⁻² galactic center 10⁻³ 10-6 10-4 10-2 10⁰ 10² 104 10⁶ 10⁸ **10**¹⁰ **10**¹² **10**¹⁴ **10**¹⁶ **10**¹⁸ 10²⁰ Energy [eV]

https://doi.org/10.1016/j.nima.2020.163678

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

p

They are weak, neutral particles that point to their sources and carry information from deep within their origins.

air shower

Earth

Cosmic rays

0

1

They are charged particles and are deflected by magnetic fields.

Neutrinos in a few words

Elementary particles

No electric charge

Very small cross section

Very small but nonzero masses

Oscillation from one flavor state to another

 $v_e v_\mu v_\tau$

+ antiparticles

Homestake Solar Experiment

Scientific American, July 1969

Homestake Solar Experiment

Dr. Ray Davis of Chemistry is shown placing a low level counter in a cut-down navy gun barrel which acts as a shield from stray cosmic radiation. This equipment is used in the Brookhaven Solar

Neutrino Experiment.

A BNL team of scientists, headed by R. Davis, Jr., of Chemistry has gone 4850 feet nto the earth to learn more about what is

and his group calculate that ten billionbillion neutrinos pass through their 20-ft. fiameter by 48-ft long tank every day, yet

in low level counting experiments. Originally the gun barrels were procured from surplus, and brought to BNL for conversion to more peaceful uses. The long guns were cut into 8-foot sections, weighing about 16,000 pounds each. These guns are made from "old" iron (before the use of atom and hydrogen bombs) and contain a very small amount of residual radioactivity. For accurate results, it is necessary to re-

duce the background radiation to as low a level as possible. Hence, the tank was placed deep underground to shield it from cosmic radiation and the counter was mounted in the thick gun barrel, which acts as a shield. Additional precautions, however, are taken to eliminate interferences from unrelated nuclear processes that could also produce Argon-37 in the tank and possibly result

Various elements, when they decay, are capable of producing neutrinos, but there is a definite energy level for each neutrino, and chemists use this method of identifying the neutrino source. In the Brookhaven experiment, the only neutrinos having enough energy to produce Argon-37 plus an electron from chlorine-37 are those produced in the decay of Boron-8, which is part of the thermonuclear process taking place in

The theoretical forecast had led scientists to believe that the neutrino emission from the sun would allow from 1.5 to 5 neutrino captures per day. In the single experiment performed to date, Dr. Davis reports that the capture rate in the underground tank was less than 2 neutrinos per day. Knowing this plus the efficiency of neutrino capture allowed Dr. Davis and his group to calculate the flux from the Boron-8 de

"A giant trap has been set deep underground to catch a few of the neutrinos that theory predicts should be pouring out of the sun. Their capture would prove that the sun runs on thermonuclear power." John N. Bahcall

BNL Public Relation Office

Experiment		Reaction	Threshold (MeV)	Observed/ Expected Rate
SAGE + GNO HOMESTAKE SNO SUPER-K SNO	CC CC CC ES ES	⁷¹ Ga $(v_e, e)^{71}$ Ge ³⁷ Cl $(v_e, e)^{37}$ Ar $v_e + {}^2$ H $\rightarrow p + p + e$ $v + e \rightarrow v + e$ $v + e \rightarrow v + e$	$\begin{array}{c} 0.2 \\ 0.8 \\ \sim 5 \\ \sim 5 \\ \sim 5 \\ \approx 5 \end{array}$	$\begin{array}{c} 0.58 \pm 0.04 \\ 0.34 \pm 0.03 \\ 0.30 \pm 0.05 \\ 0.46 \pm 0.01 \\ 0.47 \pm 0.05 \end{array}$
SNO	NC	$\nu + e \rightarrow \nu + e$ $\nu + {}^{2}\text{H} \rightarrow p + n + \nu$	~ 5	0.47 ± 0.05 0.98 ± 0.09

CC = charged current (W-exchange); NC = neutral current (Z exchange); ES = electron scattering (via $\Re C$ for ν_{μ} , ν_{τ} , and via NC and CC for ν_{e})

https://www.nature.com/articles/s41586-020-2934-0

https://www.nasa.gov/mission_pages/sunearth/science/Sunlayers.html

24

If you are interested in being notified about the occurrence of a neutrino burst from

SNEWS, please sign up for our alert list.

https://snews2.org

Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector

22 Nov. 2013

Neutrino telescopes

Neutrino telescopes

x 8

-

Neutrino telescopes

IceCube South Pole, Antarctica

IceCube South Pole, Antarctica

2500 m

KM3NeT Mediterranean Sea, France and Italy

ant the

Die

9

- Amount of light-> Energy
- Timing -> Direction
- Topology -> Flavor

https://arxiv.org/abs/2011.03545

Diffuse neutrino flux 7.5 year

102 events, with 60 events > 60 TeV

Diffuse neutrino flux

- No evidence for point sources
- No correlation with the galactic plane
- <u>Best fit</u>: Single power law with spectral index $\gamma = 2.89^{+0.20}_{-0.19}$ all-flavor flux normalization $\Phi = 6.45^{+1.46}_{-0.46}$
- Data does not prefer a broken power law model

7.5 year

PKS 1424+240

TXS 0506+056 O NGC 1068

NASA, ESA & A. van der Hoeven

★ NGC 1068

Située à 47 millions d'années lumière

IceCube Collaboration/U.S. National Science Foundation)/ESO

IceCube Collaboration/U.S. National Science Foundation)/ESO

Multi-messenger astronomy

Multi-messenger astronomy

Core-collapse supernova SN1987a

Multi-messenger astronomy

Binary neutron star merger GW170817 – GRB170817A

https://arxiv.org/pdf/1807.08816 https://arxiv.org/abs/1807.08794

22 September 2017 IceCube-170922A

60

Neutrino Energy: 290 TeV (>180 TeV, 90% CL) RA: 77.43° (-0.65°/+0.95° 90% CL) Dec: 5.72° (-0.30°/+0.50° 90% CL)

22 Septembre 2017 IceCube-170922A

61

- Observation by Fermi of a known blazar TXS 0506+056, in a flaring state
- Detection by MAGIC of gamma rays > 400 GeV

Neutrino Energy: 290 TeV (>180 TeV, 90% CL) RA: 77.43° (-0.65°/+0.95° 90% CL) Dec: 5.72° (-0.30°/+0.50° 90% CL)

Archival search

IceCube170922A

- Search for a point source in a time-dependent analysis in the direction of TXS
- Excess of 13 ± 5 neutrinos in 2014-2015 over 110 days
- Significance defined using similar searches in random directions : $3,5\sigma$

Multimessenger observations of a flaring blazar coincident with highenergy neutrino IceCube-170922A

Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert

13 Jul. 2018

Can we learn more from neutrino astronomy?

Can we learn more from neutrino astronomy?

Can we learn more from neutrino astronomy?

First observation of a Glashow

https://www.nature.com/articles/s41586-021-03256-1

First observation of a Glashow resonance event

https://www.nature.com/articles/s41586-021-03256-1

- Amount of light-> Energy
- Timing -> Direction
- Topology -> Flavor

Cascades + Tracks + Double cascades

More flux at lower energies! Look for subtler signature(s) in one or more modules.

Doug Cowen/Penn State/dfc13@psu.edu

Doug Cowen

Cascades + Tracks + Double cascades

Importance of Flavor ID for $\nu^{\rm astro}$

At Earth, ν_e : ν_μ : ν_τ could tell us about the source...

Example: Effect of quantum gravity.

For more examples, see Refs. 22-59 in IceCube, PRD 104, 022002 (2021).

Doug Cowen/Penn State/dfc13@psu.edu

Doug Cowen

Cascades + Tracks + Double cascades

$\nu_{\tau}^{\text{astro}}$ Candidate Event Pics

Here's "Scarlet Macaw," a new event:

Clear ν_{τ} signature. Detected in 2019 (too recent for previous analyses to have seen).

Doug Cowen/Penn State/dfc13@psu.edu

Doug Cowen

With a deposited energy above 10 PeV !

Antoine Kouchner Possibly the first detection of a cosmogenic neutrino

With a deposited energy above 10 PeV !

Huge amount of light detected -> 35% of the total number of PMTs were triggered

From the track and shower reconstructions A muon track and three showers detected

Hit times are fully consistent with photons from Cherenkov emission

Hit times consistent with the emission from three points along the track -> stochastic light emission

Impact of the environment

Impact of the environment

• Find an example and how to mitigate the impact

Impact of the environment

- Find an example and how to mitigate the impact
- Why is it an issue?

Fig. 1.3 The atmosphere opacity as a function of the wavelength is presented in the *upper part*. Opacity is represented by the percentage of electromagnetic radiation, which does not reach the ground. Space experiments are widely used to detect electromagnetic radiation that does not reach the Earth's surface. Note that the scale is in terms of the logarithm of the wavelength, so the energy scale decreases from left to right. Credit: NASA

Figure 36.5: Effective $\bar{\nu}_{\mu}$ area for IceCube as an example of a cubic-kilometre NT, as a function of neutrino energy for three intervals of the zenith angle θ . The values shown here correspond to a specific event selection for point source searches.

KM3NeT

Understanding the *noise* from the Deep Sea

Data recorded

03

https://www.zooniversesterg/projects/reinforce/deep-sea-explorers Time [s]

Neutrino astronomy

A

Neutrino astronomy

110

Neutrino astronomy

17

1

Speeding up

Cascades vs tracks	Cascades + Tracks + Double cascades
Upgoing track searches	All-sky all-flavour searches
1 km ³ detector	At least 3 km ³ detectors around the globe
Seeing the diffuse flux	Resolving sources

Towards Multi-Detector and Multi-Energy neutrino astronomy in the Multi-Messenger Era!